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Abstract: Ratios of medians or other suitable quantiles of two distribu-
tions are widely used in medical research to compare treatment and control
groups or in economics to compare various economic variables when re-
peated cross-sectional data are available. Inspired by the so-called growth
incidence curves introduced in poverty research, we argue that the ratio
of quantile functions is a more appropriate and informative tool to com-
pare two distributions. We present an estimator for the ratio of quantile
functions and develop corresponding simultaneous confidence bands, which
allow to assess significance of certain features of the quantile functions ratio.
Derived simultaneous confidence bands rely on the asymptotic distribution
of the quantile functions ratio and do not require re-sampling techniques.
The performance of the simultaneous confidence bands is demonstrated in
simulations. Analysis of expenditure data from Uganda in years 1999, 2002
and 2005 illustrates the relevance of our approach.
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1. Introduction

Let X7 and X5 be two independent random variables with cumulative distribu-
tion functions F} and F5, respectively. The corresponding quantile functions are

given by Q,(p) = Fj_l(p) = inf{x : F;(z) > p}, j = 1, 2. In many applications it
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is of interest to compare quantiles of two random variables at a given p € (0, 1),
which can be done by considering
_ Qa(p)

9(p) = Q1(p)’

For example, if X7 is income in some population at time ¢; and X5 is income at
time to > t1, then g(p) reports the proportion by which the p-quantile of income
changed from ¢; to te, with g(p) > 1 indicating income growth. In medical
research one can compare quantiles of some measures obtained in treatment and
control groups and then g(p) shows the effect of the treatment on the p-quantile.
The random variables X7, X5 do not need to be continuous for the evaluation of
quantile ratios. However, we will assume continuity when we analyze asymptotic
distributions.

It is quite common in the literature to consider the quantile treatment effect
as the absolute difference between the two quantiles Q2(p) — Q1(p), which con-
tains important information for many applications. If, however, the observed
quantity experiences exponential growth rather than linear growth between the
treatment groups or from one period to the next, the absolute difference be-
tween the quantiles will give a wrong impression about the treatment effect.
Examples for exponential growth in this context are growth of cancers, income,
or expenditures. In these applications the ratio of quantiles is an important and
popular analytic tool to understand the properties of the growth process.

In some applications g(p) is either considered and interpreted at a fixed p €
(0,1) or the curve g(p), p € (0,1) is reduced to some number. For example,
Cheng and Wu (2010) as well as Wu (2010) studied the effect of cancer treatment
measured by the ratio of the cancer volumes in the treatment and the control
group, the so-called T'/C-ratio. The T'/C-ratio can be formed for the mean
cancer volume or for a certain quantile of the volume in the treatment and the
control group, but typically is not considered as a function of p. Dominici et al.
(2005) and Dominici and Zeger (2005) used the whole curve g(p), p € (0,1) but
only to calculate the mean difference

Azmxwﬂmaaé@@—@@@:AQmm—mwm

which is known as the average treatment effect (ATE). To obtain A, log[g(p)]
is estimated by a smooth function. This approach has been applied to estimate
the difference in medical expenditures between persons suffering from diseases
attributable to smoking and persons without these diseases.

However, it provides clearly more information to view g(p) as a function
of p. For example, considering the T/C ratio for all quantiles could identify
individuals that benefit most and individuals that benefit little from treatment.
To the best of our knowledge, considering ¢g(p) as a function of p has been done
only in the poverty research context. In particular, Ravallion and Chen (2003)
used the curve

_ Q2(p) m_ _ m m—
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for the analysis of income distributions in developing countries at times t; < to
and called G(p) the growth incidence curve (GIC). Poverty reduction can be
understood as increasing the incomes of the poor. In this sense poverty is reduced
from period t; to ts, if G(p) takes positive values for all small quantiles up to
the quantile where the poverty line was located in the first period. Such growth
that increases the incomes of poor quantiles has been called “weak absolute”
pro-poor growth, i.e. growth that is accompanied by absolute poverty reduction
without making any statement about the distributional pattern of growth, see
Klasen (2008). On the other hand, if G(p) has a negative slope, growth was
pro-poor in the relative sense, i.e. the poor benefited (proportionately) more
from growth than the non-poor. This means that such growth episodes led to a
decrease in inequality and relative poverty. For a detailed discussion of different
notions of pro-poor growth we refer to Ravallion (2004) and Klasen (2008).
Growth incidence curves were also applied to non-income data in Grosse et al.
(2008).

Hence, considering the whole curves g(p) or G(p), p € (0,1) provides more
informative comparison of two distributions and can be applied not only in
the poverty research context. The goal of this work is to derive the asymptotic
distribution of an estimator of g(p) and build simultaneous confidence bands for
g(p). Estimation and inference for G(p) is then straightforward.

Dominici et al. (2005) propose an estimator for log[g(p)] using smoothing
splines. Venturini et al. (2015) extend the work by Dominici et al. (2005), em-
ploying a Bayesian approach to get a smooth estimator of h[g(p)], for some
known monotone differentiable function h. A much simpler approach, which
we pursue, would be to replace the unknown Q;(p) in g(p) by some estimator
@j (p), 7 = 1,2 to get g(p). There are several quantile estimators available (see
e.g. Harrell and Davis, 1982; Kaigh and Lachenbruch, 1982; Cheng, 1995a,b).
In this work we employ the classical empirical quantile function.

