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Abstract. For the problem of nonparametric regression of smooth functions, we reconsider and analyze a constrained variational
approach, which we call the MultIscale Nemirovski–Dantzig (MIND) estimator. This can be viewed as a multiscale extension of
the Dantzig selector (Ann. Statist. 35 (2009) 2313–2351) based on early ideas of Nemirovski (J. Comput. System Sci. 23 (1986) 1–
11). MIND minimizes a homogeneous Sobolev norm under the constraint that the multiresolution norm of the residual is bounded
by a universal threshold. The main contribution of this paper is the derivation of convergence rates of MIND with respect to Lq -
loss, 1 ≤ q ≤ ∞, both almost surely and in expectation. To this end, we introduce the method of approximate source conditions.
For a one-dimensional signal, these can be translated into approximation properties of B-splines. A remarkable consequence is
that MIND attains almost minimax optimal rates simultaneously for a large range of Sobolev and Besov classes, which provides
certain adaptation. Complimentary to the asymptotic analysis, we examine the finite sample performance of MIND by numerical
simulations. A MATLAB package is available online.

Résumé. Dans le cadre du problème de la régression paramétrique de fonctions lisses, nous revisitons et analysons une approche
variationnelle contrainte, que nous appelons l’estimateur de Nemirovski–Dantzig multi-échelle (MIND). Il peut être vu comme
une extension multi-échelle du sélecteur de Dantzig (Ann. Statist. 35 (2009) 2313–2351), reposant sur des idées antérieures de
Nemirovski (J. Comput. System Sci. 23 (1986) 1–11). MIND minimise une norme de Sobolev homogène sous la contrainte que la
norme multi-résolution du terme résiduel est bornée par un seuil universel. La contribution principale de cet article est d’obtenir
des vitesses de convergence de MIND pour une norme Lq,1 ≤ q ≤ ∞, à la fois p.s. et en moyenne. À cette fin, nous introduisons
la méthode des conditions de sources approximées. Dans le cas d’un signal unidimensionnel, on peut exprimer ces dernières en
termes de propriétés d’approximation de B-splines. Une conséquence remarquable est que MIND atteint presque des taux minimax
optimaux simultanément pour un large ensemble d’espaces de Sobolev et Besov, ce qui montre une adaptabilité certaine. En plus
de l’analyse asymptotique, nous étudions la performance de MIND pour un échantillon fini à l’aide de simulations numériques. Un
package MATLAB est disponible en ligne.
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1. Introduction

In this paper, we will consider the nonparametric regression problem to estimate a (Sobolev or Besov) smooth function
f : [0,1]d → R from n measurements

yn(x) = f (x) + ξn(x) for x ∈ �n, (1)

where

�n :=
{(

τ1

n1/d
+ 1

2n1/d
, . . . ,

τd

n1/d
+ 1

2n1/d

)
; τi = 0, . . . , n1/d − 1, for i = 1, . . . , d

}
(2)

is the regular grid in (0,1)d containing n equidistant points, and {ξn(x) : x ∈ �n} a set of independent, identically
distributed (i.i.d.) centered sub-Gaussian random variables with scale parameter σ , i.e., the common distribution
function � satisfies∫

eτ t�(dt) ≤ e(τσ )2/2 for every τ ∈R. (3)

For simplicity, we assume that the truth f can be extended periodically to R
d to avoid boundary effects, and that the

noise level σ is known (otherwise it can be estimated 1/
√

n consistently, see [70,85]). The discrepancy between an
estimate and the truth will be measured via Lq -loss with 1 ≤ q ≤ ∞.

1.1. Variational statistical estimation

Since the fundamental work of [71,86] and many others, the literature on nonparametric regression techniques has
become enormously rich and diverse, and has found its way into many textbooks, see [41,50,52,64,91] for example.
A prodigious amount of these estimation methods can be cast in a variational framework, which can be roughly
categorized into three different formulations: penalized estimation, smoothness-constrained estimation, and data-
fidelity-constrained estimation, see Figure 1.

Penalized estimation is a solution of the Lagrangian variational problem (also known as generalized Tikhonov
regularization)

min
f

L(f, yn) + λS(f ). (4)

The regularization term S(f ) accounts for a-priori assumptions of the truth f , such as smoothness, sparsity, etc. The
data fidelity term L(f, yn) measures the deviation from the data yn. If L(·, yn) is the log-likelihood function of the
model, this amounts to penalized maximum-likelihood regression (see e.g., [38,92], for general exposition). Prominent
examples include smoothing splines [95], local polynomial estimators [41], and locally adaptive splines [69]. It is
known that the choice of the balancing parameter λ is in general subtle, although there are nowadays many data
driven strategies, such as (generalized) cross validation [94], or Lepskiı̆’s balancing principle [68], to mention a few.
The latter even provides adaptation over a range of generalized Sobolev scales, see e.g. [48,67].

Fig. 1. Variational statistical estimation.
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Smoothness-constrained estimation is to minimize the data fidelity term L under the regularization constraint S ,

min
f

L(f, yn) subject to S(f ) ≤ η. (5)

It includes the well-known lasso [87] for L = ‖ · −yn‖	2 and S = ‖ · ‖	1 as a special case. Another example is
Nemirovski’s (1985) estimator f̂p,η defined by

f̂p,η ∈ arg min
f

‖Snf − yn‖B subject to
∥∥Dkf

∥∥
Lp ≤ η, (6)

where Sn denotes the sampling operator on the grid �n, and the multiresolution norm ‖ · ‖B measures the maximum
of normalized local averages, defined as follows.

Definition 1.1.

(a) A cube is defined as a subset of [0,1]d of the form B = ∏d
i=1[ai, ai + h), where ai ∈ R, i = 1, . . . , d , and

0 < h ≤ 1, and its d-dimensional volume hd is denoted by |B|.
(b) The multiresolution norm ‖ · ‖B on R

�n with respect to a non-empty system of cubes B is defined by

‖y‖B := sup
B∈B

1√
n(B)

∣∣∣∣ ∑
x∈�n∩B

y(x)

∣∣∣∣ for y = (
y(x)

)
x∈�n

∈R
�n. (7)

Here

n(B) := #�n ∩ B.

Moreover, in the case of n(B) = 0, that is, �n ∩ B =∅, we set |∑x∈�n∩B y(x)|/√n(B) := 0.

The estimator f̂p,η in (6) is known to be minimax optimal (up to at most a log-factor) over Sobolev ellipsoids
{f ; ‖Dkf ‖Lp ≤ η} ⊂ Wk,p , see [74,75]. This indicates one drawback of this type of estimator: the choice of the
threshold η determines a priori the smoothness information (measured by S) of the truth f , which is often unavailable
in reality.

Data-fidelity-constrained estimation results from the “reverse” formulation of (5), given by

min
f

S(f ) subject to L(f, yn) ≤ γ. (8)

Many basis (or dictionary) based thresholding-type methods, such as soft-thresholding [29], and block thresholding [9,
10,12,19,54], can be written this way. Here γ = γn can be chosen as a universal threshold, not depending on the data.
For example, proper wavelet thresholding provides spatial adaptivity, and is known to be minimax optimal for smooth
functions, see [32–34,56], while at the same time computationally fast as the thresholding is applied to each empirical
wavelet coefficient, separately. Such adaptivity of wavelet based methods is also known for more general settings,
such as linear inverse problems, see e.g. [15,20,30,58]. The Dantzig selector [14] is also a particular data-fidelity-
constrained estimator, originally introduced for linear models. In the nonparametric setting (1), it has the form

min
f ∈R�n

‖f ‖	1 subject to ‖f − yn‖	∞ ≤ γ. (9)

Many other 	1-minimization approaches for recovering sparse signals also take the form of (8), see [11,31] for exam-
ple.

From a convex analysis point of view, all three estimation methods in Figure 1 can be viewed as equivalent, as under
weak assumptions [62] each estimator in (4), (5), (8) can be obtained as a solution of the other optimization problems
via Fenchel duality (cf. [5], for this in the case of the lasso and the Dantzig selector). The correspondence between the
parameters λ,η, γ , however, is not given explicitly, and depends on the data yn. It is exactly the lack of this explicit
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correspondence that makes the different statistical nature of these estimations. From this perspective, the data-fidelity-
constrained estimation (8) has a certain appeal, since its threshold parameter can be chosen universally, i.e. only
determined by the noise characteristics and the sample size n, and still allows for a sound statistical interpretation.
For instance, it can often be chosen in such a way that the truth f satisfies the constraint on the r.h.s. of (8) with
probability at least 1 − α, which immediately leads to the so called smoothness guarantee of the estimate f̂ in (8),

inf
f
P
{
S(f̂ ) ≤ S(f )

}≥ 1 − α.

1.2. MIND estimator

In the literature, multiscale data-fidelity-constrained methods which do not explicitly rely on a specific basis or dic-
tionary and hence do not allow for component or blockwise thresholding have also been around for some while. For
example, [74] briefly discussed the “reverse” of his estimator (6) as well, which is given by

min
f

∥∥Dkf
∥∥

Lp subject to ‖Snf − yn‖B ≤ γ. (10)

These estimators all combine variational minimization (l.h.s. of (10)) with so called multiscale testing statistics
(r.h.s. of (10)). Empirically, they have been found to perform very well and even outperform those explicit methods
based on wavelets or dictionaries (cf. [13,28,45]), see also Section 5.1. In fact, the latter methods, as signal-to-noise
ratio decreases, often show visually disturbing artifacts because of missing band pass information [13]. Nevertheless,
the computation of such multiscale data-fidelity-constrained estimators, in general, leads to a high dimensional non-
smooth convex optimization problem, remaining a burden for a long time. However, recently certain progress has been
made in the development of algorithms for this type of problems (see [2,16,44] for example). In the one dimensional
case, fast algorithmic computation is particularly feasible for specific functionals S (e.g. [22,23,35,46]). In contrast to
these computational achievements, the underlying statistical theory for these methods is currently not well understood,
in particular with regard to their asymptotic convergence behavior. In fact, there is only a small number of results in
this direction we are aware of: for fixed k ∈ N and p ∈ [1,∞], and under the somewhat artificial assumption that the
truth f lies in the constraint on the r.h.s. of (10), [74] derived the convergence rate of (10) (i.e. S := ‖Dk · ‖Lp ) which
coincides with the minimax rate over Sobolev ellipsoids in Wk,p up to a log-factor. Special cases of this result have
also appeared in [24] for k = p = 2, and in [23] for k = 2,p = ∞. In particular, adaptation of this type of estimators
has not been provided so far, to the best of our knowledge. Intending to fill such gap, we focus on the “reverse”
Nemirovski estimator (10) with p = 2, that is,

f̂γn = arg min
f

1

2

∥∥Dkf
∥∥2

L2 subject to ‖Snf − yn‖B ≤ γn. (11)

We call f̂γn given by (11) the MultIscale Nemirovski–Dantzig estimator (MIND). The choice of the name credits the
fact that it is a particular “reverse” Nemirovski’s estimator (10), and the r.h.s. is a (multiscale) extension of the Dantzig
estimator (9), cf. [44]. Note, moreover, that such a “reverse” modification of the Nemirovski estimator as in (10)
and (11) was originally suggested by S. V. Shil’man according to a personal communication with Nemirovski [74].

The main contribution of this work is trifold. First, we introduce the approximate source conditions [59,61] from
regularization theory and inverse problems into the statistical analysis of nonparametric regression. By combining
them with an improved interpolation inequality of the multiresolution norm and Sobolev norms, we are able to trans-
late the statistical analysis into a deterministic approximation problem. The approximate source condition is essen-
tially equivalent to smoothness concepts in terms of (approximate) variational inequalities (cf. [43,60,80]) via Fenchel
duality, see [42]; and conditions of this kind are fundamental for convergence analysis in inverse problems (see e.g.
[39, Section 3.2]).

Second, we present both the Lq -risk convergence rate (1 ≤ q ≤ ∞) and the almost sure convergence rate for MIND,
provided that an estimate of the approximate source condition is known. It is worth noting that the derivation of the
Lq -risk convergence rate is more involved, for which one has to bound the size of MIND, when the truth does not
lie in the multiscale constraint, which notably extends [74]’s technique. Our analysis for such situation is built on the
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observation that the MIND estimator is always close to the data, which leads us to an upper bound on its Lq -loss in
terms of the multiresolution norm of the noise. The latter can be easily controlled because it has a sub-Gaussian tail.

Third, we show a partial adaptation property of MIND in one dimension, in the sense that for a fixed k ∈ N, it
attains minimax optimality (up to a log-factor) simultaneously over Sobolev ellipsoids in Ws,p and Besov ellipsoids

in B
s,p′
p for all (s,p) ∈ [1, k] × {∞} ∪ [k + 1,2k] × [2,∞] and p′ ∈ [1,∞]. These results explain to some extent

the remarkably good multiscale reconstruction properties of MIND empirically found in various signal recovery and
imaging applications, see Section 5 and [13,23,45].

1.3. Organization of the paper

The rest of the paper is organized as follows: In Section 2, we present the multiresolution norm together with its
deterministic and stochastic properties. Section 3 is devoted to approximate source conditions and so called distance
functions, which provide methods for analyzing the Lq -loss (1 ≤ q ≤ ∞) of MIND. Combining such general results
and an estimate of the distance functions, we obtain explicit convergence rates for smooth functions, in the one
dimensional case, in Section 4. These rates are further shown to be minimax optimal up to a log-factor simultaneously
over a large range of Besov and Sobolev classes. In addition to the asymptotic results, the finite sample behavior, as
well as choices of the tuning parameter, of MIND is examined empirically on simulated examples in Section 5. The
paper ends with discussions and open questions in Section 6. Technical proofs are given in the Appendix.

