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A SMEARY CENTRAL LIMIT THEOREM FOR MANIFOLDS
WITH APPLICATION TO HIGH-DIMENSIONAL SPHERES1

BY BENJAMIN ELTZNER AND STEPHAN F. HUCKEMANN

Felix-Bernstein-Institut für Mathematische Statistik in den Biowissenschaften and
Georg-August-Universität Göttingen

The (CLT) central limit theorems for generalized Fréchet means (data
descriptors assuming values in manifolds, such as intrinsic means, geodesics,
etc.) on manifolds from the literature are only valid if a certain empirical pro-
cess of Hessians of the Fréchet function converges suitably, as in the proof
of the prototypical BP-CLT [Ann. Statist. 33 (2005) 1225–1259]. This is not
valid in many realistic scenarios and we provide for a new very general CLT.
In particular, this includes scenarios where, in a suitable chart, the sample
mean fluctuates asymptotically at a scale nα with exponents α < 1/2 with
a nonnormal distribution. As the BP-CLT yields only fluctuations that are,
rescaled with n1/2, asymptotically normal, just as the classical CLT for ran-
dom vectors, these lower rates, somewhat loosely called smeariness, had to
date been observed only on the circle. We make the concept of smeariness
on manifolds precise, give an example for two-smeariness on spheres of ar-
bitrary dimension, and show that smeariness, although “almost never” oc-
curring, may have serious statistical implications on a continuum of sample
scenarios nearby. In fact, this effect increases with dimension, striking in par-
ticular in high dimension low sample size scenarios.

1. Introduction. The classical central limit theorem (CLT) for i.i.d. random
vectors with second moments states, in particular, that the multiple nV of the vari-
ance of the fluctuation of sample means Xn around the population mean E[X] with
sample size n, is asymptotically constant. Under specific conditions, the BP-CLT
by Bhattacharya and Patrangenaru (2005) for intrinsic means on manifolds extends
this result to images in a local chart of Fréchet sample means and Fréchet popu-
lation means. If data are sufficiently dispersed, however, as in the “turtles” data
set from Mardia and Jupp ((2000), page 9), bootstrapping even rather high sample
sizes seems to render the BP-CLT not applicable; cf. Figure 1.

The reason is that classical arguments employed by Bhattacharya and Patrange-
naru control the underlying empirical process of Hessians of sample Fréchet func-
tions, only under strong constraining conditions, which as it turns out, are often
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FIG. 1. Left: Directions (blue) of 76 female turtles after laying eggs from Mardia and Jupp (2000),
page 9, and their images (orange) in the tangent space of their intrinsic mean. Right: variance (blue)
of the fluctuation of intrinsic bootstrap sample means times sample size (vertical) over varying boot-
strap sample sizes (horizontal), starting off close to 2-smeariness (black dashed). Applying the clas-
sical Euclidean CLT to bootstrapped tangent space images gives classical asymptotically constant
behavior (orange) corresponding to nonsmeariness (black solid).

not realistic. We propose to consider instead a Taylor expansion of the popula-
tion Fréchet function, combined with more involved empirical process theory, to
develop a new line of argument, which is applicable under very mild conditions.
This general approach to asymptotic theory is of mathematical interest in itself,
and in retrospect, quite natural. In passing, we also get rid of another constraining
condition by allowing singularity of the Hessian which precisely opens the CLT to
smeary scenarios as in Figure 1.

Precisely verifying a specific type of smeariness on spheres is a challenging
task, and by tackling it, we pave the way for the exploration of other types of
smeariness on spheres, as well as on other standard data and descriptor manifolds.
Notably, our smeary CLT also holds for suitable general M-estimators.

The BP-CLT. The celebrated central limit theorem (CLT) for intrinsic sample
means on manifolds by Bhattacharya and Patrangenaru (2005), and many subse-
quent generalizations (e.g., Bhattacharya and Bhattacharya (2008), Bhattacharya
and Lin (2017), Bhattacharya and Patrangenaru (2014), Ellingson, Patrangenaru
and Ruymgaart (2013), Huckemann (2011a), Patrangenaru and Ellingson (2016)),
rests on a Taylor expansion

√
ngrad |x=x0Fn(x) = √

ngrad |x=0Fn(x) + Hess |x=x̃Fn(x)
√

nx0(1.1)

(with suitable x̃ between 0 and x0) and a generalized strong law (n → ∞ and
x0 → 0)

Hess |x=x̃Fn(x)
P→ Hess |x=0F(x).(1.2)
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Here, X1, . . . ,Xn
i.i.d.∼ X is a sample on a smooth manifold M ,

Fn(x) = 1

n

n∑
j=1

d
(
Xj,φ(x)

)2
, F (x) = E

[
d
(
X,φ(x)

)2]
are the sample and population Fréchet functions and d is a smooth distance on M .
Further it is assumed that F has a unique minimizer, called the population Fréchet
mean and φ denotes a local smooth chart which maps 0 to the population Fréchet
mean.

Note that the Taylor expansion (1.1) and all others in this paper are formulated in
charts and involve only classical multivariate, not covariant, derivatives. We show
below in Lemma 3.2 that smeariness in CLTs is invariant under chart changes.

For the preimage x0 = xn under φ of any sample Fréchet mean, that is, a mini-
mizer of the sample Fréchet function Fn, the left-hand side of equation (1.1) van-
ishes. The right-hand side is guaranteed to be well defined; however, only if the
line segment between 0 and x0 carries no sample points. This can be ensured for
fixed sample size n, if x0 is sufficiently close to 0 because due to Le and Barden
(2014) the cut locus of the population Fréchet mean carries no mass. If X has a
density near the cut locus and x0 = xn is random, this is no longer clear. Even if
(1.1) were well defined, it is not clear under which circumstances (1.2) also holds
for random x0 = xn.