Simultaneous inference about the curve g(p), p € (0,1) is crucial in applica-
tions, but has not been considered so far, to the best of our knowledge. Dominici
et al. (2005) rather focused on estimation of the average treatment effect with
the help of log[g(p)] and do not discuss inference about g(p). Cheng and Wu
(2010) consider estimation of g(p) at a given p € (0,1) and build a confidence
interval for g(p) using asymptotic normality arguments and several estimators
for the variance of g(p). The Worldbank Poverty Analysis Toolkit (can be found
at http://go.worldbank.org/YFIPVNXJY0) provides also only point-wise con-
fidence intervals for growth incidence curves, similar in spirit to that of Cheng
and Wu (2010). More specifically, the confidence statement in this toolkit is con-
structed for a discretization of (0,1) by 0 < p; < pa < ... < pr < 1. For every
pi, t = 1,..., k expectation and variance for some estimator CAT'(pz) of G(p;) are
estimated with a bootstrap. Critical values ¢; and ¢; are then taken from the
corresponding t-distribution for some level a.. This implicitly assumes that @(pl)
is asymptotically normal. The resulting confidence statement has the form

P{c, <G(pi) <&} =1—0q, foreachi=1,2,...,k,
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where « € (0, 1) is some pre-specified confidence level. Obviously, these confi-
dence intervals provide inference only at a given p;. For example, if we would like
to test significance of the poverty reduction (or treatment effect) at the median,
it is enough to build a point-wise confidence interval for G(0.5) = [¢(0.5)]™ — 1
(or for g(0.5)) and check if it includes zero (or one).

However, if pro-poorness of growth is tested, a confidence statement about
G(p) for all p below the poverty line is needed. More precisely, growth is pro-
poor in the weak absolute sense if G(p) > 0 for all p € (0, ppoy], Where ppoy is
the quantile of the poverty line in the year ¢;. Hence, simultaneous confidence
bands should be considered. The goal is to find ¢(p) and ¢(p) such that

P{c(p) < G(p) <¢(p) forall pe (0,1)} =1-a.

The difference to the point-wise intervals is that ¢(p) < G(p) < ¢(p) holds not
only separately for every p, but simultaneously for all p € (0, 1).

The problem is connected to simultaneous inference for nonparametric quan-
tile treatment effects of the log-transformed observations as in Doksum (1974)
and Qu and Yoon (2015). However, our method follows a different strategy and
is computationally simpler than Qu and Yoon (2015). We explain the connection
in Section 2.1.

In the quantile treatment effect literature often additional covariates are in-
troduced and quantiles are estimated conditional on these covariates. If the
covariates are assumed to be constant, confidence bands for these models can
be modified to confidence bands for our setting. In contrast to our approach, the
methods for quantile treatment effects rely on smoothing and on simulations of
Gaussian processes, or resampling.

We propose in this paper a construction for simultaneous confidence bands
for g(p) or G(p) that is computationally simple and fast and that does not need
resampling or simulations of a Gaussian process. Our construction is motivated
by an analysis of the asymptotic distribution of the function g(p). This involves
the theory of empirical processes which goes back to Glivenko (1933), Cantelli
(1933), Donsker (1952), and Komlés et al. (1975). Our analysis builds on results
for empirical quantile processes and its simultaneous confidence bands devel-
oped in Csorgd and Révész (1978), Csorgd and Révész (1984), Csorgd (1983),
and Einmahl and Mason (1988). The main benefits of this approach are its com-
putational simplicity, that it is easy to implement, and that it provides reliable
results.

The paper is organized as follows. In Section 2 we introduce a simple sample
counterpart estimator and analyse its asymptotic distribution. This estimator
is also used by the World Bank Toolkit. The results about the asymptotic dis-
tribution motivates two constructions for asymptotic simultaneous confidence
bands presented in Section 3. Section 4 evaluates the small sample properties
of our confidence bands by Monte Carlo simulations. Expenditure data from
Uganda are analysed with our confidence bands in Section 5 before we conclude
in Section 7.
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2. Estimation and asymptotic distribution

Throughout this section we assume that we have the following i.i.d. samples
X1,1,X1,2... X1 n, for X5 and Xg1,X22... X2, for Xo. Furthermore, we as-
sume that the samples are stochastically independent of each other. This as-
sumption is justified if the data are collected in two independent groups (e.g.
treatment and control) or in repeated cross-sections. Note that there is a re-
lated concept of non-anonymous growth incidence curves proposed for panel
data in Grimm (2007) and Bourguignon (2011). Non-anonymous growth inci-
dence curves are built based on two dependent samples and are not treated in
this work.

2.1. Quantile ratio estimator

We start by presenting a simple sample estimator for g(p) and G(p). For j = 1,2
we denote the k-th order statistic of the sample X1, X;2... X, by Xj 4.
The sample quantile function is the inverse of the right continuous empirical
distribution function, which is known to be

~ ~ k-1 k .
Qj(p):Fj l(p):Xj’(k), for <p< _ k=1,2,...,n;, 7=1,2. (1)
j

n;j

We now define estimators of g(p) and G(p) as

ﬁ@égiwd@@@@WLmEQH (@)

It is well-known that the quantile function and its empirical version are
equivariant under strictly monotone transformations. Let us denote by F; and
Q;=F j_l the cumulative distribution and quantile functions of X; = log(X}),

j = 1,2, respectively. Also, let @j be the empirical quantile function of the
log-transformed sample X;; = log(X;;), ¢ = 1,...,n;, j = 1,2. Then, Q; =
log(Q;), as well as Q; =1log(Q;), 7 = 1,2. Consequently,
log (9(p)) = Q2(p) — Q1(p), log ((p)) = Q2(p) — Q1 (p)
log (G(p) +1) = m(Qa(p) - Qu(p)), log (G(p) +1) =m(Ds(p) — Q1(p))
®3)
Hence, a simultaneous confidence band for g(p) can be obtained observing that

P{Q(p> < g(p) < E(p),Vp € (0’ 1)}
= P {log[c(p)] < Qa2(p) — Qi1(p) < log[e(p)],Vp € (0,1)}.

Note that the difference of two quantile functions A(p) = Q2(p)—Q1(p) is known
as quantile treatment effect (QTE), sometimes also named the percentile-specific
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effect between two populations, see Dominici et al. (2006). A construction of
uniform confidence bands for the QTE in a more complex setting has been
proposed by (Qu and Yoon, 2015). The problem can also be understood in
terms of quantile regression with a binary treatment indicator as covariate, see
Koenker (2005) or Koenker and Machado (1999).