An implementation of MIND is provided in the MATLAB package “Multiscale OPtimization (MOP)”, available
at http://stochastik.math.uni-goettingen.de/mop/.

2. Properties of the multiresolution norm

Our main tool for the analysis of MIND will be estimates both for ‖ξn‖B and for ‖Snf ‖B that hold for sufficiently
rich systems of cubes (cf. Definition 1.1). Here and in the following Sn denotes the sampling operator on the set �n

in (2), provided that f is continuous.

Definition 2.1 ([74]). A system B of distinct cubes is called normal, if there exists c > 1 such that for every cube
B ⊆ [0,1]d there exists a cube B̃ ∈ B such that B̃ ⊆ B and |B̃| ≥ |B|/c.

In order to estimate the convergence rate of MIND for functions that are smoother than imposed by the regulariza-
tion term, it is necessary to impose an additional regularity condition on the system B .

Definition 2.2. The system of cubes B is called regular (or m-regular) for some m ∈ N, m ≥ 2, if it contains at least
the m-partition system, which is defined as all sets of the form [	m−j , (	 + 1)m−j ) for all 	 ∈ N

d , j ∈N.

Remark 2.3. Formally, a normal or regular system B is independent of the grid �n. Given a grid �n, the value of the
multiresolution norm, however, depends on the intersection of the cubes in B with �n. In particular, it is the (effective)
cardinality of distinct cubes of B on �n, that is, the number #{B ∩ �n;B ∈ B}, that determines the computational
complexity of the evaluation of the multiresolution norm. In order to obtain numerically feasible algorithms, one
therefore would like to choose this effective cardinality as small as possible while still ensuring normality or regularity
of B.

(a) The system of all distinct cubes is clearly normal and regular. Its corresponding multiresolution norm also appears
as a particular scan statistics (maximum likelihood ratio statistic in the Gaussian setting), which examines the
signal at every scale and location. This is a standard tool for detecting a deterministic signal with unknown
spatial extent against a noisy background, see e.g. [36,47,84]. However, the cardinality of all the cubes on �n is
O(n2), making it computationally impractical for large scale problems. In practice, sparser normal systems, while
retaining multiresolution nature, are therefore preferable. Some examples are given below.

(b) The system of cubes with dyadic edge lengths is normal, and of effective cardinality O(n logn) on �n. It is easy
to see that this system is 2-regular.

http://stochastik.math.uni-goettingen.de/mop/
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(c) Sparse system with optimal detection power. In one dimension, a normal system of O(n) intervals can be con-
structed from the system introduced in [78], by including some intervals of small scales (i.e. length ≤ log(n)/n).
This system is still sufficiently rich to be statistically optimal, in the setting of bump detection in the intensity of
a Poisson process or in a density, but it is not regular. The heuristics behind is that after considering one inter-
val, not much is gained by looking at intervals of similar scales and similar locations (see also [17]). For higher
dimensions, such system can be constructed similarly, see [83,96].

(d) The m-partition system has effective cardinality O(n) on �n, and is normal and obviously m-regular. As will
be shown in Section 4, it is rich enough for nearly optimal estimation of smooth functions (see Section 5 for its
practical performance). In particular, for m = 2, it corresponds to the support set of the wavelet multiresolution
scheme.

It is clear that every regular system of cubes is necessarily normal. The converse, however, need not hold. That is,
there exist normal systems of cubes that are not m-regular for any m ∈N (cf. the second example above).

Finally, we note that the multiresolution norm is, actually, not necessarily a norm but always a semi-norm. That
is, it can happen that ‖y‖B = 0 although the vector y ∈ R

�n is different from zero. Obviously this is the case if
B ∩ �n = ∅ for all B ∈ B, in which case ‖ · ‖B is identically zero. If the system B is normal, however, this situation
cannot occur for n sufficiently large: the normality of B implies in particular that B contains a cube of volume at least
1/c, which, for n > c necessarily has a non-empty intersection with the grid �n. Still it is possible that ‖y‖B = 0 for
some non-zero y. On the other hand, if B is normal and f : [0,1]d → R is continuous and non-zero, then there exists
some n0 ∈ N such that ‖Snf ‖B �= 0 for all n ≥ n0, which means that the multiresolution norm of the point evaluation
of a continuous non-zero function will eventually become non-zero. For simplicity, we will consider only systems B,
s.t. ‖ · ‖B is a norm, which allows us later to define its dual norm. Moreover, in the important case of the m-partition
system, it is easy to see that ‖ · ‖B is indeed a norm, and that it can be bounded below by the maximum norm on R

�n .

The main property of the multiresolution norm is that it allows to distinguish between random noise and smooth
functions. As the number n of sampling points increases, the multiresolution norm of a smooth function increases
with a rate of n1/2. In contrast, the multiresolution norm of i.i.d. Gaussian noise can be expected to grow only with a
rate of

√
logn. More precisely, the multiresolution norm has the following properties:

Proposition 2.4. Let θ > 0, B be a system of cubes and ξn := {ξn(x) : x ∈ �n} a set of i.i.d. sub-Gaussian random
variables (3) with parameter σ > 0. Then there exists a constant Cθ such that

P
{‖ξn‖B ≥ t

}≤ min
{
1,2n2e

− t2

2σ2
}
,

E
[‖ξn‖θ

B
]≤ Cθ(σ

√
logn)θ for every n > 1.

Remark 2.5. The first result follows from a simple union bound [74], and the second from the first using

E
[‖ξ‖θ

B
]=

∫ ∞

0
θtθ−1

P
{‖ξ‖B ≥ t

}
dt.

The simple bounds here, as we will see, are sufficient as our major concern is the order of convergence rates. Improve-
ments on such bounds are possible, for instance, by standard chaining arguments [93], which only affects the constant
factors in later derived rates (as well as constant C in (19), the asymptotic choice of the threshold). Note, further, that
even the asymptotic distribution of ‖ξn‖B is available, which obeys, under general assumptions, a Gumbel law (after
proper rescaling), see [55,63]. For instance, if B consists of all the cubes and ξn is standard Gaussian, then

lim
n→∞P

{
‖ξ‖B ≤√

2d logn +
1
2 log(d logn) + log (2d)dJd√

π
+ τ

√
2d logn

}
= e−e−τ

for τ ∈R, (12)

where Jd ∈ (0,∞) is a constant. For simplicity, we do not pursue this further, and refer to [55,63,84] for more details.
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The next result provides an interpolation inequality for the Lq -norm of a function in terms of its multiresolution
norm and the norm of its kth order derivative. For k > d/2, k, d ∈ N and 1 ≤ q ≤ ∞, let

ϑ = ϑ(k, d, q) :=
{

k
2k+d

if q ≤ 4k+2d
d

,

k−d/2+d/q
2k

if q ≥ 4k+2d
d

.
(13)

Proposition 2.6. Let B be a normal system of cubes, k, d ∈N, k > d/2 and 1 ≤ q ≤ ∞. Then there exist constants C

and n0, both depending only on k and d , such that for every f and for n ≥ n0,

‖f ‖Lq ≤ C max

{‖Snf ‖2ϑ
B

nϑ

∥∥Dkf
∥∥1−2ϑ

L2 ,
‖Snf ‖B

n1/2
,
‖Dkf ‖L2

nϑ ′

}
, (14)

where ϑ = ϑ(k, d, q) is given by (13) and ϑ ′ := 2kϑ/d .

Remark 2.7. The inequality (14) actually holds for general ‖Dkf ‖Lp (1 ≤ p ≤ ∞) in place of ‖Dkf ‖L2 , provided
that k > d/p or k ≥ d and p = 1, and proper choices of ϑ , ϑ ′. This is a generalization of the interpolation inequality
by [74]. The original version holds only for normal systems with c = 6 (cf. Definition 2.1) and p > d . In fact, one can
prove the general inequality (14) similarly as [74,75], while replacing the use of Taylor polynomials and Vitali cover
by that of averaged Taylor polynomials [8, Chapter 4] and Besicovitch cover [3,4]. Thus, the proof is omitted here.

Note, that k > d/p or k ≥ d and p = 1 is the weakest condition to ensure the continuity of f , which guarantees
that the evaluation Sn and the multiresolution norm ‖ · ‖B are well-defined. In this sense, Proposition 2.6 is already in
its most general form.

3. Approximate source conditions

We make the following assumption (see, however, Remark 3.1), which will simplify and streamline the technicality
of our theoretical analysis, while not altering the statistical difficulty of problem (1).

Assumption 1. Every function f is defined on the d-dimensional torus Td ∼ R
d/Zd (or equivalently periodic), and

has mean zero, i.e.∫
Td

f (x) dx = 0.

We stress, however, that all subsequent results carry over to nonperiodic functions with arbitrary mean as indicated in
the following remark.

Remark 3.1. Of course, the computation of the estimator MIND is by no means subject to the restrictions in As-
sumption 1, and the convergence analysis (see this section and Section 4) easily carries over to general functions.

(a) Removability of periodicity. Note that for f ∈ Hk([0,1]d) with k > d/2 there exist a sequence of periodic func-
tions fε ∈ C∞(Td) indexed by ε ∈ (0,1/2) such that∥∥Dk(fε − f )

∥∥
L2 → 0, ‖fε − f ‖L∞ → 0, and

∥∥Sn(fε − f )
∥∥

	∞ → 0 as ε → 0.

One possible choice of fε is

fε(x) :=
∫

[0,1]d
f (y)hε(x − y)dy for x ∈ [0,1]d ,

where hε : Td →R is the standard periodic mollifier (see e.g. [40, Appendix C.5]) given by

hε(x) :=
{

C
εd exp( ε2

|x|2−ε2 ) if x ∈ [−1/2,1/2]d , |x| < ε

0 if x ∈ [−1/2,1/2]d , |x| ≥ ε
with constant C s.t.

∫
Td

hε(x) dx = 1.
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Then the convergence analysis for non-periodic functions can be readily obtained by applying that for periodic
ones (to-be-presented) to fε and letting ε tend to 0 sufficiently fast.

(b) Removability of mean zero. This is also possible, if, for instance, one uses instead the estimator f̂ 0
γn

+ ȳn, where

f̂ 0
γn

is the MIND (11) applied to (yn − ȳn), and ȳn the average of yn. The convergence analysis (to-be-presented)
extends to such an estimator, since ȳn converges to the mean of the truth,

∫
[0,1)

f (x) dx, at a parametric rate,
OP(1/

√
n).

We denote by L
p

0 (Td) with 1 ≤ p ≤ ∞ the space of all Lp-functions with zero mean. We note that L
p

0 (Td) is a
closed subspace of Lp(Td) for all p. Similarly, we will denote by Hk

0 (Td) := Hk(Td) ∩ L2
0(T

d) the space of all kth
order Sobolev functions with zero mean. We define the homogeneous Sobolev norm ‖Dk · ‖L2(=: ‖ · ‖Hk

0
) as the norm

in Hk
0 (Td).

In order to derive convergence rates for MIND, we will now introduce more recent techniques from regularization
theory and inverse problems, which have not been applied in a statistical context so far, to the best of our knowledge. To
that end we interpret the problem of nonparametric regression as the inverse problem of solving the equation Snf = yn

for f , where we see Sn as a mapping from Hk
0 (Td) to R

�n , see also [6]. If k > d/2, which we always assume, it follows
from the Sobolev embedding theorem (see e.g. [1, Theorem 4.12]) that Hk

0 (Td) is continuously embedded in the space
of all continuous functions, which in turn implies that the mapping Sn is bounded. Typical conditions in regularization
theory that allow the derivation of estimates of the quality of the reconstruction in dependence of the actually realized
noise level on yn are so called source conditions. In this setting, they would usually be formulated as the condition that
f = S∗

nω for some source element ω ∈ R
�n , where S∗

n : R�n → Hk
0 (Td) denotes the adjoint of the sampling operator

Sn with respect to the norm on Hk
0 (Td) (see [39,51]).

Such an assumption, however, is quite restrictive in this setting; for instance, for d = 1, it basically implies that the
function f is a spline. Therefore we use a different, but related, approach based on approximate source conditions (see
[59,61]). Here, the idea is to measure how well the function f can be approximated by functions of the form S∗

nω for
approximate source elements ω of given norm t ≥ 0; we thus obtain a function d : R≥0 → R≥0, which measures for
each t ≥ 0 the distance between f and the image of the ball of radius t under S∗

n . In [61], this function d has been
called distance function. Its asymptotic properties, as the deterministic “noise level” goes to zero, have been used to
obtain convergence rates for the solution of inverse problem.

In order to apply this approach to nonparametric regression using the multiresolution norm, we have to consider
two refinements. First, we are interested in the asymptotics as n → ∞, which means that the operator Sn we are
considering changes as well. Therefore, we will have to regard instead of a single distance function a whole family
of distance functions dn : R≥0 → R≥0, one for each possible grid size. Second, since we are measuring the defect
of the solution not with respect to the usual Euclidean norm but rather with respect to the multiresolution norm, we
have to measure the approximation quality of an approximate source element in terms of the dual multiresolution
norm (see [57], for a similar argumentation in the case of Banach space regularization). This complicates the theory
considerably, since the (dual) multiresolution norm is neither uniformly smooth nor uniformly convex.

3.1. Distance function for multiscale regression

We start by considering the dual ‖ · ‖B∗ of the multiresolution norm on R
�n with respect to the set of cubes B. This

norm is defined as

‖ω‖B∗ = max

{∑
x∈�n

ω(x)v(x) : v ∈ R
�n,‖v‖B ≤ 1

}
.