If both (1.1) and (1.2) hold, since the properly rescaled sum of i.i.d. random
variables

√
ngrad |x=0Fn(x) converges to a Gaussian, this strain of argument then

gives the BP-CLT,
√

nxn
D→ N (0,�),(1.3)

with suitable covariance matrix �, if the Hessian on the right-hand side of equation
(1.2) is invertible.

Beyond the BP-CLT. Recently in Hotz and Huckemann ((2015), Example 1), an
example on the circle with log coordinates x ∈ [−π,π) has been provided, with
population Fréchet mean at x = 0 and a local density f near the antipodal −π . For
x > 0 sufficiently small, the rescaled sample Fréchet function takes the value

nFn(x) = ∑
x−π≤Xj

(Xj − x)2 + ∑
Xj<x−π

(Xj + 2π − x)2

=
n∑

j=1

(Xj − x)2 + 4π
∑

Xj<x−π

(Xj − x + π)

so that the left-hand side of equation (1.2) is only a.s. well defined with value
Hess |xFn(x) = 2 a.s. (as in the Euclidean case). The right-hand side, however,
assumes the value Hess |x=0F(x) = 2 − 4πf (−π). Hence, in case of f (−π) �= 0,
the convergence (1.2) is no longer valid, making the above strain of argument no
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longer viable. Still, as shown in Hotz and Huckemann (2015), McKilliam, Quinn
and Clarkson (2012), as long as 2πf (−π) < 1, the BP-CLT (1.3) remains valid.

Further, in Hotz and Huckemann (2015) it was shown that 1 = 2πf (−π) is pos-
sible, so that the BP-CLT (1.3), which universally holds for Euclidean spaces under
square integrability, fails for such 2D vectors confined to a circle, by giving exam-
ples in which the fluctuations may asymptotically scale with nα with exponents α

strictly lower than one-half.
This new phenomenon has, somewhat loosely, been called smeariness; it can

only manifest in a non-Euclidean geometry. Examples beyond the circle were not
known to date.

A general CLT. Making the concept of smeariness on manifolds precise, using
empirical process theory (e.g., from van der Vaart (1998)) and avoiding the sample
Taylor expansion (1.1) as well as the not generally valid convergence condition
(1.2), we provide for a general CLT on manifolds that requires no assumptions
other than a unique population mean and a sufficiently well behaved distance. With
the degree of smeariness κ ≥ 0, our general CLT takes the form

√
nxn|xn|κ D→N (0,�),(1.4)

where xn|xn|κ is defined componentwise. Then xn scales with nα , α = 1
2(κ+1)

, and
κ = 0 corresponds to the usual CLT valid on Euclidean spaces, and to the BP-CLT
(1.3).

We phrase our general CLT in terms of sufficiently well behaved generalized
Fréchet means, for example, geodesic principal components (Huckemann, Hotz
and Munk (2010), Huckemann and Ziezold (2006)) or principal nested spheres
(Jung, Dryden and Marron (2012), Jung, Foskey and Marron (2011)). While we
discuss some intricacies in Remark 2.8, their details are beyond the scope of this
paper and left for future research. In general, generalized Fréchet means are ran-
dom object descriptors (e.g., Marron and Alonso (2014)) that take values in a man-
ifold, or more generally, in a stratified space, and for our general CLT we require
only:

(i) a law of large numbers for a unique generalized Fréchet mean μ,
(ii) a local manifold structure near μ, sufficiently smooth,

(iii) an a.s. Lipschitz condition and an a.s. differentiable distance between μ

and data, and
(iv) a population Fréchet function, sufficiently smooth at μ.

Further, we give an example for two-smeariness on spheres of arbitrary dimen-
sion, and show that smeariness, although “almost never” occurring, may have se-
rious statistical implications on a continuum of sample scenarios nearby. Remark-
ably, this effect increases with dimension, striking in particular in high dimension
low sample size scenarios.
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2. A general central limit theorem. In a typical scenario of non-Euclidean
statistics, a two-sample test is applied to two groups of manifold-valued data or
more generally to data on a manifold-stratified space. Such a test can be based on
certain data descriptors such as intrinsic means (e.g., Bhattacharya and Patrange-
naru (2005), Munk et al. (2008), Patrangenaru and Ellingson (2016)), best ap-
proximating geodesics (e.g., Huckemann (2011b)), best approximating subspaces
within a given family of subspaces and entire flags thereof (cf. Huckemann and
Eltzner (2018)), and asymptotic confidence regions can be constructed from a
suitable CLT for such descriptors. In this section, we first introduce the setting
of generalized Fréchet means along with standard assumptions, we then recollect
and expand some empirical process theory from van der Vaart (1998) and state and
prove our general CLT.

2.1. Generalized Fréchet means and assumptions. Fréchet functions and
Fréchet means have been first introduced by Fréchet (1948) for squared metrics
ρ̃ : Q × Q → [0,∞) on a topological space Q and later extended to squared
quasimetrics by Ziezold (1977). Generalized Fréchet means as follows have been
introduced by Huckemann (2011b). A simple setting is given when P = Q is a
Riemannian manifold and ρ̃ = d2 is the squared geodesic intrinsic distance. Then
a generalized Fréchet mean is a minimizer with respect to squared distance, often
called a barycenter.