2.2. Point-wise asymptotic distribution

We first characterize the asymptotic distribution of G(p) at a fixed p € (0,1).
The following assumption usually holds for data on income, expenditure, or
cancer volume, etc. It is a rather weak assumption on the observations which is
necessary to determine the variance of the empirical quantile function.

Assumption 1. Two independent random variables X; > 0 a.s. and X9 >
0 a.s. with finite second moments and cumulative distribution functions Fy and
Fy are given together with random samples X1, Xj2,..., Xjn,, 7 = 1,2. The
log-transformed X; = log(X;) has the cumulative distribution function F; and

density f; = .7-"]-,, Jj =1,2. The corresponding quantile function Q;(p) = fjﬂ_l(p)

has the quantile density q;(p) = Q;(p) = l/fj(Qj(p)), pe(0,1),j=1,2.

Theorem 1. Let Assumption 1 hold and p € (0,1) be fixred. Moreover, assume
F1 and Fa are continuously differentiable at some x1 and x2, respectively, such
that ]:1(.2?1) = .7:2(33‘2) =p and fl (371) > 0, fg(l‘g) > 0.

(i) For min{ny,ns} — oo the estimator CA;(p) +1=[g(p)]™ is asymptotically
log-normal with the parameters u(p) = mloglg(p)] and

o) = \/mzp(1 (1 Y,

ny %)

(i) If in addition F1 and Fo are continuously differentiable at some Z1 and
Zq, respectively, such that F1(Z1) = Fa(Z2) = p, for some 0 < p <
p < 1, and fi1(Z1) > 0, fo(Z2) > 0, then the asymptotic distribution
of (@(p) +1, @(ﬁ) + 1) is bivariate log-normal with the parameters p(p),

w(p), o(p), o*(p), and

o2(p,p) = m2p(1 — p) <Q1(p)(h(]5) n @(M%(ﬁ)) _

ni n2

Corollary 1. Under the assumptions of Theorem 1 we have asymptotic nor-
mality for G(p) + 1 = [g(p)]™ in the sense that
G 1- m
(p) + - @™ o\
l9(p)]™a(p)

converges in distribution to a standard normal random variable for any fixed
p € (0,1) when min{n;,ng} — oo.

(0,1)
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The World Bank Toolkit and Cheng and Wu (2010) implicitly employ the
asymptotic normality of G(p) and §(p) to build point-wise confidence intervals,
but use different variance estimators, based either on bootstrap or on certain
approximations. To the best of our knowledge, the result of Corollary 1 is new.
Note also that o(p) depends on unknown g¢;(p), j = 1,2, which have to be
consistently estimated in practice.

Theorem 1 and Corollary 1 provide two different ways for deriving point-wise
confidence statements about G(p) (or about g(p) by setting m = 1). We can
approximate the distribution of G(p) + 1 = [§(p)]™ for a fixed p € (0,1) either
by a log-normal or by a normal distribution. However, the log-normal approxi-
mation is preferable for positive random variables. Indeed, X; > 0 a.s., j = 1,2
implies g(p) € [0,00) for all p € (0,1). Hence, a normal approximation of the
distribution of G(p) +1 = [g(p)]™ puts probability mass outside of [0, c0). This
can cause confidence intervals to take impossible values, in particular in small
samples, and affect the actual coverage of the band. Taking a log-normal ap-
proximation helps to avoid this. We use the log-normal approximation implicitly
in our constructions of simultaneous confidence bands in Section 3.

2.3. Approximation by Brownian bridges

In the previous Section 2.2 derivation of the confidence statements about G(p)
or g(p) at one or at a finite number of points reduces to finding the limiting
distribution of Q, (p) — ol (p) at a fixed p € (0,1). To obtain confidence state-
ments about G(p) or g(p) that hold for all p € (0,1) simultaneously, we need to
find the limiting distribution of 0, (p) — @1(17), which is treated as a stochastic
process indexed in p € (0,1).

Let us define the following stochastic process

o e (i)~ Qi) Qa(p) — Qa(p)
Dunsina (p38) = [ o5 ( e ) ) pe(0,1),

where s > 0 is a fixed scaling parameter independent of ny, no needed later for
technical reasons. For the analysis of this process we need the following set of
assumptions on X; and Xs.

Assumption 2. The distribution functions F; of the log-transformed X; =
log(X;), i = 1,2 are twice differentiable on (a,b), where a = sup{x : F;(z) = 0},
b=inf{z: Fj(z) =1}, —co <a <b<ooand fj >0 on (a,b). In addition,
there exists some 0 < v < oo such that

fj/ (z)

sup Fj(z)[1 — Fj(z)] F@P

z€(a,b)

<7v, j=12 (4)

Assumption 3. For A; = limsup,. , f;j(z) < oo and B; = limsup, », fj(z) <
00, 7 = 1,2 one of the following conditions hold
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(i) min(A;, B;) >0
(i) If Aj = B; =0, then f; is non-decreasing on an interval to the right of a
and non-increasing on an interval to the left of b.

The two assumptions above are regularity conditions on the density of the
log-transformed data. By Assumption 2 the first derivative of the density must
be bounded with a bound that becomes smaller in the tails of the distribution.
Assumption 3 states that if the density has unbounded support, the tails of
the density must be monotone. Both types of regularity are needed to derive a
uniform bound on the estimation error of the empirical quantile function.

If X; and X, are log-normal, then f; is the density of a normal distribu-
tion. Hence, existence, positivity and differentiability of f; on R are trivially
fulfilled. The supremum in (4) is 1 for normally distributed random variables
independent of expectation and variance. The property in Assumption 3 is called
tail-monotonicity. For normal distributions A; = B; = 0 and Assumption 3 (ii)
obviously holds.