From the definition of the multiresolution norm in (7) it readily follows that for proper real numbers (cB)B∈B

‖ω‖B∗ = min

{∑
B∈B

|cB |√n(B) : ω(x) =
∑
B�x

cB for all x ∈ �n

}
. (15)
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Next note that, since Sn : Hk
0 (Td) → R

�n is bounded linear, it has an adjoint S∗
n : R�n → Hk

0 (Td), which is defined
by the equation

∑
x∈�n

f (x)ω(x) = 〈
f,S∗

nω
〉
Hk

0
= 〈

Dkf,DkS∗
nω
〉
L2 =

∫
Td

Dkf DkS∗
nω dx.

Definition 3.2. The multiscale distance function for f is defined as

dn(t) := min‖ω‖B∗≤t

∥∥DkS∗
nω − Dkf

∥∥
L2 = min‖ω‖B∗≤t

∥∥S∗
nω − f

∥∥
Hk

0
.

Thus the function dn(t) measures the distance between f and the image of the ball of radius t with respect to ‖ ·‖B∗
under the mapping S∗

n . Put differently, it describes how well the function f can be approximated (with respect to the
homogeneous kth order Sobolev norm, ‖Dk · ‖L2 ≡ ‖ · ‖Hk

0
) by functions in the range of S∗

n .

In the following we will provide some description of the mapping S∗
n . To that end we denote for every x ∈ �n by

ex ∈ R
�n the standard basis vector at x defined by

ex(z) =
{

1 if z = x,

0 else.

Moreover we define

ϕx := S∗
nex.

Then we have for every f ∈ Hk
0 (Td) the equality

f (x) =
∫
Td

DkuDkϕx dy.

Now let f ∈ Hk(Td) be arbitrary. Then f − ∫
Td f dz ∈ Hk

0 (Td) and therefore,

f (x) −
∫
Td

f dz =
∫
Td

Dkf Dkϕx dz = (−1)k
∫
Td

f �kϕx dz = 〈
f, (−1)k�kϕx

〉
L2

for every f ∈ Hk(Td). Since f (x) = 〈f, δx〉, we obtain that ϕx = S∗
nex is the unique weak solution in Hk

0 (Td) of the
equation3

(−1)k�kϕx = δx − 1.

Moreover we have for general ω ∈R
�n , ω =∑

x∈�n
ωxex , the representation

S∗
nω =

∑
x∈�n

ωxϕx.

Then the definition of dn(t) implies that

dn(t) = min

{∥∥∥∥f −
∑
x∈�n

cxϕx

∥∥∥∥
Hk

0

: ∥∥(cx)x∈�n

∥∥
B∗ ≤ t

}
. (16)

3There is a solution of series form:

ϕx(z) =
∑

λ∈Zd\{0}

(
2π‖λ‖)−2k

e2πiλ·(z−x) =
∑

λ∈Nd
0\{0}

2
(
2π‖λ‖)−2k cos

(
2πλ · (z − x)

)
.
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Because of the definition of the dual multiresolution norm, we can further rewrite this by introducing the functions

ϕB :=
∑

x∈B∩�n

ϕx for B ∈ B.

We then obtain the representation

dn(t) = min

{∥∥∥∥f −
∑
B∈B

cBϕB

∥∥∥∥
Hk

0

:
∑
B∈B

|cB |√n(B) ≤ t

}
. (17)

3.2. Abstract convergence rates

We consider now the MIND estimator f̂γn , which is defined as the solution of the optimization problem given in (11).
Our first result provides an estimate of the accuracy of MIND, measured in terms of an Lq -norm, under the assumption
that the multiresolution norm of the error is bounded by γn. While the result is purely deterministic, it immediately
allows for the derivation of almost sure convergence rates by adapting the parameter γn to the number of measure-
ments.

Theorem 3.3. Let k, d ∈ N, k > d/2 and 1 ≤ q ≤ ∞. Assume that B is normal and the inequality

‖ξn‖B = ‖Snf − yn‖B ≤ γn

is satisfied, and denote by f̂γn the MIND estimator (11). In addition, define

cn := min
t≥0

(
dn(t) + (γnt)

1/2).
Then there exist constants C > 0 and n0 ∈N, both depending only on k and d , such that

‖f̂γn − f ‖Lq ≤ C max

{
γ 2ϑ
n c1−2ϑ

n

nϑ
,

γn

n1/2
,

cn

nϑ ′

}
for n ≥ n0, (18)

where ϑ = ϑ(k, d, q) is given by (13) and ϑ ′ := 2kϑ/d .

Proof. See Appendix A. �

As a direct consequence of the previous result and the fact that the multiresolution norm of independent sub-
Gaussian noise with high probability increases at most logarithmically, we obtain an asymptotic convergence rate
almost surely for MIND with properly chosen γn, i.e.

γn = C(logn)r for some r ≥ 1

2
and C >

{
0 if r > 1

2 ,

2σ

√
2 + k

d
if r = 1

2 .
(19)

We emphasize that such choice of γn is universal, in the sense that it is independent of the smoothness of the truth f ,
and the system of cubes B. In particular, when r > 1/2, γn depends on n only.

Corollary 3.4. Assume that B is normal, that γn is chosen as in (19), and that

min
t≥0

(
dn(t) + (logn)r/2t1/2)=O

(
n−μ

)
for some 0 ≤ μ < 1/2. Then there exists a constant C such that the MIND estimator f̂γn satisfies the estimate

lim sup
n→∞

(
nμ(1−2ϑ)+ϑ(logn)−2rϑ‖f̂γn − f ‖Lq

)≤ C a.s. (20)

with ϑ given in (13).
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Proof. With the given choice of γn, Proposition 2.4 implies that

P
{‖ξn‖B > γn

}→ 0 as n → ∞.

As a consequence, the probability that the estimate in Theorem 3.3 applies tends to 1 as n → ∞. Noting that, for n

sufficiently large and 0 ≤ μ < 1/2, the first term on the right hand side of (18) is always dominant, we obtain (20). �

Moreover, we obtain under the same assumptions also the same convergence rate in expectation. The proof of this
result, however, is more involved, because it requires an estimate for the error ‖f̂γn − f ‖Lq in the high noise case
‖ξn‖B > γn, in which case the estimate from Theorem 3.3 does not apply. Thus it is relegated to the Appendix.

Theorem 3.5. Assume the setting of Theorem 3.3 and Corollary 3.4. Then the MIND estimator f̂γn satisfies

E
[‖f̂γn − f ‖2

Lq

]1/2 =O
(
n−μ(1−2ϑ)−ϑ(logn)2rϑ

)
(21)

as n → ∞, with ϑ given in (13).

Proof. See Appendix B. �

Remark 3.6. In particular, the case q = 2 corresponds to the classical mean integrated squared error. We note that
the power 2 inside the expectation is not crucial. In fact, the same rate can be established for E[‖f̂γn − f ‖s

Lq ]1/s with
s ≥ 1, provided that the threshold γn satisfies

γn = C(logn)r for some r ≥ 1

2
and C >

{
0 if r > 1

2 ,

σ

√
4 + 2s + 2k

d
s if r = 1

2 .

This can easily be seen by following the proof of Theorem 3.5, and the above choice of γn comes from the requirement
(cf. (31))

n
2k+d

2d
s+2γ s

n e
− γ 2

n

2σ2 = o
(
n− s

2
)

as n → ∞.

Remark 3.7. We note that the inequality

cn = min
t≥0

(
dn(t) + (logn)r/2t1/2)≤ dn(0) = ∥∥Dkf

∥∥
L2

always holds. Under the assumption that

f ∈ W
k,p

0

(
T

d
)

for some p ∈ [2,∞],
we therefore always obtain with the parameter choice given in Corollary 3.4 and Theorem 3.5, respectively, for MIND

‖f̂γn − f ‖2
Lq =O

(
n−2ϑ(logn)4rϑ

)
,

almost surely and in expectation.

We conclude this section by emphasizing that the introduced multiscale distance functions dn(t) transform the
convergence analysis of MIND into the study of approximation property of the bases (ϕx)x∈�n , or the frames (ϕB)B∈B ,
with the size of coefficients controlled in certain sense, see (16) and (17). In one dimension, we are able to derive sharp
error bounds for such approximation problem (see Section 4), using the well-developed theory of B-splines, see the
next section. However, in higher dimensions, this approximation problem (16) or (17) remains still open. Note that
there exist some results on the approximation error of bases (ϕx)x∈�n (see [37,72,73]), but we are not aware of any
results about the size of the coefficients.
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4. Convergence rates for d = 1

The derivation of convergence rates in the one-dimensional setting is based on the fact that the range of the adjoint S∗
n

of the sampling operator consists basically of splines. As a consequence, it is possible to apply approximation results
for splines in order to obtain estimates for the distance function. The main difficulty lies in obtaining bounds for the
coefficients of these splines with respect to the dual multiresolution norm.

In the following, we will present the main results of this paper, where we prove convergence rates in the one-

dimensional case for f contained in various Sobolev spaces W
s,p

0 (T) and Besov spaces B
s,p′
p,0 (T). A definition of

these spaces is given below in Appendix C.1. Also, we refer the interested readers to [1,88–90] for further details. In
particular, we mention here that the Sobolev space W

s,p

0 (T) equals the Besov space B
s,p

p,0(T) for every non-integer

s ∈ (0,∞), but W
k,p

0 (T) �= B
k,p

p,0 (T) for k ∈ N.

4.1. Convergence rates

Our first main result in the one-dimensional setting is concerned with the high regularity situation, where the function
f actually is of higher smoothness than assumed by the regularization term ‖Dkf̂ ‖2

L2 . In this case, it turns out that
indeed a higher order convergence rate is obtained than the one discussed in Remark 3.7. For this to hold, however, we
have to assume that the system of intervals B is regular (see Definition 2.2), which implies its normality. The proof
of this result, mainly postponed to the Appendix, relies on estimates for the multiscale distance function dn, which in
turn follow from various approximation results with splines.

Proposition 4.1. Assume that d = 1, r ≥ 1/2, that B is regular, and that

f ∈ B
k+s,p′
p,0 (T)

for some 1 ≤ s ≤ k and 1 ≤ p,p′ ≤ ∞. Then

min
t≥0

(
dn(t) + (logn)r/2t1/2)=O

(
n−μ(logn)2rμ

)
with

μ = s − ( 1
p

− 1
2 )+

2s + 2k + 1 − 2( 1
p

− 1
2 )+

. (22)

The same result holds for f ∈ W
k+s,p

0 (T) with 1 ≤ s ≤ k and 1 ≤ p ≤ ∞.

Proof. See Appendix C. �

Theorem 4.2. Assume that d = 1, that B is regular, and that

f ∈ B
k+s,p′
p,0 (T)

for some 1 ≤ s ≤ k and 1 ≤ p,p′ ≤ ∞. Then the MIND estimator f̂γn satisfies, with a parameter choice γn given
by (19),

‖f̂γn − f ‖2
Lq =O

(
n−2μ(1−2ϑ)−2ϑ(logn)4rμ(1−2ϑ)+4rϑ

)
as n → ∞,

a.s. and in expectation, with ϑ in (13) and μ in (22). The same result holds for f ∈ W
k+s,p

0 (T) with 1 ≤ s ≤ k and
1 ≤ p ≤ ∞.

Proof. This is a direct consequence of Proposition 4.1, Corollary 3.4, and Theorem 3.5. �
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Remark 4.3. Note that the rate obtained in the previous result greatly simplifies in the case where p ≥ 2 and q ≤
4k + 2. Then, a short computation shows that it can be written as

‖f̂γn − f ‖2
Lq =O

(
n− 2k+2s

2k+2s+1 (logn)
4k+4s

2k+2s+1 r
)

as n → ∞.

In the one-dimensional case, it is also possible to obtain convergence rates in the case where the regularity of
the function f is overestimated by the regularization term. In this case, the approach based on the multiscale distance
function does not readily apply, because it is inherently based on the assumption that f ∈ Hk

0 (T). Instead, it is possible
to approximate f by a sufficiently regular function, for which then the higher order results can be applied. The final
convergence rate then follows from a combination of these higher order rates and the approximation error.

Theorem 4.4 (Over-smoothing). Let B be normal, d = 1, k ∈N, 1 ≤ q ≤ 4k + 2 and

f ∈ W
s,∞
0 (T) or B

s,p′
∞,0(T) with s ∈ [1, k] and p′ ∈ [1,∞].

Let also f̂γn be the MIND estimator by (11) with the homogeneous Sobolev norm of order k, ‖Dk · ‖L2 , and the
threshold γn in (19). Then it holds that,

‖f̂γn − f ‖2
Lq =O

(
n−2s/(2s+1)(logn)ε+2s/(2s+1)

)
as n → ∞,

a.s. and in expectation, for any ε >
2k(2r−1)

2k+1 with r in (19).

Proof. See Appendix D. �

Remark 4.5. For simplicity, the convergence rates results of Theorems 4.2 and 4.4 were only given in O notation.
However, it is worth pointing out that the proofs, if followed closely, actually also provide the constants in these
rates. Most importantly, one can show that the constant only depends on the norm of f in the corresponding Besov
or Sobolev space. More precisely, it can be shown that the constant can, in the Besov space case, be written in the
form C‖f ‖2(1−2ϑ)

B
k+s,p′
p,0

with C > 0 only depending on k, s, p, p′, and q , and the analogous result holds for the Sobolev

space case. As we will see in the next subsection, this observation leads to the partial adaptation property of the MIND
estimator, in minimax sense.