NOTATION 2.1. Let P and Q be separable topological spaces, Q is called
the data space and P is called the descriptor space, linked by a continuous map
ρ̃ : P × Q → [0,∞) reflecting distance between a data descriptor p ∈ P and a
datum q ∈ Q. Further, with a silently underlying probability space (�,A,P), let

X1, . . . ,Xn
i.i.d.∼ X be random elements on Q, that is, they are Borel-measurable

mappings � → Q. They give rise to generalized population and generalized sam-
ple Fréchet functions,

F̃ : p 
→ E
[
ρ̃(p,X)

]
, F̃n : p 
→ 1

n

n∑
j=1

ρ̃(p,Xj )],

respectively, and their generalized population and generalized sample Fréchet
means

Ẽ =
{
p ∈ P : F̃ (p) = inf

p∈P
F̃ (p)

}
, Ẽn =

{
p ∈ P : F̃n(p) = inf

p∈P
F̃n(p)

}
,

respectively. Here, the former set is empty if the expected value is never finite.

All of the theory developed in this paper concerns only distributions with unique
population minimizer μ ∈ {μ} = Ẽ; cf. Assumption 2.2. With Assumption 2.3
further down, P is a manifold locally near μ, so that convergence in probability in
the following assumption is well defined.
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ASSUMPTION 2.2 (Unique mean with law of large numbers). In fact, we as-
sume that Ẽ is not empty but contains a single descriptor μ ∈ P and that for every
measurable selection μn ∈ Ẽ,

μn
P→ μ.

ASSUMPTION 2.3 (Local manifold structure). With 2 ≤ r ∈ N, assume that
there is a neighborhood Ũ of μ that is an m-dimensional Riemannian mani-
fold, m ∈ N, such that with a neighborhood U of the origin in R

m the exponen-
tial map expμ : U → Ũ , expμ(0) = μ, is a Cr -diffeomorphism, and we set for
p = expμ(x),p′ = expμ(x′) ∈ Ũ and q ∈ Q,

ρ : (x, q) 
→ ρ̃
(
expμ(x), q

)
,

F : x 
→ F̃
(
expμ(x)

)
, Fn : x 
→ F̃n

(
expμ(x)

)
.

It will be convenient to extend Fn to all of Rm via Fn(x) = Fn(0) for x ∈ R
m \ U .

ASSUMPTION 2.4 (Almost surely locally Lipschitz and differentiable at mean).
Further assume that:

(i) the gradient ρ̇0(X) := gradx ρ(x,X)|x=0 exists almost surely;
(ii) there is a measurable function ρ̇ : Q → R satisfying E[ρ̇(X)2] < ∞ for all

x ∈ U and that the following Lipschitz condition:∣∣ρ(x1,X) − ρ(x2,X)
∣∣≤ ρ̇(X)‖x1 − x2‖ a.s.

holds for all x1, x2 ∈ U .

ASSUMPTION 2.5 (Smooth Fréchet function). With 2 ≤ r ∈ N and a nonvan-
ishing tensor T = (Tj1,...,jr )1≤j1≤···≤jr≤m, assume that the Fréchet function admits
the power series expansion

F(x) = F(0) + ∑
1≤j1≤···≤jr≤m

xj1 . . . xjr Tj1,...,jr + o
(‖x‖r).(2.1)

The tensor in T in (2.1) can be very complicated. As is well known, for r = 2,
every symmetric tensor is diagonalizable (m(m + 1)/2 parameters involved),
which is, however, not true in general. For simplicity of argument, however, we
assume that T is diagonalizable with nonzero diagonal elements so that Assump-
tion 2.5 rewrites as follows. In this formulation, we can also drop our assumption
that r ∈ N.

ASSUMPTION 2.6. With 2 ≤ r ∈ R, a rotation matrix R ∈ SO(m) and
T1, . . . , Tm �= 0 assume that the Fréchet function admits the power series expan-
sion

F(x) = F(0) +
m∑

j=1

Tj

∣∣(Rx)j
∣∣r + o

(‖x‖r).(2.2)
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REMARK 2.7 (Typical scenarios). Let us briefly recall typical scenarios. In
many applications, Q is:

(a) globally a complete smooth Riemannian manifold, for example, a sphere
(cf. Mardia and Jupp (2000) for directional data), a real or complex projective
space (cf. Kendall (1984), Mardia and Patrangenaru (2005) for certain shape
spaces) or the space of positive definite matrices (cf. Dryden, Koloydenko and
Zhou (2009) for diffusion tensors),

(b) a nonmanifold shape space which is a quotient of a Riemannian manifold
under an isometric group action with varying dimensions of isotropy groups (e.g.,
Dryden and Mardia (1998), Kendall et al. (1999), for spaces of three- and higher-
dimensional shapes),

(c) a general stratified space where all strata are manifolds with compatible
Riemannian structures, for example, phylogenetic tree spaces (cf. Billera, Holmes
and Vogtmann (2001), Moulton and Steel (2004), for varying geometries).

On these spaces:

(α) in most of the above applications, P = Q and intrinsic means are con-
sidered where ρ̃ is the squared geodesic distance induced from the Riemannian
structure.

(β) In other examples, P = 
, the space of geodesics on Q is considered, in
view of PCA-like dimension reduction methods (e.g., Fletcher and Joshi (2004),
Huckemann, Hotz and Munk (2010), Huckemann and Ziezold (2006)), or

(γ ) P is a family of subspaces of Q, or even a space of nested subspheres in
Jung, Dryden and Marron (2012), Jung, Foskey and Marron (2011); more general
families have been recently considered in generic dimension reduction methods,
for example, Pennec (2018), Sommer (2016).

REMARK 2.8. Of the above assumptions, some are harder to prove in real
examples than others.