The following result shows that D,,, ,,(p; s) converges uniformly to a Brown-
ian bridge B(p). Recall that a Brownian bridge can be derived from a standard
Wiener process W (p) by setting B(p) = W (p) —pW (1), p € [0, 1]. In particular,
B(0)=B(1) =0, B(p) ~ N(Ovp *p2)7 and Cov{B(p), B(p)} = p(1 — p) for all
0<p<p<l

Theorem 2. Let Assumptions 1 and 2 hold and set n = min{ny,ny}. Then a
family of Brownian bridges By, n, can be defined such that for any fized s

sup | ‘Dm,m (p;8) = By na (D) =0 (n_1/2 log(n))

PE[0n,1—0n

with §, = 25 n~tloglog(n). If in addition Assumption 3 holds, a family of
Brownian bridges B, n, can be defined such that in case of Assumption 3 (i)

D [Dons9:5) = By (9)] " O (w2 og(n))

p€E(0,1

and in case of Assumption 3 (ii)

sup ‘Dnlﬂu (p; S) - Bnl,n2 (p))
p€(0,1)

ws. [O[n™?log(n)] if v <2
.5 0(n71/2[log 10g(n)]7[1og(n)}(1+e)(771)) ify >0

for arbitrary € > 0.

For example, if X, are approximately log-normal in a way that log(X;) has
the tail behavior of a normal variable, then according to Theorem 2 the process
Dy, n,(p;s) converges to a Brownian bridge simultaneously on (0,1) with the
rate O[n~'/2log(n)].
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Constructing confidence bands for g(p) or G(p) = [g(p)]"™ — 1 requires knowl-
edge of the asymptotic distribution of

~

01(p) — Oa(p) = log (§(p)) = m ™ log (G(p) +1) .

while Dy, n,(p;s) in Theorem 2 contains sO1(p)/q1(p) — Qa(p)/q2(p) instead.
Therefore, let us consider

~

N o ang Qi(p) — Qi(p) — (Qz(p) - Q2(p)>
Dn1,n2 (pa S) =2 ny + 52’/7,2 ch(p)/s T QQ(p) .

and discuss the choice of s. As a first step we simplify the situation with the
following assumption.

Assumption 4. There exists a constant s > 0 such that the quantile densities
satisfy q1(p) = sq2(p), p € (0,1).

Assumption 4 implies that X; = sX5 which is approximately true in some
applications. We will relax this assumption with Lemma 1 below. Under As-
sumption 4 we have that

: s Qi) — Qu(p) — (Qap) - 2(p)
Dnl’m (pis) = Drs.na (pis) = ny + s2ng 72(p)

and Theorem 2 can be applied to get the asymptotic distribution of él(p) —
Q5(p) and hence the simultaneous confidence bands for G(p) or g(p).
It is shown in the Appendix, that if Assumption 4 is true, then

e [ e@) e
oo Af@)2de 7 {qi(2)}~tde

()

Moreover, if the X; have distribution from the location-scale family of distribu-
tions with locations p; and scales o; < 0o, j = 1,2, then Assumption 4 implies
that s o< o1/02. This can be seen directly from (5) applying the change of vari-
able y = p; +o0j 2. Also, let éj denote the quantile function of (X; —p;)/o; and
g; the corresponding quantile density. Then, Q;(p) = u;+0;9;(p) and therefore
q;(p) = 05 Gj(p), p € (0,1), j = 1,2. In particular, Assumption 4 implies that
G1 x g2 and thus the distributions of A} and A% differ only in location and scale
parameters.

For example, if X; are both log-normally distributed with arbitrary location
parameters and scale parameters o, then log(X;) = X, j = 1,2 are normally
distributed and s = o1 /09. In applications, to check if distributions of X; and X»
differ only in the location and scale, one can inspect the QQ-plot of standardised
log-transformed data.
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If the quantile densities are not proportional, that is, Assumption 4 is not
fulfilled, we have to handle the term

*

Dy, na(038) = Day ny (D3 5)
_Q (p) —sqxp) [ ning @1(]?) — Q1(p) n Qz(p) — Qs(p)
q1(p) + 5 q2(p) \ n1+ s2ng q(p)/s q2(p) )
Lemma 1. Under Assumptions 1, 2 and 3

—1/2
. nin9
T oy - R P
n1,m2—00 &108 ny + s2ng Pe(l/n,l—l/n)| 1 2( ) 1a )’

a. q1(p) — s q2(p) v
q1(p) + s g2(p) (p(l - p))

V)

IN

. 4Y
— sup
\/i pe(l/n,1—1/n)

for allv € [0,1/2).

Note that the bound on the right hand side is always smaller or equal to
1/4/2 for every v € [0,1/2). Since q; and ¢ are usually similar functions in
applications, much smaller bounds can be expected.

3. Simultaneous confidence bands

Based on the results of the previous section, we can derive simultaneous confi-
dence bands for Qz(p) — Q1(p) = loglg(p)] = m ! log[G(p) + 1] and transform
them into simultaneous confidence bands for g(p) or G(p). Note that simulta-
neous confidence bands for the quantile treatment effect Q2(p) — Q1(p) follow
immediately. We make use of Theorem 2 and Lemma 1 from the last section, as
well as the Kolmogorov distribution

P{ sup |B(p)| < } = Y (ke W (6)

p€[0,1] k=—o00

Throughout this section we assume a confidence level o and denote the cor-
responding critical value for the Brownian bridge by ¢, such that 1 — a =
P{ Sup,epo,1) |1B(p)] < Co }- Tables for ¢, are available in Smirnov (1948) and in
many textbooks. In addition, we denote by cs an asymptotically almost sure
upper bound from Lemma 1

1/2
cs = inf log log _mn2
5 0<w<i/2-5 ny + $2ng

4v Q1(P)—SCI2(Z?)( a-n".