4.2. Comparison with minimax rates

Given a class F of continuous functions, we define the minimax Lq -risk of nonparametric regression (1) over F by

Rq(n;F) := inf
{

sup
f ∈F

E
[‖f̂ − f ‖2

Lq

]1/2 : f̂ is an estimator
}
.

In other words, we measure for each estimator, the maximal expected error over all functions f ∈ F , and then compute
the infimum of this maximal error over the class of all estimators.

In the case of F consisting of Sobolev or Besov functions of a certain regularity, it is possible to derive explicit
lower bounds for the minimax risk Rq . To that end, we introduce, for s ≥ 0, 1 ≤ p ≤ ∞, and L > 0 the Sobolev ball

S
s,p
L := {

f ∈ W
s,p

0 (T) : ‖f ‖
W

k,p
0

≤ L
}
, (23)

and for s ≥ 0, 1 ≤ p,p′ ≤ ∞, and L > 0 the Besov ball

B
s,p,p′
L := {

f ∈ B
s,p′
p,0 (T) : ‖f ‖

B
k,p′
p,0

≤ L
}
. (24)
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In [74] it has been shown that, for s ∈ N, and n sufficiently large, there exists a constant C > 0 depending only on s

such that

Rq

(
n;Ss,p

L

)≥ C

{
( σ 2

n
)βL1−2β if q < (2s + 1)p,

(
σ 2 logn

n
)βL1−2β if q ≥ (2s + 1)p,

(25)

where

β :=
{

s
2s+1 if q < (2s + 1)p,
s−1/p+1/q
2s+1−2/p

if q ≥ (2s + 1)p.

Following the proof in [74], one can show that this result still holds for non-integer s > 1/p, and also for all the Besov

balls B
s,p,p′
L with s > 1/p. Even more, in the case of q = (2s + 1)p, the lower bound can be tightened to include the

logarithmic factor (logn)(1−p/min{p,p′})+/q , see [34, Theorem 1] for details.

4.2.1. Partial adaptation
Comparing these minimax Lq -risks with the convergence rates of MIND in Theorems 4.2 and 4.4, and Remark 3.7,
we see that, for 1 ≤ q ≤ 4k + 2, the polynomial part of our rates coincides with the polynomial part of the minimax
risk in case either the function f is contained in the Sobolev space W

s,p

0 (T) with either 1 ≤ s ≤ k and p = ∞, s = k

and 2 ≤ p ≤ ∞, or k + 1 ≤ s ≤ 2k and p ≥ 2 (see Figure 2). In other words, in all of these cases, the convergence
rates we obtain with MIND are optimal up to a logarithmic factor.

We want to stress here that our convergence rates do not rely on a precise knowledge of the smoothness class of
the function f . In contrast, the regularization parameter γn does only depend on the sample size, and the smoothing
order of the regularization term need only be a rough guess of the actual smoothness of f . Neither in the case where
the smoothness of f is overestimated nor in the case where it is slightly underestimated do we obtain results that are,
asymptotically, far from being optimal. The method MIND automatically adapts to the smoothness of the function f

independent of our prior guess.
Note that the adaptation range of MIND scales with the smoothness order of regularization k. This suggests that we

should choose k as large as possible. The minimization problem in (11) becomes, however, more numerically unstable
as k increases. Thus, the choice of k should balance the performance and the numerical stability. In practice, we found
that it works fine for k = 1,2,3 (cf. Section 5.3).

Fig. 2. Adaptive minimax optimality over balls in W
s,p
0 (T) or B

s,p′
p,0 (T). (a) For q ∈ [1,4k + 2], the MIND estimator with homogeneous Sobolev

norm of order k attains minimax optimal rates in terms of Lq -risk up to a log-factor, simultaneously in all spaces W
s,p
0 (T) with smoothness

parameters s, p within the red region (“partial adaptation”). By contrast, the Nemirovski’s estimator f̂2,η in (6) is minimax optimal up to a

log-factor only for W
k,2
0 (T), marked by a green asterisk. (b) For s ∈ [k + 1,2k] ∪ {k}, MIND is optimal up to a log-factor in terms of Lq -risk over

S
s,p
L

or B
s,p,p′
L

with parameters p, q within the red region. Note that no linear estimator is optimal for parameters p, q in the blue region.
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5. Numerical examples

The MIND estimator defined by (11) is the solution to a high dimensional non-smooth convex optimization problem,
due to the multiresolution norm. As mentioned in the introduction, there are several efficient algorithms nowadays
that are able to tackle such a problem. In this paper, we have chosen the alternating direction method of multipliers
(ADMM). It decomposes the original problem (11) into two sub-problems, the first being the smoothing penalization
problem, and the other the projection onto the multiresolution ball. The latter one can be solved by the Dykstra
algorithm as introduced in [7]. We refer to [44] for further details. It can be shown that the ADMM for this problem
converges linearly (cf. [26,44]), although the theoretical rate might be very pessimistic for large k, the smoothing
order of the regularization. We note that the problem (11) can also be formulated as a quadratic programming problem
and solved, for instance, by the interior point method (cf. [76], for example), which has polynomial computation
complexity.

There are two practical concerns: The first is the choice of the system of cubes B. The general convergence rate
results (cf. Theorem 3.3) only require that the system should be normal, see Remark 2.3 for some examples. In the
case of d = 1, the concrete rates impose an additional (but very weak) condition, namely that it should contain an
m-partition system for some m, i.e., m-regularity of B, see Theorem 4.2. For the examples in our numerical simu-
lations, we found that the system of all cubes, the system of all cubes with dyadic edge lengths, and the 2-partition
system perform comparably. Therefore we display the results for the 2-partition system in the following numerical
experiments for the sake of computational efficiency. Also, we note that as a consequence of this choice of the sys-
tem B, the number of constraints to be satisfied is of order n, and the total number of operations required to evaluate
all the constraints is of order n logn, which is not significantly larger than in the case of 	∞ constraints.

The other concern is the choice of the threshold γn. The asymptotic theory only requires that γn satisfies the
condition (19), which is independent of the interval system B, and the smoothness of the truth. In the finite sample
situation, we recommend a refined choice, which has a direct statistical interpretation, cf. Section 1.1. It selects γn as
the α-quantile of the multiscale statistic, i.e.,

γn(α) := inf
{
γ : P{‖ξn‖B > γ

}≤ α
}
. (26)

This ensures that f lies in the confidence set defined by the multiscale constraint in (11) with probability at least
1 − α. Thus we have

P
{∥∥DkĈ

∥∥≤ ∥∥Dkf
∥∥

L2

}≥ 1 − α, (27)

that is, the MIND estimator is smoother than the truth with probability at least 1 − α. The computation of γn(α) to
satisfy (27) can be done by Monte–Carlo simulations and is needed only once for a fixed size of measurements and
a fixed system of cubes. The number of Monte–Carlo simulations is chosen as 105 in all the examples. It follows
from (12) that

γn(α) ∼√
2d logn + log(d logn) + logJd − 2 log log(1/α)

2
√

2d logn
as n → ∞,

with Jd being a positive constant. Although this violates the condition (19) when d = 1, the asymptotic analysis in
this paper still holds for γn(αn) if αn → 0 sufficiently fast, which might even possibly improve the rates, in terms of
the log-factor and the constant.

In the following simulations, we assume that the noise is i.i.d. Gaussian with a known variance σ 2. In practice,
one can easily pre-estimate σ 2, see e.g. [27,53,70,77,85] among other references. The implementation of our method
is provided in the MATLAB package “Multiscale OPtimization (MOP)”, which is available at http://stochastik.math.
uni-goettingen.de/mop/.

5.1. Comparison study

We now investigate the performance of MIND f̂γn(α) on both smooth and, although not covered by our theory, non-
smooth signals (to evaluate robustness for this case), and compare it with the wavelet soft-thresholding (ST) [33],

http://stochastik.math.uni-goettingen.de/mop/
http://stochastik.math.uni-goettingen.de/mop/
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the SureBlock (SB) estimator [12], the Nemirovski’s estimator (Nem) f̂2,η in (6) with p = 2, and the estimator
(MTV) [65] by minimizing the total variation subject to multiresolution conditions. The SB is a block thresholding
approach, which empirically selects individual block size and threshold level at each resolution level by minimizing
Stein’s unbiased risk estimate. Similar to MIND, the MTV is also a multiscale data-fidelity-constrained method,
while it still lacks of convergence analyses, and is restricted to d = 1 (see [44] for extension to general d , but the
implementation is not yet available). Both ST and SB are implemented based on the MATLAB package “WaveLab”,
available at http://www-stat.stanford.edu/~wavelab/, Nem is computed by an ADMM algorithm in our MATLAB
package “MOP”, and MTV is by the function mintvmon in the R package “ftnonpar”, available on CRAN https:
//cran.r-project.org/. We choose the parameters that are recommended in the R package “ftnonpar” for MTV. The error
level α in MIND (see (27)) is set to 0.1, and η in Nem is chosen as the oracle ‖Df ‖L2(=: η0), which is numerically
estimated using the discrete Fourier transform. Note, that no data driven procedure can outperform this oracle choice.
We choose k = 1 for both MIND and Nem. As for ST and SB, since different choices of wavelets yield basically the
same results, we only report here a particular case using Daubechies’ wavelet Symmlet 8 [21].

The smooth test signal is constructed by the convolution of the Blocks signal [32] and a Gaussian kernel
∝ exp(−25t2/2). The simulation result is summarized in Figure 3 and Table 1. It shows that MIND outperforms
the other estimators in both the detection of features and the removal of noise. MTV performs comparably well, and
includes only small perturbations on the constant parts. Moreover, MIND and MTV identify the correct number of

Fig. 3. Comparison of ST [33], SB [12], Nem in (6), MTV [65], and the MIND in (11) on the convolved Blocks signal (number of samples n = 211,
noise level σ = 0.25‖f ‖

L2 ).

Table 1
Average performance of different methods on the example in Figure 3, with respect to L1-loss, L2-loss, L∞-loss, number of modes, and run time,
over 500 repetitions. The time is recorded on a laptop with two 2.5 GHz processors and 4 GB memory

ST SB Nem MTV MIND

L1-loss 0.1327 0.0462 0.0657 0.0670 0.1021
L2-loss 0.1696 0.0589 0.0867 0.0886 0.1377
L∞-loss 0.5635 0.2029 0.352 0.4563 0.423
# modes 15.578 24.486 21.126 5.012 5.088
Time (sec.) 0.0032 0.0087 15.0172 0.1434 1.2742

http://www-stat.stanford.edu/~wavelab/
https://cran.r-project.org/
https://cran.r-project.org/
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modes, 5, in almost all cases. By contrast, SB, ST, and Nem oscillate disturbingly on the smoother region of the signal,
and largely overestimate the number of modes, although SB is the best in terms of global losses, including L1-, L2-,
and L∞-losses.

Finally, we consider such comparison on spatially variable functions, Blocks, Bumps, HeaviSine, and Doppler [32],
which are non-smooth signals, and hence fall not into the domain of our estimator. The simulation results are given
in Figure 4 and Table 2. One can see that MIND detects a large number of features at various scales of smoothness,
and performs amongst the best on each of the test signals. MTV shows a comparably good performance for Blocks
and Bumps, while it presents staircasing artifacts (a notorious issue for total variation, see e.g. [18]) for HeaviSine
and Doppler. In terms of mode detection, MIND and MTV are superior to others for Blocks, Bumps, and HeaviSine,
while being slightly worse than ST for Doppler. In the latter case, SB and Nem display even more modes but including
many artificial ones as well (cf. Figure 4). ST works rather well for HeaviSine and Doppler, but introduces oscillating
artifacts for Blocks and Bumps. SB performs better than ST in recovering the shape of features, however, at the
expense of magnifying irregularity, and oscillating patterns. The Nem with oracle η(= η0) is still very noisy on each
test signal, but is better than MIND with respect to Lq -losses (e.g. q = 1,2, or ∞). Concerning such global losses,
MTV is the best for Blocks, a piece-wise constant signal, and Nem and SB are overall more preferable for Bumps,
HeaviSine, and Doppler.

Note, further, that the discrepancy between practical performance and the evaluation by global losses indicates
the blindness of the global losses to local spikes mainly due to an averaging effect. This suggests to consider more
informative evaluation criteria, such as the number of modes (used in Tables 1 and 2). As an indication of computation
complexity, we report the run time in Tables 1 and 2, although we are aware that this depends on the particular
implementation, programming language, and many other factors.

5.2. Robustness and stability

We next examine the robustness of MIND with respect to the choice of error level. Exemplarily, we choose Bumps as
the test signal for different noise levels. In Figure 5, it shows that MIND with various choices of error levels performs
almost identically well in the cases of low noise level (σ = 0.1) and medium noise level (σ = 0.5). However, in the
high noise level (σ = 1.2) case, MIND with larger α tends to detect more bumps. For example, MIND (α = 0.9)
recovers 6 more bumps than MIND (α = 0.1), four out of which are actually correct (marked by vertical blue lines),
while 2 false bumps are detected (marked by vertical red dashed lines, in the top panel of Figure 5). Recall that
the error level α can be interpreted as an error control in the sense of (27). Thus, the additional detection power
by an increased error level comes at the expense of a lower confidence about the smoothness guarantee in (27). Note
additionally that all the test signals considered so far are not strictly periodic, so the simulations also reveal that MIND
is not too sensitive to the periodicity assumption.