(i) Of all above assumptions, uniqueness (first part of Assumption 2.2) seems
most challenging to verify, as there are cases of nonuniqueness. For example, both
north and south poles are intrinsic means of a uniform distribution along the equa-
tor of a two-sphere. For more examples, see Huckemann (2012). To date, only for
intrinsic means on the circle the entire picture is known; cf. Hotz and Huckemann
((2015), page 182ff.). For complete Riemannian manifolds, uniqueness for intrin-
sic means has been shown if the support is sufficiently concentrated (cf. Afsari
(2011), Groisser (2005), Karcher (1977), Kendall (1990), Le (2001)) and intrin-
sic sample means are unique a.s. if from a distribution absolutely continuous w.r.t.
Riemannian measure; cf. Bhattacharya and Patrangenaru ((2003), Remark 2.6) (for
the circle) and Arnaudon and Miclo ((2014), Theorem 2.1) (in general).
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(ii) For the above typical scenarios, we anticipate that the other assumptions
are often valid in concrete applications.

For instance, Assumption 2.3 is also true on nonmanifold shape spaces, be-
cause the mean is assumed on the highest dimensional manifold stratum intersect-
ing with the support, due to the manifold stability theorem Huckemann ((2012),
Corollary 1).

On arbitrary stratified spaces, it may only be valid if the mean is assumed in
the top dimensional stratum, while means on lower dimensional strata may feature
stickiness, as is typically the case in BHV spaces for phylogenetic trees; cf. Billera,
Holmes and Vogtmann (2001), Barden, Le and Owen (2013, 2018), Hotz et al.
(2013), Huckemann et al. (2015).

Our results are not applicable to current spaces of persistence diagrams (e.g.,
Turner et al. (2014)) because they do not provide local manifold structures.

(iii) Smeariness as described here is always connected to a vanishing Hessian
of the Fréchet function. Varying the probability measure slightly can easily turn the
Hessian positive definite, negative definite or indefinite, corresponding to a local
minimum, maximum or saddle point. In particular, it seems that smeariness can be
viewed as a boundary case between probability measures with unique means and
measures with nonunique means.

(iv) Moreover, Assumption 2.4 is only slightly stronger than uniform coercivity
(condition (2) in Huckemann ((2011b), page 1118)) which suffices for the strong
law (second part of Assumption 2.2); cf. Huckemann ((2011b), Theorem A4) and
Huckemann and Eltzner ((2018), Theorem 4.1), and this has been established for
principal nested spheres in Huckemann and Eltzner ((2018), Theorem 3.8) and for
geodesics with nested mean on Kendall’s shape spaces in Huckemann and Eltzner
((2018), Theorem 3.9). In consequence of Lemma 4.4 below, we have that As-
sumption 2.4 holds for intrinsic means of distributions on spheres which feature a
density near the antipodal point of the intrinsic population mean.

A more detailed analysis is beyond the scope of this paper and left for future re-
search.

2.2. General CLT. For the following, fix a measurable selection μn ∈ Ẽn. Due

to μn
P→ μ from Assumption 2.2, we have P{μn ∈ Ũ} → 1, and in accordance with

the convention in Assumption 2.3, setting

xn :=
{

exp−1
μ (μn) if μn ∈ Ũ ,

0 else,

note that

Fn(0) ≥ Fn(xn) = F̃n(μn) + op(1),(2.3)

because P{Fn(xn) − F̃n(μn) > ε} = P{μn /∈ Ũ } → 0 for all ε > 0.
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The following is a direct consequence of van der Vaart ((1998), Lemma 5.52),
replacing maxima with minima, where due to continuity of ρ̃, we have no need for
outer measure and outer expectation, and due to our setup, no need for approximate
minimizers.

LEMMA 2.9. Assume that for fixed constants C and α > β for every n and for
sufficiently small δ,

sup
‖x‖<δ

∣∣F(x) − F(0)
∣∣≥ Cδα,(2.4)

E

[
n1/2 sup

‖x‖<δ

∣∣Fn(x) − F(x) − Fn(0) + F(0)
∣∣]≤ Cδβ.(2.5)

Then any a random sequence R
m  yn

P→ 0 that satisfies Fn(yn) ≤ Fn(0) also
satisfies n1/(2α−2β)yn = OP (1).

As a first step, the following generalization of van der Vaart ((1998), Corol-
lary 5.53, only treating the case r = 2) gives a bound for the scaling rate in the
general CLT, so that also in case of r ≥ 2, n1/(2r−2)xn = Op(1).

COROLLARY 2.10. Under Assumptions 2.2, 2.3 and 2.4, as well as Assump-
tions 2.5 or 2.6,

n1/(2r−2)xn = OP (1).

PROOF. By Assumption 2.2 and definition, xn
P→ 0 with Fn(xn) ≤ Fn(0); cf.

(2.3). Hence, Lemma 2.9 yields the assertion, because for α = r , (2.4) follows at
once from (2.1) or from (2.2), and under Assumption 2.4, (2.5), for β = 1 follows
word by word from the proof of van der Vaart ((1998), Corollary 5.53). �

As the second step, the following theorem, which is a generalization and adap-
tion of van der Vaart ((1998), Theorem 5.23), shows that under Assumption 2.6
the above bound gives the exact scaling rate, including the explicit limiting distri-
bution.

THEOREM 2.11 (General CLT for generalized Fréchet means). Under As-
sumptions 2.2, 2.3, 2.4 and 2.6, we have

n1/2((Rxn)1
∣∣(Rxn)1

∣∣r−2
, . . . , (Rxn)m

∣∣(Rxn)m
∣∣r−2)T

D→ N
(

0,
1

r2 T −1 Cov
[
grad |x=0ρ(x,X)

]
T −1

)
with T = diag(T1, . . . , Tm). In particular for every coordinate j = 1, . . . ,m,

n
1

2r−2
(
RT xn

)
j

D→ Hj ,
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where (H1, . . . ,Hm) is a random vector such that (H1|H1|r−2, . . . ,Hm|Hm|r−2)

has the above multivariate Gaussian limiting distribution.