X — sup
V2 pei/ni-1/n) |01 () + 5 q2(p)

with some § > 0.

In the following, we present two ways of using the approximation by Brownian
bridges for the construction of simultaneous confidence bands for Qs(p) — Q1 (p).
Similar approaches for the quantile function have been explored in Csorgé and
Révész (1984).
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3.1. Confidence bands with quantile density estimation

The first approach to the construction of confidence bands relies on the following
argument

1—arP{|Dyn(p;8)| <cq, foral 0<p<1}
SIP’{’D* (p;s)‘gca—i—cs, forallO<p<1}

ni,n2

- IE”{ ‘Qz(p) - Qi(p) - (@g(p) - @1(19))‘

/ 2
< (ca +cs) 77/1";’;;2712 ql(p)/52+ QQ(p), forall0 <p< 1}.

The quantities ¢;(p), j = 1,2 are unknown and have to be estimated. Various
nonparametric methods for the estimation of ¢;(p) have been proposed, typically
based on kernel density estimation, see e.g. Csorgd et al. (1991), Jones (1992),
Cheng (1995b), Cheng and Parzen (1997), Soni et al. (2012), and Chesneau et al.
(2016). We use a kernel type estimator with second order kernel to estimate
¢;(p). The following assumption on the densities ensure that the estimator is
consistent for g;(p).

Assumption 5. The densities f;, j = 1,2 fulfill

Fi 1-F;
sup ( HE ](as)]) < 00 and sup
v (a,b) fi(x) w€(a,b)

2

Now we can get the simultaneous confidence bands for the difference of two
quantile functions.

Theorem 3. Let Assumptions 1, 2, 3 and 5 hold and let K be a second order
kernel with support in [—1/2,1/2]. For j = 1,2 set

1
-~ — h*l K Yy—=
QJ (p) n; A < hnj

Then a family of Brownian bridges By, », can be defined such that for any fized

) dQ;(2).

s
ning @1 (p) — Qi(p) @2(}7) — Qs(p)
- - Bn1 no
i [V o ( )/ &) ) )
ws. log log(n)
o)
and for

o) = <+>W T + ) N
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we get
1—a< tim P{Q:(p) - Qup) - cilp) < Qalp) ~ () 9)
< Qua(p) — Qu(p) + ci(p). P € (a1 —20)}
with h,; = nj_", n=min{ny,no}, e, =n"5, 38+ <n<1/2, andn/2+ 6 +

28 < 1/2.

If Assumption 4 holds, then ¢, in (8) is set to zero and s is chosen as in
(5). A similar result in weighted sup-norms is considered in a followup paper
Shen et al. (2019). The simultaneous confidence bands in (9) are given for the
difference of two quantile functions, known as the quantile treatment effect. To
get simultaneous confidence bands for g(p) and G(p) recall that Qa(p)— Q1 (p) =
log[g(p)] = m~tlog[G(p) + 1] so that

P{@z(p) — 01(p) — c(p) < Qa(p) — Q1(p) < Da(p) — Qi (p) + i (p),

— P{ exp(—c:(p))3(0) < 9(p) < exp(c(p))F(D), P € (Ens 1 —n)}
=P{ (G(p) +1) exp(—cs(p)m) =1 < G(p) < (G(p) + 1) exp(ci(p)m) — 1,

p € (en,1 —sn)}.

Note that the same simultaneous confidence bands can be constructed based
on the weak approximation results. However, this would require the same set of
assumptions.

3.2. Direct confidence bands

The confidence band above depends on nonparametric estimation of quantile
densities. Two smoothing parameters h,,, j = 1,2 have to be chosen, which
might be unfavourable in applications. This can be avoided with the alternative
construction of confidence bands given in the following theorem.

Theorem 4. Let Assumption 1 and 2 hold. Then

as %p{gg (p_ W) _5, (p+ m) < 0,(0) - 1(p)

~ Ca ~ Ca
< (p 2n2) A (p \/2711) b }

with &, = n~Y2 for any § € (0,1/2).
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Theorem 4 requires fewer assumptions than Theorem 3, but there is no ex-
plicit convergence rate given. However, these confidence bands give good results
in numerical simulations. To obtain simultaneous confidence bands for g(p) or

G(p) use Qa(p) — Q1(p) = log[g(p)] = m™ " log[G(p) +1].

4. Simulation study

We evaluate the properties of the confidence bands by using synthetic data
and building confidence bands for growth incidence curves G(p). Confidence
bands for the quantile treatment effect and g(p) are equivalent. We consider
two settings and in both of them fix m = 1. In the first setting X; and X5 are
drawn from log-normal distributions. Here X has location parameter 0 and scale
parameter oy = 0.7, while X5 has location parameter 0.8 and scale parameter
oo = 1. As already discussed, Assumption 4 holds in this example with s =
o1/09 = 0.7. We set ¢, to 0 in the simulations and estimated s in the following
way. The density quantiles (g;(p))~! = fj(Qj(p)) are estimated by fj(@j (p))
where fj is a kernel density estimator with data driven bandwidth selection
Silverman (1986) pp. 101-102. We compute s by plugging these estimators into
equation (5). The quantile densities are estimated by f; (@7 (p))_1

In the second setting, X7 is as in the first setting, while X5 is drawn from the
gamma distribution with the shape parameter 2 and scale parameter 1. In this
setting Assumption 4 does not hold and ¢, is estimated for the plug-in confidence
bands by plugging the estimates of the quantile densities into equation (7).