5.3. Choice of smoothness order

Now we explore the influence of the degree smoothness k in the regularization term for the MIND estimator in (11).
The Doppler with symmetric extension (see Figure 6) is chosen as the test signal. The error level for MIND is set to
α = 0.1. Figure 6 shows that MIND detects more features of different smoothness scales as k increases, namely 24
peaks for k = 1, 26 for k = 2, and 27 for k = 3. Meanwhile, the height of the peaks gets more accurate for larger k. This
is in accordance with our theoretical finding that the adaptation range increases with k, see Section 4.2.1. As already
mentioned, one should, however, notice that the optimization problem becomes numerically more ill-conditioned as k

increases.

5.4. A two dimensional example

As the general theory in Section 3 is developed for signals on [0,1]d , we consider below the performance of MIND
for d > 1. As an example, we choose the two dimensional smooth surface given by the MATLAB built-in function
peaks as the test signal. From Figure 7, we find that MIND recovers the truth quite well even for a relatively low
signal-to-noise ratio. As a comparison, we also include the reconstruction by wavelet soft-thresholding (ST) estimator
with Symmlet 8 wavelet, which reveals major features but also oscillations on smoother regions. The run time on a
computer with two 2.6 GHz processors and 8 GB memory is around 0.1 second for ST, and around 60 seconds for
MIND. See e.g. [44] for further two dimensional examples for multiscale type estimators.
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Fig. 4. Comparison of ST [33], SB [12], Nem in (6), MTV [65], and the MIND in (11) on Donoho-Johnstone signals (number of samples n = 211,
noise level σ = 0.25‖f ‖

L2 ).
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Table 2
Average performance of different methods on the example in Figure 4, with respect to L1-loss, L2-loss, L∞-loss, number of modes, and run time,
over 500 repetitions. The time is recorded on a laptop with two 2.5 GHz processors and 4 GB memory

Blocks (with 5 modes) Bumps (with 11 modes)

ST SB Nem MTV MIND ST SB Nem MTV MIND

L1-loss 0.1579 0.0692 0.0944 0.0598 0.1172 0.1455 0.073 0.0946 0.1079 0.1311
L2-loss 0.2252 0.1145 0.1292 0.0759 0.1794 0.2499 0.1146 0.1288 0.1753 0.1917
L∞-loss 1.1832 1.0643 0.7426 0.5947 1.1523 2.3667 1.1854 0.7086 1.3467 1.3616
# modes 36.9 68.792 200.266 5.02 5.096 25.202 30.084 97.138 11.002 11.006
Time (sec.) 0.0031 0.0176 8.0898 0.109 1.3454 0.003 0.0248 8.7095 0.2437 1.4313

HeaviSine (with 3 modes) Doppler (with ∞ modes)

ST SB Nem MTV MIND ST SB Nem MTV MIND

L1-loss 0.0662 0.0321 0.0631 0.0649 0.0714 0.1149 0.0431 0.082 0.1029 0.1163
L2-loss 0.0902 0.0494 0.0843 0.0813 0.0904 0.1531 0.069 0.1093 0.1426 0.1601
L∞-loss 0.4149 0.3841 0.455 0.3507 0.3814 0.666 0.5315 0.519 0.6591 0.7386
# modes 2.752 4.372 40.394 2.96 2.864 14.26 20.58 65.63 12.83 11.292
Time (sec.) 0.0032 0.0062 13.3626 0.2332 1.3542 0.0031 0.0135 11.1452 0.2329 1.3912

Fig. 5. Stability of MIND in error level α and noise level σ . The reconstructions by MIND f̂γn with γn = γn(α) for a range of α’s are shown,
together with the truth and noisy data, in cases of various noise levels (number of samples n = 211).



Variational multiscale regression 1077

Fig. 6. Various choices of k for MIND in (11) (number of samples n = 213, noise level σ = 0.3‖f ‖
L2 ).

6. Discussion

In this paper, we have introduced a constrained variational estimator, MIND, which minimizes the L2-norm of the
kth order derivatives, k being the anticipated smoothness of the function to be recovered, subject to the constraint
that the multiresolution norm of the residual is bounded by some parameter γn depending on the sample size n. The
idea behind this approach is that this norm effectively allows to differentiate between smooth functions and noise,
as the multiresolution norm of a continuous function is of the order of

√
n, while the expected multiresolution norm

of a sample of independent sub-Gaussian noise is of the order of
√

logn. If we therefore use a threshold parameter
γn ∼ (logn)r with r > 1/2 we can expect that, for a sufficiently large sample size, our estimator, MIND, will be close
to the true function, while the residuals consist mostly of noise.

The main contribution of this paper was to underpin the already known empirically good performance of MIND
in several special cases by some theoretical evidence. For general dimension d , from an interpolation inequality for
the multiresolution norm and Sobolev norms (Proposition 2.6), we derive asymptotic convergence rates provided that
f ∈ Hk

0 (Td) and one applies regularization with the homogeneous Hk-norm (see Remark 3.7). Moreover, these rates
turn out to be minimax optimal up to a logarithmic factor. In order to derive convergence rates for different smoothness
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Fig. 7. Comparison of ST [33], and the MIND in (11) on a smooth surface (number of samples n = 128 × 128, noise level σ = 0.8‖f ‖
L2 ).

classes, we have adapted the concept of approximate source conditions, to our statistical setting. These are known to
be a useful tool for the derivation of rates for deterministic inverse problems. However, these conditions are quite
abstract, and it is not immediately clear how they relate to more tangible properties of f .

In the one-dimensional setting, a much more detailed analysis is possible. Here the abstract conditions for conver-
gence rates can be related to approximation properties of splines. Mainly we have shown that the rates depend on how
well the kth derivative of the function f can be approximated by B-splines with coefficients that are small with respect
to the dual multiresolution norm. Using results from approximation theory, we were able to translate the approximate
source conditions into very general smoothness conditions for the function f . Mainly this gives us optimal conver-
gence rates for a function f ∈ Hs

0 (T) with k + 1 ≤ s ≤ 2k. More general, we have obtained with this argumentation
convergence rates for functions f contained in the fractional order Sobolev space W

s,p

0 (T) with k + 1 ≤ s ≤ 2k, and
the rates are again optimal as long as p ≥ 2. Moreover, the same results hold for comparable Besov spaces. While
these results are only concerned with functions f that are of higher regularity than assumed a-priori, it is also possible
to derive rates for the case where f is of lower regularity, that is, where the prior assumption that f ∈ Hk

0 (T) fails.
The idea here is to approximate f by a spline of higher regularity and then to apply the higher order convergence
rate results to this spline. The final rate then results from a trade-off between the approximation power of the spline
and the higher order convergence rate. With this technique, one obtains optimal convergence rate for the lower order
setting f ∈ W

s,∞
0 (T) with 1 ≤ s ≤ k.

It is important to note here that the choice of the parameter γn is independent of the actual smoothness of f . This is
why MIND yields (up to a logarithmic factor) simultaneously minimax convergence rates for a range of smoothness
classes (with smoothness order s ∈ [1, k]∪[k+1,2k]), making it truly an adaptive method. Additionally, the numerical
results indicate that MIND appears to be fairly robust with respect to the actual choice of the parameter γn for a given
sample size n, further enhancing its practical applicability.

There are several questions still open concerning MIND for nonparametric regression. First of all, almost all con-
crete results concerning convergence rates in this paper were derived for a one-dimensional setting. In higher dimen-
sions we only have the (somehow generic) result mentioned in Remark 3.7 that gives us an optimal convergence rate
if our guess for the smoothness class of f is correct. It is, however, not at all obvious how to obtain rates for higher
order smoothness classes. In the one-dimensional case, the method we used relied both on approximation results
using B-splines and on estimates for the dual multiresolution norm of the coefficients of these B-splines. In higher
dimensions, we expect that similar results for polyharmonic splines would be required, but it is not clear which basis
splines have to be used (cf. (16) and (17)). Moreover, in the literature, there is few results on the size of approximation
coefficients, which are necessary for our analysis. Similarly, the method we have used for the derivation of the lower
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order convergence rates relies intrinsically on spline approximation, which, again, makes the generalization to higher
dimensions difficult.

Also in the one-dimensional case there are several interesting open questions. For instance, we are concerned with
the gap between Hk

0 (T) and Hk+1
0 (T). It seems reasonable to assume that MIND is asymptotically optimal also for

functions in Hs
0 (T) with k < s < k + 1, but the methods we have used for the derivation of the different rates appear

not to be applicable to this case. Also, while we do obtain convergence rates for functions f ∈ W
s,p

0 (T) with p < 2,
these rates are not optimal. Here we suspect that this is due to the fact that we use the L2-norm of the kth order
derivative for regularization and that better rates could be obtained by using the L1-norm instead.

In our future work, we will try to extend our results to the cases mentioned above, in particular to higher dimen-
sional and non-periodic settings. Additionally, we plan to consider a generalization to the solution of ill-posed operator
equations. In particular for deconvolution problems we expect that very similar results can be obtained as in this paper,
as long as the convolution kernel has sufficiently slowly decreasing Fourier coefficients.

Appendix A: Proof of Theorem 3.3

The assumption ‖Snf − yn‖B ≤ γn implies that f is admissible for the minimization problem (11), which in turn
implies that

1

2

∥∥Dkf̂γn

∥∥2
L2 ≤ 1

2

∥∥Dkf
∥∥2

L2 .

As a consequence, we obtain the estimate

1

2

∥∥Dkf̂γn − Dkf
∥∥2

L2 = 1

2

∥∥Dkf̂γn

∥∥2
L2 − 1

2

∥∥Dkf
∥∥2

L2 − 〈f, f̂γn − f 〉Hk
0

≤ −〈f, f̂γn − f 〉Hk
0

= min
t

min‖ω‖B∗≤t

(〈
S∗

nω − f, f̂γn − f
〉
Hk

0
− 〈

S∗
nω, f̂γn − f

〉
Hk

0

)
≤ min

t
min‖ω‖B∗≤t

(∥∥DkS∗
nω − Dkf

∥∥
L2

∥∥Dkf̂γn − Dkf
∥∥

L2 + ‖ω‖B∗‖Snf̂γn − Snf ‖B
)

≤ min
t

(
dn(t)

∥∥Dkf̂γn − Dkf
∥∥

L2 + t‖Snf̂γn − Snf ‖B
)
.

Thus we have for every t ≥ 0 the inequality

1

2

∥∥Dkf̂γn − Dkf
∥∥2

L2 ≤ dn(t)
∥∥Dkf̂γn − Dkf

∥∥
L2 + t‖Snf̂γn − Snf ‖B.

Since

‖Snf̂γn − Snf ‖B ≤ 2γn,

we obtain the inequality

∥∥Dkf̂γn − Dkf
∥∥

L2 ≤ dn(t) +
√

dn(t)2 + 2t‖Snf̂γn − Snf ‖B
≤ 2dn(t) + (2t)1/2‖Snf̂γn − Snf ‖1/2

B

≤ 2dn(t) + 2(γnt)
1/2 (28)

for every t ≥ 0. We now recall the interpolation inequality (see Proposition 2.6)

‖f̂γn − f ‖Lq ≤ C max

{‖Sn(f̂γn − f )‖2ϑ
B

nϑ

∥∥Dk(f̂γn − f )
∥∥1−2ϑ

L2 ,
‖Sn(f̂γn − f )‖B

n1/2
,
‖Dk(f̂γn − f )‖L2

nϑ ′

}
(29)
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for n sufficiently large, with some C > 0 and ϑ ′ = 2kϑ/d .
If the maximum in (29) is attained at the first term, the estimate (28) implies that

‖f̂γn − f ‖Lq ≤ C
‖Snf̂γn − Snf ‖2ϑ

B
nϑ

∥∥Dkf̂γn − Dkf
∥∥1−2ϑ

L2

≤ C
(2γn)

2ϑ

nϑ
min

t

(
2dn(t) + 2(γnt)

1/2)1−2ϑ

≤ 2C
γ 2ϑ
n

nϑ
min

t

(
dn(t) + (γnt)

1/2)1−2ϑ
.

On the other hand, if the maximum in (29) is attained at the second term, we have

‖f̂γn − f ‖Lq ≤ C
‖Sn(f̂γn − f )‖B

n1/2
≤ 2C

γn

n1/2
.

Finally, if the maximum in (29) is attained at the third term, we have

‖f̂γn − f ‖Lq ≤ C
‖Dk(f̂γn − f )‖L2

nϑ ′ ≤ C min
t

2dn(t) + 2(γnt)
1/2

nϑ ′

≤ 2C
1

nϑ ′ min
t

(
dn(t) + (γnt)

1/2).

Appendix B: Proof of Theorem 3.5

Denote in the following

p(t) := P
{‖ξn‖B ≤ t

}
.

Using Theorem 3.3, we see that we can estimate, for n sufficiently large,

E
[‖f̂γn − f ‖2

Lq

] ≤ P
{‖ξn‖B ≤ γn

}
Cn−2μ(1−2ϑ)−2ϑ(logn)4rϑ

+
∫ ∞

γn

sup
{‖f̂γn − f ‖2

Lq : ‖ξn‖B = t
}
dp(t). (30)

In the following, we will show that the second term on the right hand side of (30) tends to zero faster as n → ∞.
To that end, we observe first that the Sobolev embedding theorem [1, Theorem 4.12] and the Poincaré inequality [97,
Theorem 4.4.2] imply that

‖f̂γn − f ‖Lq ≤ ‖f̂γn‖Lq + ‖f ‖Lq ≤ C
∥∥Dkf̂γn

∥∥
L2 + ‖f ‖L∞

for some constant C depending only on q , d and k. Moreover, by construction, we have∥∥Dkf̂γn

∥∥
L2 ≤ ∥∥Dkg

∥∥
L2 for all g satisfying ‖Sng − Snf − ξn‖B ≤ γn.

