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Abstract

Despite of multitude investigations no reliable prognostic immunohistochemical biomark-

ers in GIST have been established so far with added value to predict the recurrence risk of

high risk GIST besides mitotic count, primary location and size. In this study, we analyzed

the prognostic relevance of eight cell cycle and apoptosis modulators and of TP53 muta-

tions for prognosis in GIST with high risk of recurrence prior to adjuvant treatment with

imatinib. In total, 400 patients with high risk for GIST recurrence were randomly assigned

for adjuvant imatinib either for one or for three years following laparotomy. 320 primary

tumor samples with available tumor tissue were immunohistochemically analyzed prior to

treatment for the expression of cell cycle regulators and apoptosis modulators cyclin D1,

p21, p16, CDK4, E2F1, MDM2, p53 and p-RB1. TP53 mutational analysis was possible in

245 cases. A high expression of CDK4 was observed in 32.8% of all cases and was asso-

ciated with a favorable recurrence free survival (RFS), whereas high expression of MDM2

(12.2%) or p53 (35.3%) was associated with a shorter RFS. These results were indepen-

dent from the primary KIT or PDGFRA mutation. In GISTs with higher mitotic counts was a

significantly increased expression of cyclin D1, p53 and E2F1. The expression of p16 and

E2F1 significantly correlated to a non-gastric localization. Furthermore, we observed a sig-

nificant higher expression of p21 and E2F1 in KIT mutant GISTs compared to PDGFRA

mutant and wt GISTs. The overall frequency of TP53 mutations was low (n = 8; 3.5%) and

could not be predicted by the immunohistochemical expression of p53. In summary, muta-

tion analysis in TP53 plays a minor role in the subgroup of high-risk GIST before adjuvant

treatment with imatinib. Strong expression of MDM2 and p53 correlated with a shorter
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recurrence free survival, whereas a strong expression of CDK4 correlated to a better

recurrence free survival.

Introduction

95% of gastrointestinal stromal tumors (GIST) exhibit an overexpression of the receptor tyro-

sine kinase KIT [1]. Approximately 90% harbor a mutation in the KIT gene or in the gene of

the homolog receptor tyrosine kinase PDGFRA. These mutations lead to ligand independent,

constitutive activation of the kinases and play a central role in GIST development [2]. A

minority of GIST without gain-of-function mutations in one of these two kinases display other

genetic and epigenetic changes [3–5]. These alterations are located in the BRAF (rapidly accel-
erated fibrosarcoma B) gene, in the succinate dehydrogenase (SDH) complex or the insulin-like
growth factor 1 receptor (IGF1R) gene [6]. Furthermore, Hur et al. showed that especially genes

of the cell cycle control are altered in high risk compared to low risk GIST [7]. One such gene

is TP53 encoding a 64 kDa protein (p53). Its gene product p53 is an essential regulator of

many genes controlling apoptosis, senescence, DNA damage repair and cell cycle arrest [1].

Upon radiation-induced damage, p53 is activated as an element of the G1-phase checkpoint to

allow DNA repair. Activation of p53 leads to the induction of p21 (CDKN2A) that binds to

and inactivates cyclin-dependent kinases (CDK) complexed with cyclins’ (cyclin = CCN:

cyclin D1/CDK4, cyclin D1/CDK6 and cyclin E1/CDK2). Consequently, the cell cycle is

arrested [8]. Without this p21-induced inhibition complexed CDKs and cyclins phosphorylate

the retinoblastoma 1 (RB1) protein that dissociates from E2F1 transcription factor. As a result

transcriptional activation of a series of target genes leads to the progression of the cell cycle.

The frequency of TP53 alterations is heterogeneous among different tumor entities. Less

than 5% of cervical carcinoma harbor a TP53 mutation whereas in ovarian carcinoma the

TP53 gene is altered in up to 90% [9]. Most of the mutations result in non-functional proteins

destroying the normal tumor suppressing functions of p53 (TP53). Consequently, mutations

in this gene are associated with accelerated tumor formation, higher stage, poor prognosis and

low response to therapy [10–13]. A targeted therapy against mutated TP53 is under develop-

ment and some inhibitors are currently investigated in clinical trials [14–16]. Alternatively,

loss-of-function mutations of TP53 can be inactivated by other regulators of the cell cycle that

convey p53 downstream effects as shown for MDM2 (mouse double minute 2) [11] and for

CDK4 (cyclin dependent kinase 4) [17]. MDM2 binds either to the p53 transactivation domain

to interfere with p53 transcriptional regulatory mechanism or promotes p53 proteasomal deg-

radation by its ubiquitin ligase activity [18]. So the mechanisms how the tumor suppressor

function of p53 is disturbed are diverse and the expression level of different cell cycle regula-

tors in GIST may allow a deeper understanding of the p53 activation or inactivation status

besides inactivating by TP53 mutations. Targeted therapy against mutated p53 is under devel-

opment and some inhibitors are currently investigated in clinical trials [14–16].