PROOF. For z ∈ U and 2(r − 1) = 1/s, let us abbreviate

τn(z,X) := ns(ρ(zn−s,X
)− ρ(0,X)

)− zT ρ̇0(X),

Gn := n1/2

(
1

n

n∑
j=1

ρ̇0(Xj ) −E
[
ρ̇0(X)

])
,

where we set ρ(zn−s,X) = ρ(0,X) if zn−s /∈ U . Then, due to Assumptions 2.4
and 2.6, and 1/2 + s − sr = 0,

n1/2

(
1

n

n∑
j=1

(
τn(z,Xj )

)−E
[
τn(z,X)

])

= n1/2+s(Fn

(
zn−s)− Fn(0) − F

(
zn−s)+ F(0)

)− zT Gn

= n1/2+s(Fn

(
zn−s)− Fn(0)

)− m∑
j=1

Tj

∣∣(Rz)j
∣∣r − zT Gn + o

(‖z‖r)
is a sequence of stochastic processes, indexed in z ∈ U , with zero expectation
and variance converging to zero. By argument from the proof of van der Vaart
((1998), Lemma 19.31), due to Assumption 2.4, z can be replaced with any random
sequence zn = Op(1) (cf. also the proof of van der Vaart (1998), Lemma 5.23) for
r = 2, yielding

n1/2+s(Fn

(
znn

−s)− Fn(0)
)= m∑

j=1

Tj

∣∣(Rzn)j
∣∣r + zT

n Gn + oP (1).(2.6)

By Corollary 2.10, zn = xnn
s is a valid choice in equation (2.6). Comparison with

any other zn = OP (1), because μn is a minimizer for F̃n and Fn(xn) deviates only
up to op(1) from F̃n(μn), due to (2.3), reveals

n1/2+s(Fn(xn) − Fn(0)
)≤ n1/2+s(Fn

(
znn

−s)− Fn(0)
)+ oP (1).

This asserts that Rxnn
s is a minimizer, up to oP (1), of the right-hand side of (2.6),

that is, of

f : w 
→ f (w) :=
m∑

j=1

Tj

∣∣(w)j
∣∣r + wT RGn.

This function, however, has a unique minimizer, given on the component level
(j = 1, . . . ,m) by

rTj sign
(
(wn)j

)∣∣(wn)j
∣∣r−1 = −(RGn)j that is, (wn)j

∣∣(wn)j
∣∣r−2 = −(RGn)j

rTj

,
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yielding

√
n(Rxn)j

∣∣(Rxn)j
∣∣r−2 = −(RGn)j

rTj

+ oP (1).

Now the classical CLT gives the first assertion. The second also follows from
the above display, since for z = (Rxn)j and H = −(RGn)j/rTj , the equation√

n sign(z)|z|r−1 = H implies sign(z) = sign(H), and hence

n
1

2r−2 z = n
1

2r−2 sign(z)|z| = sign(H)|H | 1
r−1 . �

REMARK 2.12. The above arguments rely among others on the fact that due
to Assumption 2.4, a specific convergence, different from (1.2), that can be easily
verified for empirical processes indexed in a deterministic bounded variable, is also
valid if the index varies randomly, bounded in probability. This can be weakened
to the requirement, that the function class ρ(x, ·) possesses the Donsker property;
cf. van der Vaart ((1998), Chapter 19).

3. Smeariness. Recall from Huckemann (2015) that a sequence of random

vectors Xn is kth order smeary if n
1

2(k+1) Xn has a nontrivial limiting distribution
as n → ∞.

With this notion, the classical central limit theorem in particular asserts for ran-
dom vectors with existing second moments that the fluctuation of sample means
around the population mean is 0th order smeary, also called nonsmeary.

It has been shown in Hotz and Huckemann (2015) that the fluctuation of ran-
dom directions on the circle of sample means around the population mean may
feature smeariness of any given positive integer order. It has been unknown to date,
however, whether the phenomenon of smeariness extends to higher dimensions, in
particular, to positive curvature.

To this end, we now make the concept of smeariness on manifolds precise.

DEFINITION 3.1. Let (�,A,P) be a probability space, X : � → R
m a ran-

dom vector and k > −1. Then a sequence of Borel measurable mappings Xn :
�n → R

m (n ∈ N) with �n ∈ A, P(�n) → 1 (n → ∞) is k-smeary with limiting
distribution of X if

P
{
n

1
2(k+1) Xn ∈ B|�n

}→ P{X ∈ B} as n → ∞ for all Borel sets B ⊂ R
m.

In this case, we write n
1

2(k+1) Xn
D→ X.

Note that −1 < k-smeariness implies that P{Xn ∈ B|�n} → 10∈B for all Borel

B ⊂ R
m. As usual, we abbreviate this with Xn

P→ 0.
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LEMMA 3.2. Let Xn : �n → R
m be Borel measurable with P(�n) → 1 and

Xn
P→ 0, consider a continuously differentiable local bijection � : U → V pre-

serving the origin 0 ∈ U,V open ⊂ R
m, set Yn = �(Xn) : �n ∩ {Xn ∈ U} → R

m

and let k > −1. Then

Xn is k-smeary ⇔ Yn is k-smeary.

In particular, if X has the limiting distribution of n
1

2(k+1) Xn, then D�(0)X has

the limiting distribution of n
1

2(k+1) Yn. Here, D�(x) denotes the differential of � at
x ∈ U and det(D�(0)) �= 0 due to invertibility of �.