We considered four sample sizes n; = ns = n € {100, 1000, 5000, 10 000}.
For probability values p € (0,1) we used an equidistant grid of length 100 to
build the confidence bands; setting the grid length to n does not change the
results significantly, but increases the computation time in Monte Carlo simu-
lations. The results are based on the Monte Carlo samples of size 5000. Table 1
summarizes the actual coverage probability with simulated data for 1—a = 0.95
for the first setting with ¢; = 0. Tabel 2 reports the same coverage probabili-
ties for the second setting when ¢, is estimated. The results are given in both
settings for the confidence bands with plug-in estimators, for the direct confi-
dence bands, and for confidence bands built with the World Bank algorithm.
We also compare the results to confidence bands generated by bootstrapping
the 1 — a quantile of sup,¢(g1) |G(p) — G(p)|- When 7 is the estimator for this

quantile, the confidence band is constructed by G (p) £ #. The computation time
for this confidence band is several thousand times higher than the time it takes
to compute direct or plug-in confidence bands.

First of all, the coverage of the confidence bands obtained with the World
Bank algorithm is way too small. The reason is that we tested simultaneous
coverage, while the World Bank algorithm constructs only point-wise confidence
bands.

The actual coverage probability of both of our constructions is about 0.96
which is slightly larger than the theoretical probability 0.95. The only exception
are the plug-in confidence bands for n = 100, where the coverage is lower than
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TABLE 1
Setting 1: Coverage probability of the plug-in, direct, World Bank and bootstrap confidence
bands when cs = 0.

Sample size n || Plug-in | Direct | World Bank | Bootstrap
100 0.888 0.965 0.460 0.974
1000 0.975 0.960 0.286 0.940
5000 0.980 0.959 0.343 0.919
10000 0.984 0.960 0.425 0.910
TABLE 2

Setting 2: Coverage probability of the plug-in, direct, World Bank and bootstrap confidence
bands when cs 1s estimated.

Sample size n Plug-in | Direct | World Bank | Bootstrap
100 0.893 0.964 0.386 0.988
1000 0.958 0.960 0.177 0.970
5000 0.969 0.960 0.267 0.949
10000 0.973 0.964 0.390 0.930

the nominal. This can be attributed to the quality of the nonparametric esti-
mates of the quantile densities in small samples. Once the sample size is large,
both confidence bands perform very similar, even with the estimated correction
¢s for the plug-in bands in the second setting.

The bootstrap does not perform better in terms of coverage. The empirical
coverage fluctuates around the nominal level and goes as high as 0.988 and
as low as 0.91. We also observed significant fluctuations of the width of the
bootstrap bands.

02 0.4 06 08 00 02 04 06 08 1.0
Probability Probability

Fic 1. Estimates for growth incidence curves and 95% simultaneous confidence bands for
n = 100 (left) and n = 1000 (right). Each plot shows the ture growth incidence curve (dahsed),
its estimator (bold), plug-in confidence bands (grey area), direct confidence bands (bold), and
bootstrap confidence bands (dashed-dotted).



Simultaneous Confidence Bands for Ratios of Quantile Functions 4405

The plots in Figure 1 show typical estimates from the first setting together
with 95% plug-in and direct confidence bands for n = 100 (left) and n = 1000
(right). The true growth incidence curve G(p) is the dashed line, while its esti-
mate is the solid line. Plug-in confidence bands are shown as a grey area, direct
confidence bands are solid lines, and bootstrap confidence bands are dashed-
dotted lines enveloping the growth incidence curve. In accordance with the
simulation results, plug-in confidence bands are somewhat narrower for small
n = 100, while for n = 1000 both confidence bands are nearly indistinguishable.
The bootstrap bands are tighter close to 0 and 1 but for the price of being much
wider in the middle. As stated in Theorem 3 and Theorem 4 the confidence
bands are not defined for p close to 0 and 1. The plots show the bands for
probabilities p between €, and 1 — g,,.

5. Application to household data

Our work is motivated by the application of growth incidence curves to the
evaluation of pro-poorness of growth in developing countries. Absolute poverty
is reduced if the growth incidence curve G(p) is positive for all income quan-
tiles below the poverty line and such growth is called pro-poor using the weak
absolute definition mentioned in the introduction. In this case, there is some in-
come growth for the poor and absolute poverty is reduced. In addition, relative
poverty is reduced if G(p) has a negative slope, such growth is called pro-poor
using the relative definition as it is associated with declining inequality and
declining relative poverty.

We analyse data from the Uganda National Household Survey for the years
1992, 2002, and 2005. This is a standard multi-purpose household survey that
is regularly conducted to monitor trends in poverty and inequality and its most
important correlates. The sample sizes are niggs = 9923, nggoe = 9710, and
nogos = 7421. We measure welfare by household expenditure per adult equiva-
lent in 2005/2006 prices and compute the related growth incidence curves.

First, we consider the growth incidence curve for the time from 2002 to 2005.
Inspecting in Figure 2 QQ-plots of the standardised log-transformed data (left
and middle), we can deduce that both samples show slight departures from the
log-normal distribution, but differ from each other only in location and scale,
up to four outliers. Hence, we can estimate § according to (5) and set ¢, = 0.
The quantile densities are estimated as in the simulations.

The estimated growth incidence curve shown in Figure 3 is close to 0 on
the whole interval (0,1). It takes positive values up to the 0.7 quantile and
negative values for higher incomes. The slope tends to be negative. This might
suggest that absolute poverty and relative poverty was reduced, and growth was
pro-poor according to the weak absolute and relative definition. Both simulta-
neous confidence bands are shown in the left panel; the grey area corresponds to
the plug-in confidence bands, while bold lines are the direct confidence bands.
As in simulations for large samples, both approaches lead to nearly the same
bands. Simultaneous confidence bands include the zero line, which suggests that
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Quantiles of log(Uganda 2002)
2
Quantiles of log(Uganda 2005)

-4 -2 0 2 4 -4 -2 0 2
Quantiles of standard normal Quantiles of standard normal

|

Quantiles of log(Uganda 2005)
-2

2 0 2 4 6
Quantiles of log(Uganda 2002)

Fic 2. QQ-plots of standard normal quantiles against standardised log-transformed Uganda
expenditure data for 2002 (left) and 2005 (middle), as well as QQ-plot of standardised log-
transformed Uganda expenditure data for 2002 against 2005 (right).

none of the discussed effects is in fact significant. In contrast, the considerably
tighter confidence bands of the World Bank Toolkit, shown in the right plot,
would wrongly suggest otherwise, over-interpreting the non-significant poverty
reduction and pro-poor growth.