Now let h ∈ Hk(Rd) be such that h(0) = 1,
∫
Rd h(x) dx = 0, and supph ⊂ [−1/2,1/2]d . Define moreover, for

n ∈ N and x ∈ �n, the function hn,x : Td →R by

hn,x(y) = h
(
n1/d(y − x)

)
.

Let now n and ξn ∈ R
�n be fixed and define

g :=
∑
x∈�n

(
f (x) + ξn(x)

)
hn,x.
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Since the functions hn,x , x ∈ �n, have pairwise disjoint supports, it follows that

∥∥Dkg
∥∥

L2 =
∑
x∈�n

∣∣f (x) + ξn(x)
∣∣∥∥Dkhn,x

∥∥
L2 =

∑
x∈�n

∣∣f (x) + ξn(x)
∣∣n 2k−d

2d

∥∥Dkh
∥∥

L2

= n
2k−d

2d ‖Snf + ξn‖	1

∥∥Dkh
∥∥

L2 ≤ n
2k+d

2d
(‖f ‖L∞ + ‖ξn‖	∞

)∥∥Dkh
∥∥

L2 .

From the inequality ‖ξn‖	∞ ≤ ‖ξn‖B we thus obtain that, for some constant C only depending on q , d , k,

sup
{‖f̂γn − f ‖2

Lq : ‖ξn‖B = t
}≤ Cn

2k+d
d
(‖f ‖2

L∞ + t2).
As a consequence, we can estimate the last term in (30) by∫ ∞

γn

sup
{‖f̂γn − f ‖2

L∞ : ‖ξn‖B = t
}
dp(t)

≤
∫ ∞

γn

Cn
2k+d

d
(‖f ‖2

L∞ + t2)dp(t)

= Cn
2k+d

d
(‖f ‖2

L∞ + γ 2
n

)(
1 − p(γn)

)− 2Cn
2k+d

d

∫ ∞

γn

(
p(t) − 1

)
t dt.

From Proposition 2.4 we obtain that

(
1 − p(t)

)≤ 2n2e
− t2

2σ2

for sufficiently large n. Thus we see that∫ ∞

γn

sup
{‖f̂γn − f ‖2

L∞ : ‖ξn‖B = t
}
dp(t)

≤ 2Cn
2k+3d

d
(‖f ‖2

L∞ + γ 2
n

)
e
− γ 2

n

2σ2 + 4Cn
2k+3d

d

∫ ∞

γn

te
− t2

2σ2 dt ≤ C′n
2k+3d

d γ 2
n e

− γ 2
n

2σ2

for sufficiently large n. Now the choice of γn implies that

n
2k+3d

d γ 2
n e

− γ 2
n

2σ2 = o
(
n−1) as n → ∞. (31)

This shows that the second term in (30) tends to zero faster, which concludes the proof of Theorem 3.5.

Appendix C: Proof of Proposition 4.1

The main idea of the proof of Proposition 4.1 is to approximate the function f with splines, the coefficients of which
are (relatively) small with respect to the dual multiresolution norm. As a preparation, we will first need to introduce
all the necessary notation, including results on Besov spaces, a more thorough analysis of the operator S∗

N and its
connection to splines, and several results concerning approximation properties of splines, most of which are well
known in approximation theory. Additionally, we will need a rather technical result that allows us to bound the dual
multiresolution norm of coefficients of a spline function.

C.1. Notation

We denote the forward and backward differences of a function f : T → R by

Dh,+f (·) = f (· + h) − f (·), and Dh,−f (·) = f (·) − f (· − h) with h ∈R,
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and that of a sequence {ai}0≤i≤n−1 by

(D+a)i = ai+1 − ai, and (D−a)i = ai − ai−1.

Here we define (D+a)n−1 = a0 − an−1 and (D−a)0 = a0 − an−1. We note that the adjoints of these mappings are
given, respectively, by

D∗
h,+ = −Dh,− and D∗+ = −D−.

In the following, we will give a brief introduction to Besov spaces, as it is required here, and refer the interested
readers to [1,88–90] for further details. First we define the r th modulus of smoothness of f in Lp(T), 1 ≤ p ≤ ∞, as

�r(f ; t)p := sup
0≤|h|≤t

∥∥Dr
h,+f

∥∥
Lp .

Based on it, we define the Besov norm ‖ · ‖
B

s,p′
p,0

, with s > 0,1 ≤ p,p′ ≤ ∞, as

‖f ‖
B

s,p′
p,0

:= ‖f ‖Lp + |f |s,p,p′,r ,

where s < r , r ∈ N, and

|f |s,p,p′,r :=
{

(
∫
T
(t−s�r(f ; t)p)p

′ dt
t
)1/p′

if 1 ≤ p′ < ∞,

ess supt>0 t−s�r(f ; t)p if p′ = ∞.

The Besov space B
s,p′
p,0 (T) is then defined as the Banach space consisting of functions with bounded Besov norm, that

is,

B
s,p′
p,0 (T) := {

f ∈ L
p

0 (T ); ‖f ‖
B

s,p′
p,0

< ∞}
.

An equivalent definition of Besov spaces is based on interpolation theory of Banach spaces, for instance using the K-
method, see e.g. [90]. Note that the Sobolev space W

s,p

0 (Td) equals the Besov space B
s,p

p,0(T
d) for every non-integer

s ∈ (0,∞), but W
k,p

0 (Td) �= B
k,p

p,0 (Td) for k ∈ N.
Given m ∈ N, denote by Pm the space of polynomials of order m (i.e. of degree ≤ m − 1), that is,

Pm :=
{

m∑
i=1

aix
i−1 : ai ∈R, i = 1, . . . ,m

}
.

Now assume that � ⊂ T is a discrete subset. The space of piecewise polynomials of order m on T with knots in � is
defined by

PPm(�;T) := {
p : T → R : for all (x, y) ⊂ T \ � there exists q ∈ Pm s.t. p(t) = q(t) for all t ∈ (x, y)

}
.

Then we define the space of m-order splines on T with simple knots in � as

Sm(�;T) := PPm(�;T) ∩ Cm−2(T).

Let Qm
0 ∈ Sm(�n;T) be given by

Qm
0 (x) := nm−1

(m − 1)!
m∑

i=0

(−1)i
(

m

i

)(
x − i

n

)m−1

+
for x ∈ [0,1),

where (x)+ := max{x,0}. Then {Qm
i (x) := Qm

0 (x − i/n) : i = 0, . . . , n − 1} forms a basis of Sm(�n;T), which is
called the basis of normalized B-splines. More details can be found in [81,95] for example.
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C.2. Dual operator and splines

For each i = 0,1, . . . , n − 1, we denote by ϕi,n the unique weak solution of the differential equation

(−1)kϕ
(2k)
i,n = δ

(
i

n
− ·

)
− 1, ϕi,n ∈ Hk

0 (T). (32)

As demonstrated in Section 3.1, it follows that S∗
nei/n = ϕi,n. We will show in the following that the span of the

functions ϕi,n in particular contains the space of all splines of order 2k on �n with zero mean.
To that end, let us first define χn ∈ L2(T) by

χn(y) :=
{

1, if y ∈ [0, 1
n
),

0, if y ∈ [ 1
n
,1).

By integrating both sides of (32) and respecting the zero mean we obtain

(−1)k−1ϕ
(2k−1)
i,n (z) =

{
z − i

n
+ 1

2 , if 0 ≤ z < i
n
,

z − i
n

− 1
2 , if i

n
≤ z < 1.

Therefore

(−1)kD 1
n
,−ϕ

(2k−1)
i,n (z) = χn

(
z − i

n

)
− 1

n
.

Repeating this procedure m times (with m ≤ 2k), we see that

(−1)kDm
1
n
,−ϕ

(2k−m)
i,n (z) = (

χn ∗m−1 χn

)(
z − i

n

)
− 1

nm
.

As a consequence, it follows that

ψm
i,n(z) := (−1)knm−1Dm

1
n
,−ϕ

(2k−m)
i,n (z) = nm−1(χn ∗m−1 χn

)(
z − i

n

)
− 1

n
= Qm

i (z) − 1

n
(33)

is the L2-projection of the normalized B-spline Qm
i onto L2

0(T). We do note here that the functions ψm
i,n are not

linearly independent, their sum being zero.
Now assume that

h =
n−1∑
i=0

c̃iψ
m
i,n

for some coefficients c̃i ∈R. Noting that

D1/n,−ϕ
(k)
i,n (z) = ϕ

(k)
i,n (z) − ϕ

(k)
i,n

(
z − 1

n

)
= ϕ

(k)
i,n (z) − ϕ

(k)
i+1,n(z),

we see that

h = (−1)knm−1
n−1∑
i=0

c̃iD
m
1
n
,−ϕ

(2k−m)
i,n = (−1)knm−1

n−1∑
i=0

c̃i

(
Dm−1

1
n
,− ϕ

(2k−m)
i,n − Dm−1

1
n
,− ϕ

(2k−m)
i+1,n

)

= (−1)knm−1
n−1∑
i=0

(D−c̃)iD
m−1
1
n
,− ϕ

(2k−m)
i,n .
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Repeating this argumentation m times, we obtain

h = (−1)knm−1
n−1∑
i=0

c̃iD
m
1
n
,−ϕ

(2k−m)
i,n = (−1)knm−1

n−1∑
i=0

(
Dm− c̃

)
i
ϕ

(2k−m)
i,n .

This shows that, indeed, the span of the functions ψm
i,n is contained in the span of the functions ϕ

(2k−m)
i,n , and that the

change of coefficients with respect to the different spanning sets is given by the linear mapping c̃ �→ (−1)knm−1Dm− c̃.

Remark C.1. It is still interesting to know that

ϕi,n(x) ≡ (−1)k−1B2k

(
x − i

n

)
,

with B2k the Bernoulli polynomial (see e.g. [66, Section 9.4]),

B2k(x) := 2(−1)k−1
∞∑
l=1

cos(2πlx)

(2πl)2k
,

although this fact is not needed in this paper. One can easily see this by means of Fourier series.

C.3. Approximation properties of splines

Proposition C.2 (Condition number of B-splines). Assume {Qm
i (x), i = 0, . . . , n − 1} is the family of normalized

B-splines in Sm(�n;T). Then for any ci ∈ R, i = 0, . . . , n − 1,

∥∥(c)n−1
i=0

∥∥
p

≤ m2mn1/p

∥∥∥∥∥
n−1∑
i=0

ciQ
m
i

∥∥∥∥∥
Lp

for 1 ≤ p ≤ ∞. (34)

Proof. Let us first consider 1 ≤ p < ∞. By {Q̃m
i }ln−1

i=−m+1 we denote the normalized B-splines on the real line with
equally spaced knots {(−m + 1)/n, (−m + 2)/n, . . . , (ln + m − 1)/n}. Let c̃i := ci mod n for i = −m + 1, . . . , ln − 1.
It is known from [79, Theorem 1] that

∥∥(c̃i )
ln−1
i=−m+1

∥∥
p

≤ m2mn1/p

∥∥∥∥∥
ln−1∑

i=−m+1

c̃iQ̃
m
i

∥∥∥∥∥
Lp

for any l ∈N.

It implies

l
∥∥(ci)

n−1
i=0

∥∥p

p
+ ∥∥(ci)

n−1
i=n−m+1

∥∥p

p
≤ n

(
m2m

)p(
l

∥∥∥∥∥
n−1∑
i=0

ciQ
m
i

∥∥∥∥∥
p

Lp

+
∥∥∥∥∥

n−1∑
i=n−m+1

Qm
i 1[0, m−1

n
)∪[ n−m+1

n
,1)

∥∥∥∥∥
p

Lp

)

or

∥∥(ci)
n−1
i=0

∥∥p

p
+ 1

l

∥∥(ci)
n−1
i=n−m+1

∥∥p

p
≤ n

(
m2m

)p(∥∥∥∥∥
n−1∑
i=0

ciQ
m
i

∥∥∥∥∥
p

Lp

+ 1

l

∥∥∥∥∥
n−1∑

i=n−m+1

Qm
i 1[0, m−1

n
)∪[ n−m+1

n
,1)

∥∥∥∥∥
p

Lp

)
.

By letting l → ∞, we obtain (34) for 1 ≤ p < ∞. Then, the case p = ∞ follows by taking p → ∞. �

Remark C.3. This result is a generalization of a known result for splines on R (see [79]) to periodic splines.
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Proposition C.4 (Boundedness of L2-projector). Let PS be the orthogonal projector onto Sm(�n;T) in the topology
of L2(T). Then there is a constant C depending only on m such that

‖PSu‖Lp ≤ C‖u‖Lp for any u ∈ Lp(T) and 1 ≤ p ≤ ∞.

Proof. By [1, Theorem 2.11] and [81, Theorem 6.30], it is sufficient to prove this assertion only for p = 1 and p = ∞.
Consider first the case p = ∞. Let Qm

i ∈ Sm(�n;T) be the normalized B-splines, and Rm
i := nQm

i implying that

‖Rm
i ‖L1 = 1. If PSf =∑n−1

i=0 aiQ
m
i , then

n−1∑
j=0

aj

〈
Qm

j ,Rm
i

〉= 〈
f,Rm

i

〉
,

that is, we have an equation of the form Ga = b with a := (ai)
n−1
i=0 , b := (〈f,Rm

i 〉)n−1
i=0 and G := (〈Rm

i ,Qm
j 〉)i,j . Note

that

‖b‖∞ = max
i

∣∣〈f,Rm
i

〉∣∣≤ max
i

‖f ‖L∞
∥∥Rm

i

∥∥
L1 = ‖f ‖L∞ .