PROOF. The implication “⇒” is a direct consequence of a Taylor expansion

and the continuity theorem with a suitable point X̃n
P→ 0 between the origin and

Xn as follows:

P
{
n

1
2(k+1) Yn ∈ B|�n ∩ {Xn ∈ U}}

= P
{
n

1
2(k+1) D�(X̃n)Xn ∈ B|�n ∩ {Xn ∈ U}}

→ P
{
D�(0)X ∈ B

}
because P{Xn ∈ U} → 1 due to Xn

P→ 0.
Similarly, the implication “⇐” follows. Suppose that Y has the limiting distri-

bution of n
1

2(k+1) Yn. Then

P
{
n

1
2(k+1) Xn ∈ B|�n

}
= P

{
n

1
2(k+1) D�(X̃n)

−1Yn ∈ B|�n ∩ {Xn ∈ U}}
+ P

{
n

1
2(k+1) Xn ∈ B|�n ∩ {Xn /∈ U}}

→ P
{
D�(0)−1Y ∈ B

}
,

again due to the hypothesis Xn
P→ 0. �

In consequence of Lemma 3.2, we have the following general definition.

DEFINITION 3.3. A sequence μn
P→ μ of random variables on an m-

dimensional manifold M is k-smeary if in one—and hence in every—continuously
differentiable chart φ−1 : Ũ → R

m around μ ∈ Ũ ⊂ M the sequence of vectors
φ−1(μn) − φ−1(μ) : {μn ∈ Ũ} →R

m is k-smeary.

REMARK 3.4. In particular, the order of smeariness is independent of the
chart chosen.
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4. An example of two-smeariness on spheres.

4.1. Setup. Consider a random variable X distributed on the m-dimensional
unit sphere Sm (m ≥ 2) that is uniformly distributed on the lower half-sphere Lm =
{q ∈ S

m : q2 ≤ 0} with total mass 0 < α < 1 and assuming the north pole μ =
(0,1,0, . . . ,0)T with probability 1 − α. Then we have the Fréchet function

F̃ : Sm → [0,∞), p 
→
∫
Sm

d(p, q)2 dPX(q)

involving the squared spherical distance d(p, q)2 = arccos〈p,q〉2 based on the
standard inner product 〈·, ·〉 of Rm+1. Every minimizer p∗ ∈ S

m of F is called an
intrinsic Fréchet population mean of X.

With the volume of Sm given by

vm = vol(Sm) = 2π
m+1

2


(m+1
2 )

define

γm = vm+1

2vm

=
√

π

2


(m+1
2 )


(m+2
2 )

.

Moreover, we have the exponential chart centered at μ ∈ S
m with inverse

exp−1
μ (p) = (e1, e3, . . . , em+1)

T (p − 〈p,μ〉μ) arccos〈p,μ〉
‖p − 〈p,μ〉μ‖ = x ∈R

m,

where e1, . . . , em+1 are the standard unit column vectors in R
m+1. Note that exp−1

μ

has continuous derivatives of any order in Ũ = S
m \ {−μ} and recall that e2 = μ.

4.2. Derivatives of the Fréchet function.

LEMMA 4.1. With the above notation, the function F = F̃ ◦ expμ has deriva-
tives of any order for x ∈ exp−1

μ (Ũ) with ‖x‖ < π/2. For α = 1/(1+γm), the north
pole μ gives the unique intrinsic Fréchet mean with Hess |x=0F ◦ expμ(x) = 0.
Moreover, for any choice of 0 < α < 1,

∂i∂k∂l|x=0F = 0,

∂i∂k∂l∂s |x=0F = cmδi,k,l,s

for every 1 ≤ i, k, l, s ≤ m with the constant cm = 2γm

1+γm

m−1
m+2 > 0.
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PROOF. For convenience, we choose polar coordinates θ1, . . . , θm−1 ∈ [−π/2,

π/2] and φ ∈ [−π,π) in the nonstandard way

q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

q1
q2
...

qm−1
qm

qm+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
(

m−1∏
j=1

cos θj

)
cosφ

−
(

m−1∏
j=1

cos θj

)
sinφ

...

− cos θ1 cos θ2 sin θ3
− cos θ1 sin θ2

sin θ1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

such that the north pole μ has coordinates (0, . . . ,0,−π/2). In fact, we have cho-
sen these coordinates so that w.l.o.g. we may assume that the arbitrary but fixed
point p ∈ S

m has coordinates (0,0, . . . ,0,−π/2 + δ) with suitable δ ∈ [0, π]. Set-
ting � = [−π/2, π/2], with the function

g : �m−1 → [0,1], θ = (θ1, . . . , θm−1) 
→
m−1∏
j=1

cosm−j θj

we have the spherical volume element g(θ) dθ dφ. Additionally, defining

h(θ) =
m−1∏
j=1

cos θj ,

we have that

F̃ (p) = F̃ (μ) + 2α

vm

(
C+(δ) − C−(δ)

)+ δ2(1 − α) =: G(δ)

with the two “crescent” integrals

C+(δ) =
∫
�m−1

dθg(θ)

∫ 0

−δ
d(μ, q)2dφ

=
∫
�m−1

dθg(θ)

∫ δ

0

(
arccos

(
h(θ) sinφ

))
)2 dφ,

C−(δ) =
∫
�m−1

dθg(θ)

∫ π

π−δ
d(μ, q)2dφ

=
∫
�m−1

dθg(θ)

∫ δ

0

(
arccos

(−h(θ) sinφ
))

)2 dφ

(cf. Figure 2), because the spherical measure of Lm is vm/2.



3374 B. ELTZNER AND S. F. HUCKEMANN

FIG. 2. Depicting the two crescents C+ = C+(δ) and C− = C−(δ) for δ = arccos〈μ,μn〉 on S
m

for m = 2 with north pole μ and nearby sample Fréchet mean μn. .