Let us now consider the expenditure data from 1992 and 2002. Inspecting
QQ-plots of standardised log-transformed data shown in Figure 4 we find that
both data sets are not log-normal and distributions of both data sets differ
from each other not only in location and scale. Hence, for the plug-in confidence
bands correction ¢, is estimated by using the estimates for the quantile density
functions together with (7).

Figure 5 shows annualized growth incidence curves for Uganda form 1992 to
2002 together with the simultanecous confidence band (left) and with the World
Bank Toolkit confidence band (right). The estimated growth incidence curve is
positive for all quantiles and the simultaneous confidence bands do not include
the zero line. Absolute poverty was reduced between these two periods, and
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F1c 3. Growth incidence curve for the Uganda data from 2002 to 2005 with 95% confidence
bands and national poverty line. Simultaneous confidence bands are shown in the left plot,
while pointwise confidence bands with the World Bank algorithm in the right plot.

growth was pro-poor using the weak absolute definition. In addition, the growth
incidence curve seems to have no significant slope for the poor and a slightly
positive slope for the population above the poverty line. This suggests that
inequality among the non-poor increased. The confidence band gives evidence
that the overall slope of the growth incidence curve on the interval [0.6,1) was
non-negative. Confidence bands of the World Bank Toolkit do not allow for such
inference about the slope by definition.

6. Discussion: Covariates

Our construction of confidence bands does not include covariates that might
have an impact on the quantile ratio. Typical applications of growth incidence
curves do not include covariates. However, one could ask whether age, educa-
tion, children in the household, or other socio economic characteristics influence
welfare growth.

One way to introduce covariates X € R* is by considering quantiles condi-
tional on the covariates

Qa(p|X = )
Qu(pIX =)

If for a fixed x the sample contains enough observations with X = x, it is
possible to use our method to construct a confidence band for g(p|z) which
is uniform with respect to p, but of course is not uniform with respect to z.
However, this situation is unlikely to occur in practice, in particular if X is a
continuous random variable. In this case, it is better to estimate g(p|x) for all
and p simultaneously, for example by a nonparametric method. The estimation

g(plz) =
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Fia 4. QQ-plots of standard normal quantiles against standardised log-transformed Uganda
expenditure data for 1992 (left) and 2002 (middle), as well as QQ-plot of standardised log-
transformed Uganda expenditure data for 1992 against 2002 (right).

method will have a strong impact on the construction of the confidence band
and there is no simple generalization of our construction to this setup.

One way to obtain uniform confidence bands conditional on covariates is by
looking at the quantile treatment effect of the log-transformed welfare measure,
e.g. log-income, conditional on the covariates Qa2(p|X = x) — Q1 (p|X = z). Qu
and Yoon (2015) proposes a kernel type method for estimating this treatment
effect nonparametrically and also give a construction for uniform confidence
bands based on the stimulation of an approximating Gaussian process. This
confidence band can be converted into a uniform confidence band of the quantile
ratios by using the argument at the very end of Section 3.1.

7. Conclusion

Motivated by the concept of growth incidence curves introduced in poverty re-
search we considered the ratio of quantile functions as a tool to compare two
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F1Gc 5. Growth incidence curve for the Uganda data from 1992 to 2002 with 95% confidence
bands and national poverty line. Simultaneous confidence bands are shown in the left plot,
while pointwise confidence bands with the World Bank algorithm in the right plot.

distributions. We have developed an analytical method for calculating simul-
taneous confidence bands for ratios of quantile functions and growth incidence
curves. Our method requires no re-sampling techniques and rather relies on the
asymptotic distribution of the difference of two quantile functions and therefore
readily provides simultaneous confidence bands also for the quantile treatment
effect, considered as a curve. In the application to the expenditure data from
Uganda we demonstrated how simultaneous confidence bands can be used for
inference about growth incidence curves and showed that these simultaneous
confidence bands are more appropriate than those provided by the World Bank
Toolkit.

Appendix A: Proofs
A.1. Proofs of Section 2

To prove Theorem 1 and Corollary 1 we use the following standard result.

Theorem 5 (Cramér, 1946, p. 368-369). Let X be a random variable with
cumulative distribution function F, which is continuously differentiable at some
x with F(x) = p and F (z) > 0. Let also Q(p) = F~1(p) denote the quantile

function, q(p) = Q'(p) = 1/F'(Q(p)) the quantile density and Q(p) the sample
quantile function.

(i) The distribution of Q(p) is asymptotically normal with mean Q(p) and
variance n~p(1 — p)[q(p)]? for n — oo and for every p € (0,1).

(i) If in addition F is continuously differentiable at some & with F(Z) =
and F’ (Z) > 0 for p < p, then the joint distribution of (@(p),@(ﬁ)) is
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asymptotically bivariate normal with expectation (Q(p), Q(ﬁ)) and covari-
ance Cov{Q(p), Q(F)} = n"p(1 — Pa(p)a(p) for n — oo and for every
p € (0,1).

Theorem 1 shows that the distribution of (ﬁ(p))m can be approximated by a
log-normal distribution.

Proof of Theorem 1. From (3) and Theorem 5, the estimator

log (G(p) +1) = mlog (5(p) = m(Q2(p) ~ Q1(p))

is the sum of two asymptotically normal estimators. Since X; and X, are inde-
pendent, their sum is asymptotically normal with the mean

1(p) = m[Qz(p) — Q1(p)] = m [log (Q1(p)) —log (Q2(p))] = mlog (9(p))

and variance

n n2

o?(p) = m?p(1 — p) <[Q1(P)}2 " [Q2(p)]2) .