Another potentially relevant mechanism of GIST progression towards a more aggressive

biological behaviour is a partial deletion of chromosome 9 playing an essential role in the

transformation from a low to a high risk GIST [19, 20]. One possible result of this deletion is a

p16 (CDKN2A) loss which normally functions as an inhibitor of the cell cycle. Inactivating

mutations in this gene or its deletion seem to be essential to increase cell cycle activity and con-

sequently to progress from low to high risk GIST.
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In this study, we examined the TP53 mutation frequency as well as the expression of clini-

cally relevant cell cycle regulators and apoptosis modulators that are associated with impaired

p53 function in 320 high risk GIST prior to adjuvant imatinib treatment cyclin D1 (CCND1),

CDK4, p21 (CDKN1A), p16 (CDKN2A), E2F1, MDM2, p-RB1 and p53.

Materials and methods

Patient samples

Between February 2004 and September 2008, 400 patients with a high-risk GIST were included

to the randomized, multicenter Scandinavian Sarcoma Group (SSG) trial XVIII, carried out

in collaboration with the SSG and the German Working Group of Medical Oncology [Arbeits-

gemeinschaft Internistische Onkologie (AIO)]. The study, a protocol-based pre-specified

analysis, was approved by the Operative Ethics Committee of the Helsinki University Central

Hospital (identifier NCT00116935).

Furthermore, ethical approvals were given from all local ethical committees of the other

participating centers in Finland, Sweden, Norway and Germany. Before entering the study, the

participants signed a consent form and gave their agreement to the study. All data were de-

identified. In the study, patients who were diagnosed with gastrointestinal stromal tumor

(GIST) were randomly allocated in a 1:1 ratio to receive imatinib (Gleevec) either for 12 or for

36 months following surgery. The participants of the study had to have a histologically verified

GIST with a high risk of GIST recurrence despite complete removal of all macroscopic GIST

tissue at surgery.

A high risk for GIST recurrence was defined by the presence of at least one of the following

features: 1) the longest tumor diameter >10.0 cm, 2) tumor mitotic count>10 per 50 high

power fields of the microscope, 3) tumor diameter > 5.0 cm and mitotic count >5, or 4)

tumor rupture before surgery or at surgery. Two senior pathologists (E. W. and M. S.-R.)

reviewed the histological diagnoses and carried out mitotic counting as described in a previous

study [21]. Tissue from 320 primary GISTs, confirmed centrally to be GISTs, was available for

the current study. Immunohistochemistry for CD34, KIT, PDGFRA, DOG1 and KI67 was car-

ried out as described earlier [22, 23].

Mutation analyses were performed in 245 cases using Sanger sequencing for KIT exons 8, 9,

11, 13, 14, 15, 17 and PDGFRA exons 12, 14 and 18. Risk classification was done according to

the modified National Cancer Institute (NIH) scheme [24].

Immunohistochemistry

Immunohistochemical staining of cyclin D1 (also known as CCND1), CDK4, p21 (also known

as CDKN1A), p16 (also known as CDKN2A), E2F1, MDM2, p-RB1 and p53 (TP53) was per-

formed on an automatic stainer (medac GmbH, Wedel, Germany) using tissue microarrays

(TMA) containing formalin-fixed paraffin-embedded tumor cores in duplicates. In brief, 3 μm

sections were mounted on positively charged, adhesive slides and dried at 37˚C overnight. For

standard heat-induced epitope retrieval sections were boiled in citrate buffer pH 6 in case of

CDK4, p21 (CDKN1A), E2F1, p-RB1 and p53 (TP53) or in EDTA buffer pH 6 in case of cyclin

D1 (CCDN1), p16 (CDKN2A), MDM2 in a microwave oven. Primary antibody incubation

was performed for 30 min at room temperature with appropriate antibodies (S1 Table).

The sections were subsequently incubated with polymer Poly-HRP-GAM/R/RIgG for 15

min followed by incubation for 8 min with 3.3’-diaminobenzidine (DAB) and washed. Slides

were counterstained with hematoxylin.