Since for a ∈ [0,1],(
arccos(a)

)2 − (arccos(−a)
)2

= (
arccos(a) + arccos(−a)

)(
arccos(a) − arccos(−a)

)
= 2π

(
π

2
− arccos(a)

)
= −2π arcsin(a),

which has arbitrary derivatives if −1 < a < 1, we have that

F̃ ◦ expμ(x) = G(δ)

= G(0) − 4πα

vm

∫
�m−1

dθg(θ)

∫ δ

0
arcsin

(
h(θ) sinφ

)
dφ(4.1)

+ δ2(1 − α)

for every x ∈ exp−1
μ (Ũ) with ‖x‖ = δ, yielding the first assertion of the Lemma.

For the second assertion, we use the Taylor expansion

arcsin
(
h(θ) sinφ

)= φh(θ) + φ3

6

(
h(θ)3)− h(θ)) + O

(
φ5)(4.2)

and compute for k = 0,1, . . . ,∫
�m−1

g(θ)h(θ)k dθ

=
∫
�m−1

m−1∏
j=1

(
cosm−j+k θj dθj

)
(4.3)
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=
∫
�m+k−1

m+k−1∏
j=1

(
cosm+k−j θj dθj

)/∫
�k

k∏
j=1

(
cosj θj dθj

)
= vm+k

vk+1

to obtain, in conjunction with (4.1),

G(δ) = G(0) + δ2
(

1 − α

(
1 + vm+1

2vm

))
+ δ4

24

αvm+1

vm

m − 1

m + 2
+ · · · ,

which yields that for any choice of α ∈ [0,1] we have G′(0) = 0 = G′′′(0), as
well as G′′(0) ≥ 0 for 1 ≥ α(1 + γm) with equality for α = 1/(1 + γm). Since
G′′′′(0) = αvm+1

vm

m−1
m+2 = cm > 0 for all α ∈ (0,1), this guarantees a local minimum

for α = 1/(1 + γm).
In order to see that μ gives the global minimum in case of α = 1/(1 + vm+1

2vm
) we

consider the derivatives

G′(δ) = −4πα

vm

∫
�m−1

g(θ) arcsin
(
h(θ) sin δ

)
dθ + 2δ(1 − α),

G′′(δ) = −4πα

vm

∫
�m−1

g(θ)h(θ)
cos δ√

1 − h(θ)2 sin2 δ

dθ + 2(1 − α)

(4.4)

≥ −4πα

vm

∫
�m−1

g(θ)h(θ) dθ + 2(1 − α)

= 2 − α

(
2 + vm+1

vm

)
= 0,

where the inequality is strict for δ �= 0, π , that is, p �= ±μ, due to 0 < h(θ) < 1 for
all θ ∈ (−π/2, π/2)m−1. Hence we infer that G′(δ) is strictly increasing in δ from
G′(0) = 0, yielding that there is no stationary point for F other than p = μ. �

REMARK 4.2.

(i) Note that the result of Bhattacharya and Lin ((2017), Proposition 3.1) is not
applicable to our setup as they have shown that on an arbitrary dimensional sphere
the Fréchet function is twice differentiable, if the random direction has a density
that is twice differentiable w.r.t. spherical measure. For the theorem to follow, we
require fourth derivatives.

(ii) Note that O(φ5) in the Taylor expansion (4.2) stands for

∞∑
j=2

φ2j+1
j∑

r=0

a2r+1,2j+1h(θ)2r+1
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with suitable coefficients a2r+1,2j+1 ∈ R. Moreover, due to (4.3) we have

1

vm

∫
�m−1

g(θ)h(θ)2r+1 dθ = 1

v2r+2

vm+2r+1

vm

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

v2

vm+1

vm

for r = 0

1

v2

vm+1

vm

r∏
k=1

2k

m + 2k − 1
for r > 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= O

(
1√
m

)
,

due to Stirling’s formula 
(z) =
√

2π
z

( z
e
)z(1 + O(1

z
)). In consequence (cf. (4.4)),

G(k)(0) = 0 for odd k ∈N and G(k)(0) = O( 1√
m

) for even 4 ≤ k ∈ N, as m → ∞.

4.3. A two-smeary central limit theorem. For a sample X1, . . . ,Xn on S
m,

recall the empirical Fréchet function

F̃n : Sm → [0,∞), p 
→ 1

n

n∑
j=1

d(p,Xj )
2,

where every minimizer μn ∈ S
m of F̃n is called an intrinsic Fréchet sample mean

or short just a sample mean.

THEOREM 4.3. Let X1, . . . ,Xn be a sample from X as introduced in the setup
Section 4.1 with α = 1/(1+γm). Then every measurable selection of sample means

μn ∈ argmin
p∈Sm

F̃n(p)

is two-smeary. More precisely, with the exponential chart expμ at the north pole,
there is a full rank m × m matrix � such that

√
n
(
exp−1

μ (μn)
)3 → N (0,�),

where the third power is taken componentwise.

PROOF. From Lemma 4.1, we infer that μ is the unique intrinsic Fréchet
mean, and hence by the strong law of Bhattacharya and Patrangenaru ((2003), The-
orem 2.3) we have that μn → μ almost surely yielding that Assumption 2.2 holds.
Since S

m is an analytic Riemannian manifold also, Assumption 2.3 holds for arbi-
trary r ∈ N. With the exponential chart exp−1

μ : Ũ → R
m, we have exp−1

μ (μ) = 0

and we set exp−1
μ (μn) = Zn on {μn �= −μ} with P{μn �= −μ} → 1 and Zn

a.s.→ 0.
Further, due to Lemma 4.4, the family of functions

ρ(z,X) = d
(
expμ(z),X

)2
, z ∈ U
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has a.s. derivatives gradz ρ(z,X), which are bounded, and on a compact set, are
square integrable, so that Assumption 2.4 holds.