This implies that

‖PSf ‖L∞ =
∥∥∥∥∥

n−1∑
i=0

aiQ
m
i

∥∥∥∥∥
L∞

≤ ‖a‖∞ ≤ ∥∥G−1
∥∥∞‖b‖∞ ≤ ∥∥G−1

∥∥∞‖f ‖L∞ .

It follows from [25] that

∥∥G−1
∥∥∞ ≤ Cm

for some constant Cm depending only on m. Thus, ‖PSf ‖L∞ ≤ Cm‖f ‖L∞ .
Next consider p = 1. Let PSf = ∑n−1

i=0 ãiR
m
i , then

∑n−1
j=0 ãj 〈Rm

j ,Qm
i 〉 = 〈f,Qm

i 〉, i.e., Gt ã = b̃, where (·)t de-

notes transpose, ã := (ãi)
n−1
i=0 and b̃ := (〈f,Qm

i 〉)n−1
i=0 . It follows from

∑
i Q

m
i = 1 and Qm

i ≥ 0 that

‖b̃‖1 =
∑

i

∣∣〈f,Qm
i

〉∣∣≤∑
i

〈|f |,Qm
i

〉= 〈
|f |,

∑
i

Qm
i

〉
= ‖f ‖L1 .

Then

‖PSf ‖L1 =
∥∥∥∥∥

n−1∑
i=0

ãiR
m
i

∥∥∥∥∥
L1

≤ ‖ã‖1 ≤ ∥∥G−t
∥∥

1‖b̃‖1

= ∥∥G−1
∥∥∞‖b̃‖1 ≤ ∥∥G−1

∥∥∞‖f ‖L1 ≤ Cm‖f ‖L1 .

That is, we obtain the assertion for p = 1. �

Remark C.5. The above result (of periodic splines with equally spaced knots) is probably proven in 1970s, but we are
not aware of the reference. The proof we give here also shows the result for periodic splines with non-equally spaced
knots, since [25] proved the boundedness of the inverse Gram matrix of B-splines for any knots. Similar results for
non-periodic splines with arbitrary knots are originally proven in [82], and recently shortened in [49].
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Proposition C.6 (Approximation property). Let 1 ≤ p,p′, q ≤ ∞. There exists a linear operator A : L1
0(T) →

Sm(�n;T) such that for every u ∈ L1
0(T)

‖u − Au‖W
r,q
0

≤ C1

‖u‖
B

s,p′
p,0

ns−r−(1/p−1/q)+ with 1 ≤ s ≤ m,0 ≤ r ≤ �s − 1�,

‖Au‖W
r,q
0

≤ C2

‖u‖
B

s,p′
p,0

ns−r−(1/p−1/q)+ with 1 ≤ s ≤ �s� ≤ r ≤ m − 1,

where C1, C2 depend only on m, p. Moreover, both inequalities also hold for the Sobolev norm ‖ · ‖W
s,p
0

when p = p′
and s ∈N.

Remark C.7. In the case of Sobolev norm ‖ · ‖W
s,p
0

, s ∈ N, the assertions follow from [81, Theorem 8.12]. Following
the idea of the proof of [81, Theorem 6.31], such results can be extended to Besov norms using [81, Theorem 6.30].

Proposition C.8 (Finite differences and W 1,p(T)). Let h > 0 and 1 ≤ p ≤ ∞. Then

‖Dh,+f ‖Lp = ‖Dh,−f ‖Lp ≤ h‖Df ‖Lp for f ∈ W 1,p(T). (35)

Proof. The case of p = ∞ is obviously true. Now consider 1 ≤ p < ∞. Since ‖Dh,+f ‖Lp = ‖Dh,−f ‖Lp , it is
sufficient to prove (35) only for Dh,+. Note that for each f ∈ W 1,p(T) there is a sequence of smooth functions fn,
such that ‖Dh,+fn‖Lp → ‖Dh,+f ‖Lp and ‖Dfn‖Lp → ‖Df ‖Lp as n → ∞. Therefore, we assume without loss of
generality that f is a smooth function. It follows from f (x + h) − f (x) = h

∫ 1
0 f ′(x + th) dt that

∫ 1

0

∣∣f (x + h) − f (x)
∣∣p dx ≤ hp

∫ 1

0

(∫ 1

0

∣∣f ′(x + th)
∣∣dt

)p

dx

≤ hp

∫ 1

0

∫ 1

0

∣∣f ′(x + th)
∣∣p dt dx

= hp

∫ 1

0

∫ 1

0

∣∣f ′(x + th)
∣∣p dx dt

= hp
∥∥f ′∥∥p

Lp .

That is ‖Dh,+f ‖Lp ≤ h‖Df ‖Lp . �

C.4. Regular systems

Next we state two technical lemmas, which allow us to estimate the dual multiresolution norm of piecewise constant
vectors in case the system B is m-regular. These piecewise constant vectors will appear as spline coefficients for
certain approximation splines needed for the proof of Proposition 4.1.

Lemma C.9. Assume that m ∈N, m ≥ 2, and that n ∈N is written as

n =
r∑

j=0

djm
j with dj ∈ {0, . . . ,m − 1}

and r = �logm n�. Then

r∑
j=0

djm
j/2 ≤ (

√
m + 1)

√
n.
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Proof. We prove this claim by induction over r . For r = 0 it is trivial.
Now assume that the claim holds for r and let n be such that �logm n� = r + 1. Then

(
r+1∑
j=0

djm
j/2

)2

=
(

r∑
j=0

djm
j/2

)2

+ d2
r+1m

r+1 + 2dr+1m
(r+1)/2

r∑
j=0

djm
j/2

≤ (
√

m + 1)2
r∑

j=0

djm
j + d2

r+1m
r+1 + 2dr+1m

(r+1)/2(
√

m + 1)

(
r∑

j=0

djm
j

)1/2

≤ (
√

m + 1)2
r∑

j=0

djm
j + d2

r+1m
r+1 + 2dr+1m

(r+1)/2(
√

m + 1)m(r+1)/2

= (
√

m + 1)2
r∑

j=0

djm
j + (

dr+1 + 2(
√

m + 1)
)
dr+1m

r+1.

Since dr+1 ≤ m − 1 and m − 1 + 2(
√

m + 1) = (
√

m + 1)2, this proves the assertion. �

Lemma C.10. Assume that the family B is m-regular for some fixed m ≥ 2. Let now I = {i0, i0 + 1, . . . , i0 + p −
1}/n ⊂ �n and define c ∈R

�n by ci = 1 if i ∈ I and ci = 0 if i /∈ I . Then

‖c‖B∗ ≤ (
√

m + 1)
√

2mp.

Proof. Let r = �logm n�. Let 	− ∈ N be maximal such that 	−m−r ≤ i0/n, and let 	+ ∈ N be minimal such that
	+m−r > (i0 + p − 1)/n. Then

	+ − 	− <
mr

n
(p − 1) + 2 < mp.

Now write

	− =
r∑

j=0

d−
j mj and 	+ =

r∑
j=0

d+
j mj .

Let moreover 0 ≤ s ≤ r − 1 be maximal such that d−
s < d+

s and denote by 	̂ the minimal number of the form

	̂ = d̂sm
s +

r∑
j=s+1

d+
j mj

such that 	− ≤ 	̂.
Next we denote by B1 the collection of intervals of the form

[
	mk−r , (	 + 1)mk−r

)
where 0 ≤ k ≤ s − 1, and 	 =

r∑
j=k+1

d+
j mj + dmk with 0 ≤ d < d+

k .

Similarly, we denote by B2 the collection of intervals of the form[
	ms−r , (	 + 1)ms−r

)
where 	 = 	̂ + dms with 0 ≤ d < d+

s − d̂s .

Then the intervals contained in B1 ∪B2 form a disjoint cover of [	̂m−r , 	+m−r ).
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Next we write

	̂ − 	− =
s−1∑
j=0

d̂−
j mj

and denote by B3 the collection of intervals of the form

	̂m−r − (
	mk−r , (	 + 1)mk−r

]
where 0 ≤ k ≤ s − 1, and 	 =

s−1∑
j=k+1

d̂−
j mj + dmk with 0 ≤ d < d̂−

k .

Then the intervals contained in B3 form a disjoint cover of [	−m−r , 	̂m−r ).
Note in addition that by construction all of these intervals are also contained in B. Now denote B̂ = B1 ∪ B2 ∪ B3

and define cB := 1 if B ∈ B̂ and B ∩ I �= ∅ and cB := 0 if B ∈ B \ B̂ or B ∈ B̂ and B ∩ I = ∅. Then ci =∑
B�i cB

for all i and therefore

‖c‖B∗ ≤
∑
B∈B

|cB |√n(B) ≤
∑
B∈B̂

√
n(B).

Now note that√
n
([

	mk−r , (	 + 1)mk−r
)
, n
)≤ mk/2 for all 0 ≤ k ≤ r.

Therefore Lemma C.9 and the definition of B̂ imply that

‖c‖B∗ ≤
s−1∑
k=0

d+
k mk/2 + (

d+
s − d̂s

)
ms/2 +

s−1∑
k=0

d̂−
k mk/2

≤ (
√

m + 1)

(((
d+
s − d̂s

)
ms +

s−1∑
k=0

d+
k mk

)1/2

+
(

s−1∑
k=0

d̂−
k mk

)1/2)

= (
√

m + 1)(

√
	+ − 	̂ +

√
	̂ − 	−)

≤ (
√

m + 1)
√

2(	+ − 	−)

≤ (
√

m + 1)
√

2mp. �

Remark C.11. Note that the estimate in the previous lemma can be improved to ‖c‖B∗ ≤ (
√

m+ 1)
√

2p if n is some
power of m, because in this case, with the notation of the lemma, we have 	+ − 	− = p. Also we have the obvious
estimate ‖c‖B∗ ≤ √

p in case the family B contains all intervals.

C.5. Main part of the proof

In order to estimate the multiscale distance function dn, we need to approximate Dkf by a function of the form
DkS∗

nω, where ω ∈ R
�n is small with respect to the dual multiresolution norm. We will perform this approximation

in two steps: First, we will show that a spline of order k + 1 defined on a coarser grid than �n can be approximated
well by a function of the form DkS∗

nω in such a way that the dual multiresolution norm of ω increases sufficiently
slowly with the decreasing grid size (see Lemma C.12). In the second step, we then approximate Dkf by a spline
g of order k + 1. Balancing the grid on which g is defined with n, then gives us the behavior of dn claimed in
Proposition 4.1.



Variational multiscale regression 1089

Lemma C.12. Let � ⊂ T be a finite set and g ∈ Sk+1(�;T) with
∫
T

g dx = 0. Assume moreover that

τmin := min
{
dist(x, y) : x �= y ∈ �

}
>

2k + 2

n

and that B is regular, denote

τmax := max
{
dist(x, y) : (x, y) ⊂ T \ �

}
and let 1 ≤ q ≤ ∞. Then there exist c ∈R

�n and constants C1, C2 > 0 only depending on k, q , B, such that

∥∥g − (
S∗

nc
)(k)∥∥

L2 ≤ C1
‖g(k)‖L2

nk
,

‖c‖B∗ ≤ C2
∥∥g(k)

∥∥
Lq |�|1−1/qn1/q−1(nτmax)

(1/2−1/q)+ .

Proof. Let h be the best approximation of g in span{ψk
i,n : i = 0, . . . , n − 1} in the L2 sense, see (33). Then we can

write

h =
n−1∑
i=0

c̃iψ
k
i,n

for some coefficients c̃i ∈R. Because the functions ψk
i,n are not linearly independent, the coefficients c̃i are not unique.

It is, however, possible to choose them in such a way that

n−1∑
i=0

c̃i = 0.

Then

h =
n−1∑
i=0

c̃iψ
k
i,n =

n−1∑
i=0

c̃iQ
k
i . (36)

Now note that the fact that
∫
T

g dx = 0 implies that h is at the same time the best approximation of g in Sk(�n;T).
Thus (36) shows that, actually, the coefficients c̃i are the coefficients of the kth order spline that approximates g best
in the L2-sense. Thus it follows from Proposition C.6 that

‖h − g‖L2 ≤ C1
‖g(k)‖L2

nk
. (37)

Now let

ci := (−1)knk−1(Dk−c̃
)
i
, for i = 0, . . . , n − 1,

which implies that

h =
n−1∑
i=0

ciϕ
(k)
i,n = (

S∗
nc
)(k)

.

We will next derive an upper bound for ‖c‖B∗ .
Since h is the best approximation of g within Sk(�n;T), it follows that〈

h,Qk
j

〉
L2 = 〈

g,Qk
j

〉
L2
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for all j . Applying r th order finite differences to these vectors, we obtain that

Dr−
((〈

h,Qk
j

〉
L2

)
j

)= Dr−
((〈

g,Qk
j

〉
L2

)
j

)
for all r . From this, we obtain that〈

h,Dr
1
n
,+Qk

j

〉
L2 = 〈

g,Dr
1
n
,+Qk

j

〉
L2

for all j . Since (Dr
1
n
,+)∗ = (−1)rDr

1
n
,−, this further implies that

〈
Dr

1
n
,−h,Qk

j

〉
L2 = 〈

Dr
1
n
,−g,Qk

j

〉
L2 (38)

for all j and all r . Next we note that

Dk+1
1
n
,−h =

n−1∑
i=0

(
Dk+1− c̃

)
i
Qk

i = (−1)kn1−k
n−1∑
i=0

(D−c)iQ
k
i . (39)

Now let j/n ∈ �n be such that j/n /∈ � + (−k/n, (k + 1)/n) and let x ∈ supp(Qk
j ) = [j/n, (j + k)/n]. Then the fact

that g is a polynomial of degree k outside of � implies that(
Dk+1

1
n
,−g

)
(x) = 0.