Hence, [g(p)]™ is log-normally distributed with parameters pu(p) and o(p). This
proves part (i) of the theorem. Part (i7) follows in the same way from Theorem
5 (). O
Proof of Corollary 1. From Theorem 1 we have that log (G(p) + 1) is asymp-
totically normal with parameters p(p) and o(p). Let

~

_ G(p) + 1 —explu(p)]
exp[u(p)lo(p)

Then, the distribution function of Y is given by
P{Y <y} =P{Gp) +1 < yexplu(p))o(p) + explu(p)]

_pllosGp) +1) —u(p) _ log (explu()llyo(p) +1]) — p(p)
a(p) - a(p)

a(p)

- ® (M) +o(l)=2 (y — @ + O[U(p)]) + o(1),

where ® is the cumulative distribution function of a standard normal distribu-
tion. Since o(p) — 0 as min{ny,n2} — oo, the results follows. O

The proof of Theorem 2 relies on the following theorem as given in Csorgo
(1983).

Theorem 6 (Theorem 3.2.4 in Csérgd, 1983). Let X be a random variable with
the cumulative distribution function F(x), quantile function Q(p) and quantile

density function Q'(p) = 1/F'(Q(p)), p € (0,1). Let X1,..., X, be i.i.d. sample
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of X and Q(p) be the empirical quantile function as given in (1). Under Assump-
tion 2 with X = Xy = Xy there exists a Brownian bridge {B,(p);0 < p < 1}
such that

Q) - Q)

Qe 2w

“ 0 (n*1/2 1og(n)>

sup
PE[6n,1—0,]

with &, = 25n "' loglog(n). If in addition Assumption 3 (i) holds, there exists a
Brownian bridge {By(p);0 < p < 1} such that

Qp) - Q)
Q')

If Assumptions 2 and 3 (ii) hold, there exists a Brownian bridge {By(p);0 <
p < 1} such that

sup
p€elo0,1]

— Ba(p)| =0 (n*1/2 log(n)) .

Q) — Q)

- Q(p)
Q' (p)/

sup
p€e(0,1)

— By(p)

\/_ ‘ , (10)
~/2log(n )) if v <2

a ~1/2[loglog(n)]" [log(n)] 1+ =1) if 4 > 2

a.s.

for arbitrary € > 0.

Proof of Theorem 2. According to Theorem 6 there exist family of Brownian
bridges B,, and B,, such that for j = 1,2

9,(p) — &(») as. o (, —1/2
—_— = B, =0 1
pe[5nsjl,1£5nj} q;(p)/v1j »7) ( sl ))
This entails
%12 Q1(p) — Qi(p)
> - B’m
pe[éfll,lﬁ&nl] n1 + 520y ( a1 (p)/v/n1 (p))
a.s. na
=0 4711(”1 ) log(nl))
and
ni @2 (P) -9y (p)
— B,
pe[énil,lfféw] m ( a2(p)/ /12 (p)> ‘

a.

®

O (o o))
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The triangular inequality implies together with n = min{ni,n2}

ning @1 (p) - Ql(p) _ @2(?) - Q2(p) -
\/ ny + s2ns <S a1 (p) q2(p) > Brams (®)

=0 (n_1/2 log(n)) ,

52n9 ny
By n,(p) = \/ mBnl(P) - man (p)-

By the independence of B,,, and B,, it follows that B,,, ,, is a Brownian bridge
as well. The other parts of the theorem are proved in the same way. O

sup
PE[In,1—=6n]

where

Proof of equation (5). Assumption 4 states that ¢1(p) = s ¢2(p), which is equiv-
alent to fo{Qa2(p)} = s f1{Q1(p)}. Function f;{Q,(p)} is known as the density
quantile function. This function is positive on its support [0, 1]. However, this
is not a valid density function, since it does not integrate to 1. Indeed, making
a variable change Q;(p) = « implies

o= [ 5= [ T @)Y, j=1,2.
0 —00

Therefore, f2{Q2(p)} = s f1{Q1(p)} if and only if s = as/a;. O
Proof of Lemma 1. Following the proof of Theorem 2, it is easy to see that

ning Ql (p) — Qi(p) 4 @2(}7) — Qa(p)
\ n1 4 520y a1(p)/s q2(p) .
in Dy . (p; 8)=Dny n, (p; 8) converges uniformly to a Brownian bridge. Applying
the law of iterated logarithm for weighted quantile processes (Theorem 1 and
Remark 3 in Einmahl and Mason, 1988) with weight function [p(1 — p)]* yields

the lemma. O

A.2. Proofs of Section 3

Proof of Theorem 3. The result follows from the Consequence 4.1.2 on p. 34 of
Csorgé (1983), Theorem 2 and Lemma 1. O

Proof of Theorem 4. From Corollary 1 in (Csorgd and Révész, 1984) we can get
under Assumptions 1 and 2 that

o Co .S.
up 18y (14 <2 ) = 0500 — o = By ()] 2 041)
p6[57171_5n] n]
and
~ Ca a.s.
w18 (1= )~ 0500+ o = By )] "2 0,1
p€[€n71—sﬂ/] J nj J 3 ) p )
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for j = 1,2, &, =n’"2 § € (0,1/2). With this,

lim p{@( Co )—@1 (m\%)ggg(p)—gxp)

<0, (p+ 2 O (p-—=2);e,<p<i-ce
—= 2 p \/% 1 p m ’ n_p_ n

= P{ sup ‘Bl,nl (p) + B27n2(p)‘ S \/ica} .

From the independence on Brownian bridges for j = 1 and 7 = 2 follows

P{ sup |Bin, (p) + B2, (p)] < ﬁca} = P{ Sup}‘\/?B(p)‘ < ﬁca}

p€l0,1] pel0,1

= P{ sup |B(p)] gca}

p€l0,1]

for some Brownian bridge B. O
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