Recalling the function G(δ) from the proof of Lemma 4.1 with its Taylor ex-
pansion, we have with δ = d(expμ(z),μ) = ‖z‖ that

E
[
gz(X)

]= G(δ) = G(0) − δ4 cm

24
+ · · ·

and in consequence, Assumption 2.6 holds with r = 4, Thus, Theorem 2.11 is
applicable.

In particular, for the covariance we have

� = 36

c2
m

Cov
[
gradz |z=0 d

(
expμ(z),X

)2]
,

which has full rank because in the exponential chart, rotational symmetry is pre-
served. This yields the assertion. �

LEMMA 4.4. For x ∈ S
m and z ∈ R

m \ {exp−1
μ (−x)}, ‖z‖ < π ,

gradz

(
d
(
expμ(z), x

)2)
is well defined and has bounded directional limits as z → exp−1

μ (−x) or ‖z‖ → π .

PROOF. Recalling that d(expμ(z), x)2 = acos〈x, expμ(z)〉2, we have

gradz

(
d
(
expμ(z), x

)2)= −2
gradz〈x, expμ(z)〉√
1 − 〈x, expμ(z)〉2

acos
〈
x, expμ(z)

〉
.(4.5)

In case of x �= 0, this is bounded for ‖z‖ → π . As we now show boundedness of
(4.5) also for z → exp−1

μ (−x) for arbitrary x ∈ S
m, also the boundedness in case

of x = 0 and ‖z‖ → π follows at once.
To this end, let z be near exp−1

μ (−x) such that z = exp−1
μ (−x) + w with w =

(w1, . . . ,wm) ∈ R
m small. Then the asserted boundedness of (4.5) follows from〈

x, expμ(z)
〉= 〈

x, expμ

(
exp−1

μ (−x) + w
)〉

= −1 + wT Bw +O
(‖w‖3)(4.6)

with a symmetric matrix B , because then

gradz〈x, expμ(z)〉√
1 − 〈x, expμ(z)〉2

= 2Bw +O(w2)√
2wT Bw +O(w3)

,

which is bounded for w → 0 with any (possibly vanishing) symmetric B .
Finally, in order to see that the gradient w.r.t. w of the left-hand side of (4.6)

vanishes at w = 0, w.l.o.g. assume that exp−1
μ (x) = (θ,0, . . . ,0)T for some θ ∈
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[0, π], such that x = (sin θ, cos θ,0, . . . ,0)T and exp−1
μ (−x) = (π −θ,0, . . . ,0)T .

Moreover, verify that

expμ(z) =
(−π + θ + w1

‖z‖ sin‖z‖, cos‖z‖,∗, . . . ,∗
)
,

which, in conjunction with ‖z‖ =
√

(π − θ)2 − 2w1(π − θ) + ‖w‖2, and hence,
gradw |w=0‖z‖ = −e1, yields that

gradw

〈
x, expμ

(
exp−1

μ (−x) + w
)〉

=
(
(−π + θ + w1) sin θ

(
cos‖z‖

‖z‖ − sin‖z‖
‖z‖2

)
− cos θ sin‖z‖

)
gradw ‖z‖

+ sin θ
sin‖z‖
‖z‖ e1,

giving

gradw |w=0
〈
x, expμ

(
exp−1

μ (−x) + w
)〉

= (
sin θ

(
sinc(π − θ) − sinc(π − θ) − cos(π − θ)

)− cos θ sin(π − θ)
)
e1

= − sinπe1 = 0,

which proves the claim (4.6). �

5. High dimension low sample size effects near smeariness. We illustrate
the relevance of our result by simulations of the variance V = F̃ (μ) (the Fréchet
function at the point mass at the north pole μ) from the distributions introduced
above in the setup Section 4.1, which are parametrized in α = αcrit + β ∈ [0,1],
on S

m, for dimensions m = 2, 10 and 100. Here, the critical value αcrit = 1
1+γm

is
0.56, 0.72 and 0.89, respectively.

We consider sample sizes ranging from 300 to 3 · 105 data points. For every
sample size, we draw 1000 samples, determine the spherical mean for each sam-
ple and then determine their empirical Fréchet function at μ, that is, the sum of
squared distances of the means from the north pole. As we have a nonunique cir-
cular minimum of the Fréchet function for β > 0, we expect in this case that the
variance V approaches a finite value, namely the squared radius of the circular
mean set. For β ≤ 0, we have a unique minimum, where for β = 0 we expect a

slow decay of V with rate approaching n− 1
3 , due to Theorem 4.3, and for β < 0

we expect the decay rate to approach n−1.
The results of our simulation are displayed in Figure 3. The asymptotic rates

are clearly in agreement with our considerations based on the asymptotic theory.

Strikingly, however, for β < 0 very close to 0, the decay rate stays close to n− 1
3

until very large sample sizes and only then settles into the asymptotic rate of n−1.
This illustrates that the slow convergence to the mean is an issue, which does not
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FIG. 3. Simulated variances V times n for different values of β for dimensions m = 2, 10 and 100.

Black lines V ∝ n−1 (solid) and V ∝ n− 1
3 (dashed) for reference.

only plague the distribution with β = 0 but also sufficiently adjacent distributions
for finite sample size.

Even more strikingly, Figure 3 shows that this phenomenon increases with di-
mension m. Indeed, due to Remark 4.2(ii), in the limit m → ∞, all derivatives of G

vanish with a uniform rate, so that we approach a situation of infinite smeariness.

Acknowledgments. The authors thank Axel Munk for pointing to van der
Vaart (1998) and John Kent for bringing the turtles data set in Figure 1 to our
attention.
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