As a consequence, we obtain from (38) with r = k + 1 and (39) that

0 = 〈
Dk+1

1
n
,−g,Qk

j

〉
L2 = (−1)kn1−k

n−1∑
i=0

(D−c)i
〈
Qk

i ,Q
k
j

〉
.

Since this holds for every j/n ∈ �n with j/n /∈ � + (−k/n, (k + 1)/n), it follows from the properties of B-splines
that

(D−c)j = 0

for all j such that j/n /∈ � + (−k/n, (k + 1)/n).
Now denote by I ⊂ �n the set of all points i/n for which i/n /∈ � + (−k/n, (k + 1)/n). Then the set I consists

of |�| disjoint sets Ij ⊂ T, j = 1, . . . , |�|, of subsequent grid points. The considerations above imply that for each of
these sets Ij there exists ωj ∈ R such that ci = ωj for i/n ∈ Ij . Therefore Lemma C.10 implies that

‖c‖B∗ ≤
|�|∑
j=1

C|ωj |
√

n(Ij , n) +
∑
i /∈I

|ci | (40)

for some constant C > 0 only depending on B. Now define

ti :=
{

1 if i/n /∈ I,

C 1√
n(Ij ,n)

if i/n ∈ Ij for some j.

Then the right hand side term in (40) can also be written as a sum over all products ti |ci |, i = 0, . . . , n − 1. There-
fore

‖c‖B∗ ≤
n−1∑
i=0

ti |ci |.
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Applying Hölder’s inequality gives

‖c‖B∗ ≤ ‖c‖q‖t‖q∗ = ‖c‖q

(
|�n \ I | + Cq∗

|�|∑
j=1

n(Ij , n)1−q∗/2

)1/q∗

≤ ‖c‖q

(
2k|�| + Cq∗

|�|∑
j=1

n(Ij , n)1−q∗/2

)1/q∗

for any 1 ≤ q ≤ ∞ and q∗ = q/(q − 1). Since 1 ≤ n(Ij , n) ≤ nτmax for all j , this further implies that

‖c‖B∗ ≤ ‖c‖q

(
2k|�| + Cq∗ |�|(nτmax)

(1−q∗/2)+)1/q∗

≤ C‖c‖q |�|1/q∗(nτmax)
(1/q∗−1/2)+ = C‖c‖q |�|1−1/q(nτmax)

(1/2−1/q)+ . (41)

Now note that (38) implies that Dk
1/n,−h is the best approximating spline in the L2-sense of Dk

1/n,−g. Thus the
definition of c and Propositions C.2, C.4 and C.8 imply that

‖c‖q = nk−1
∥∥Dk−c̃

∥∥
q

≤ Cnk−1+1/q
∥∥Dk

1/n,−h
∥∥

Lq ≤ Cnk−1+1/q
∥∥Dk

1/n,−g
∥∥

Lq ≤ Cn−1+1/q
∥∥g(k)

∥∥
Lq .

Together with (41) this shows that

‖c‖B∗ ≤ C
∥∥g(k)

∥∥
Lq |�|1−1/qn1/q−1(nτmax)

(1/2−1/q)+

for some constant C > 0. �

Proof of Proposition 4.1. Assume first that p ≥ 2. Proposition C.6 applied with u = f (k) ∈ B
s,p′
p,0 (T), m = k + 1, and

q = p implies for every λ ∈N the existence of a spline g ∈ Sk+1(�λ;T) such that

∥∥f (k) − g
∥∥

L2 ≤ C

‖f ‖
B

k+s,p′
p,0

λs
,

∥∥g(k)
∥∥

Lp ≤ C

‖f ‖
B

k+s,p′
p,0

λs−k
.

Next we obtain from Lemma C.12 the existence of a vector c ∈R
�n such that

∥∥g − (
S∗

nc
)(k)∥∥

L2 ≤ C
‖g(k)‖L2

nk
,

‖c‖B∗ ≤ C
∥∥g(k)

∥∥
Lpλ1/2n−1/2,

provided that λ is sufficiently large (here we use that, in the notation of the lemma, |�| = λ and τmax = 1/λ). Com-
bining these estimates, it follows that, for

t ≥ C‖f ‖
B

k+s,p′
p,0

n−1/2λ1/2−s+k

we have

dn(t) ≤ C‖f ‖
B

k+s,p′
p,0

λ−s
(
1 + λkn−k

)
.

Choosing

λ ∼ n1/(2s+2k+1)(logn)−2r/(2k+2s+1),
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we obtain that

min
t≥0

(
dn(t) + (logn)r/2t1/2)=O

(
n−μ(logn)2rμ

)
with μ = s

2s + 2k + 1

as n → ∞.
Now let p ≤ 2. Again applying Proposition C.6 with u = f (k) ∈ B

s,p′
p,0 (T) and m = k +1, but now with q = 2 yields

g ∈ Sk+1(�λ;T) such that

∥∥f (k) − g
∥∥

L2 ≤ C

‖f ‖
B

k+s,p′
p,0

λs−1/p+1/2
,

∥∥g(k)
∥∥

L2 ≤ C

‖f ‖
B

k+s,p′
p,0

λs−k−1/p+1/2
,

and we obtain, for λ sufficiently large, from Lemma C.12 the existence of c ∈ R
�n with

∥∥g − (
S∗

nc
)(k)∥∥

L2 ≤ C
‖g(k)‖L2

nk
,

‖c‖B∗ ≤ C
∥∥g(k)

∥∥
L2λ

1/2n−1/2.

This shows that, for

t ≥ C‖f ‖
B

k+s,p′
p,0

n−1/2λ1/p−s+k,

we have

dn(t) ≤ C‖f ‖
B

k+s,p′
p,0

λ1/p−1/2−s
(
1 + λkn−k

)
.

Choosing

λ ∼ n1/(2k+2s+2−2/p)(logn)−2r/(2k+2k+s−2/p),

we obtain that

min
t≥0

(
dn(t) + (logn)r/2t1/2)=O

(
n−μ(logn)2rμ

)
with μ = s − 1/p + 1/2

2(s + k + 1 − 1/p)
,

which proves the assertion.
The above argument holds also for f ∈ W

k+s,p

0 (T) if we replace ‖ · ‖
B

k+s,p′
p,0

by ‖ · ‖
W

k+s,p
0

. �

Appendix D: Proof of Theorem 4.4

Lemma D.1. Let B be a family of intervals, f ∈ C1(T), and F(t) := ∫ t

0 f (x)dx. Then,

‖Snf ‖B√
n

≤ ‖F‖W 1/2,∞ + ‖Df ‖L∞

2n
.

Proof. Denote in the following

Bn := {[i/n, j/n] : there exists B ∈ B such that B ∩ �n = {i/n, . . . , j/n}}.
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Then

‖Snf ‖B√
n

= max
[i/n,j/n]∈Bn

√
n√

j − i + 1

∣∣∣∣∣1

n

j∑
k=i

f

(
k

n

)∣∣∣∣∣
≤ max

[i/n,j/n]∈Bn

{ √
n√

j − i + 1

∣∣∣∣
∫ (j+1)/n

i/n

f (x) dx

∣∣∣∣+
√

n√
j − i + 1

j∑
k=i

∣∣∣∣1

n
f

(
k

n

)
−
∫ (k+1)/n

k/n

f (x) dx

∣∣∣∣
}

≤ sup
s �=t∈T

|F(t) − F(s)|√
t − s

+ max
[i/n,j/n]∈Bn

√
n√

j − i + 1

j∑
k=i

∫ (k+1)/n

k/n

∣∣∣∣f
(

k

n

)
− f (x)

∣∣∣∣dx

≤ ‖F‖W 1/2,∞ + max
[i/n,j/n]∈Bn

√
n√

j − i + 1

j − i + 1

2n2
‖Df ‖L∞

≤ ‖F‖W 1/2,∞ + ‖Df ‖L∞

2n
. �

Proof of Theorem 4.4. Let ε̃ > 0 be fixed and set

λ :=
⌊(

n

logn

) 1
2s+1

(logn)ε̃
⌋
.

Let Gλ(t) ∈ Sk+2(�λ;T) be the approximation spline of F(t) := ∫ t

0 f (x)dx as in Proposition C.6, and gλ(t) :=
G′

λ(t). It follows that gλ ∈ Hk
0 (T), and

‖f − gλ‖Lq = ∥∥F ′ − G′
λ

∥∥
Lq ≤ C

‖F‖Ws+1,∞
λs

≤ C

(
logn

n

) s
2s+1

(logn)−sε̃‖f ‖Ws,∞,

∥∥Dkgλ

∥∥
L2 = ∥∥Dk+1Gλ

∥∥
L2 ≤ Cλk−s‖F‖Ws+1,∞ ≤ C

(
n

logn

) k−s
2s+1

(logn)(k−s)ε̃‖f ‖Ws,∞ .

The second relation implies that

d̃n(t) := min‖w‖B∗≤t

∥∥DkS∗
nw − Dkgλ

∥∥
L2 ≤ d̃n(0) = ∥∥Dkgλ

∥∥
L2

≤ C

(
n

logn

) k−s
2s+1

(logn)(k−s)ε̃‖f ‖Ws,∞ (42)

for every t ≥ 0. By Proposition C.6 and Lemma D.1, we have

‖Snf − Sngλ‖B ≤ √
n‖F − Gλ‖W 1/2,∞ + o(1)

≤ C
√

n
‖f ‖Ws,∞

λs+1/2
≤ C(logn)

1
2 −(s+ 1

2 )ε̃‖f ‖Ws,∞

for sufficiently large n. Consequently

‖Sngλ − yn‖B ≤ ‖Sngλ − Snf ‖B + ‖Snf − yn‖B
≤ C(logn)

1
2 −(s+ 1

2 )ε̃‖f ‖Ws,∞ + ‖ξn‖B. (43)

Set γ̃n := C0
√

logn < γn with some C0 > σ
√

5 + 2k/d . Then ‖ξn‖B ≤ γ̃n, together with (43), implies that ‖Sngλ −
yn‖B ≤ γn for large enough n. In such case we can apply Theorem 3.3, but with f replaced by its approximation gλ,
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and obtain the estimate

‖f̂γn − gλ‖Lq ≤ C max

{
γ 2ϑ
n

nϑ
min
t≥0

(
d̃n(t) + (γnt)

1/2)1−2ϑ
,

γn

n1/2
,

1

nϑ ′ min
t≥0

(
d̃n(t) + (γnt)

1/2)},

with ϑ = k/(2k + 1), ϑ ′ = 2k2/(2k + 1). By (42), this further implies that, for sufficiently large n,

‖f̂γn − gλ‖Lq

≤ C max

{
(logn)

s
2s+1 + ε

2

n
s

2s+1
‖f ‖

1
2k+1
Ws,∞,

(logn)r

n1/2
,
(logn)(k−s)ε̃− k−s

2s+1

n
s

2s+1 +ϑ 4ks−1
2s+1

‖f ‖Ws,∞
}

≤ C(logn)
s

2s+1 + ε
2 n− s

2s+1 ‖f ‖
1

2k+1
Ws,∞ ,

with ε = 2ε̃(k−s)+2k(2r−1)
2k+1 >

2k(2r−1)
2k+1 . Note that limn→∞ P{‖ξn‖B > γ̃n} = 0 by Proposition 2.4. Thus we obtain that

‖f̂γn − f ‖Lq ≤ ‖f̂γn − gλ‖Lq + ‖gλ − f ‖Lq

≤ C(logn)
s

2s+1 + ε
2 n− s

2s+1 ‖f ‖
1

2k+1
Ws,∞ + C(logn)

s
2s+1 −sε̃n− s

2s+1 ‖f ‖Ws,∞

≤ C(logn)
s

2s+1 + ε
2 n− s

2s+1 ‖f ‖
1

2k+1
Ws,∞

almost surely as n → ∞.
If p(t) := P{‖ξn‖B ≤ t}, it follows that for n sufficiently large,

E
[‖f̂γn − f ‖2

Lq

]
≤ P

{‖ξn‖B ≤ γ̃n

}
C(logn)

2s
2s+1 +εn− 2s

2s+1 ‖f ‖
2

2k+1
Ws,∞ +

∫ ∞

γ̃n

sup
{‖f̂γn − f ‖2

L∞ : ‖ξn‖B = t
}
dp(t)

≤ C(logn)
2s

2s+1 +εn− 2s
2s+1 ‖f ‖

2
2k+1
Ws,∞ +

∫ ∞

γ̃n

sup
{‖f̂γn − f ‖2

L∞ : ‖ξn‖B = t
}
dp(t).

As in the proof of Theorem 3.5, we see that

∫ ∞

γ̃n

sup
{‖f̂γn − f ‖2

L∞ : ‖ξn‖B = t
}
dp(t) ≤ Cn

2k+3d
d γ̃ 2

n exp

(
− γ̃ 2

n

2σ 2

)
,

which tends to zero faster than (logn)2s/(2s+1)+εn−2s/(2s+1) as n → ∞.

It is easy to see that the above argument also holds for f ∈ B
s,p′
∞,0(T) with 1 ≤ p′ ≤ ∞. This completes the proof. �
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