Immunohistochemical score was adapted from Romeo et al. [25] and defined as follows:

staining in 0–10% of tumor cells: score 0; 11–20%: score 1; 21–30%: score 2; 31–40%: score 3;
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41–50%: score 4; 51–60%: score 5, 61–70%: score 6, 71–80%: score 7, 81–90%: score 8 and 91–

100%: score 9. The intensity score was divided up in no visible staining: score 0, weak staining:

score 1, moderate staining: score 2 and strong staining: score 3. Mean value of the sum and

intensity score was built up as an overall score for the final analysis A mean score of>0 was

regarded as high expression for cyclin D1 (CCND1), MDM2, CDK4 and p-RB1, one of>2 for

p16 (CDKN2A), p53 (TP53) and E2F1 and one of>3 for p21 (CDKN1A).

DNA isolation

In our cohort of 320 samples, 245 cases could be used for complete DNA isolation and

sequencing analysis of TP53 (76.6%). 75 samples had to be excluded from the analysis due to

poor DNA quality, low DNA amount or limited tissue availability. All samples were fixed in

neutral-buffered formalin prior to paraffin embedding (FFPE-samples). Tumor areas were

selected by a senior pathologist (E.W.) on a hematoxylin-eosin stained slide and DNA was

extracted from six corresponding unstained 10 μm thick slides by manual macro-dissection.

The DNA isolation was performed automatically using the BioRobot M48 (Qiagen, Hilden,

GER) as described before [26].

Sanger sequencing

Exon 4–8 of the TP53 gene (transcript ID: ENST00000269305, Ensemble Genome Browser,

Oct. 2012, http://www.ensembl.org/index.html, [27]) were amplified by PCR using specific

primers. TP53 exon 4 was divided into two PCR reactions due to the exon size (4a and 4b).

Primer sequences are listed in S2 Table.

5 μl of PCR products were purified with exonuclease I and Fast-AP (Thermo Fisher Scien-

tific, Waltham, USA) for 15 min at 37˚C and 15 min by 80˚C. A sequencing reaction was set

up with 1 or 2 μl of purified PCR products depending on the amount of PCR products and the

BigDye1 Terminator v1.1 Cycle Sequencing Kit (Thermo Fisher Scientific Inc.) following the

manufacturer’s instructions. The BigDyeXTerminator1 Purification Kit (Thermo Fisher Sci-

entific Inc.) was used for the purification of the DNA sequencing reactions removing non-

incorporated BigDye1 terminators and salts. The solution was incubated for 30 min with agi-

tation of 1800 rpm. The sequencing analyses were carried out on the 3500 Genetic Analyzer

(Thermo Fisher Scientific Inc.). The electropherograms were analyzed by visual inspection

and Sanger sequencing was repeated by an uncertain or mutated result.

Statistical analysis

The results of the immunohistochemical and mutation analyses were merged with the clinical-

pathological data. The data from the population to be evaluated was analyzed from February 4,

2004, through December 31, 2013, using SPSS statistical software, version 22.0 (SPSS Inc) as

described before [28]. The recurrence-free survival (RFS) was calculated using the Kaplan-

Meier method from the date of randomization to the date of GIST recurrence or death, censor-

ing patients alive and without recurrence on the date of the last follow-up. We compared the

survival rate between groups using a multivariate survival Cox proportional hazards model.

Results

Correlation of the expression of eight proteins with recurrence free survival

in primary GIST

Expression of p16 (CDKN2A), cyclin D1 (CCND1), p53 (TP53), p21 (CDKN1A), E2F1,

CDK4, MDM2 and p-RB1 expression are depicted in Table 1 and S3 Table.
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Among the samples of 157 females (49.1%) and 163 males (50.9%) with a median age of 61

years (range 23–83) we could detect a significant increase of p53 (TP53) expression with age

(p = 0.015, Mann-Whitney test). With increasing tumor size (median primary tumor size 9.4

cm; range 1.5–35.0) we observed a loss of cyclin D1 (CCND1, p = 0.040) and p21 (CDKN1A,

p = 0.037, Mann-Whitney test). No further significant association of cell cycle regulating pro-

tein expression was found with gender, tumor site and mutational status.

Concerning the mitotic count, a median of 6 mitoses per 50 HPF could be detected (range

0–135). GISTs with higher mitotic counts showed a significant increased expression of cyclin

D1 (CCND1), p53 (TP53) and E2F1 (p = 0.001, <0.001 and<0.001, respectively) whereas ele-

vated levels of p21 (CDKN1A), p16 (CDKN2A) and p-RB1 were found, these factors did not

reach significance. 167 (52.2%) of the tumors were localized in the gastric wall whereas 151

(47.5%) were localized elsewhere. The expression of p16 (CDKN2A) and E2F1 significantly

correlated to a non-gastric localization (p =<0.001 and p = 0.008 respectively, chi square test).

A significantly higher expression of p21 (CDKN1A, p = 0.009) and E2F1 (p = 0.022) could be

detected in KIT mutated GISTs compared to PDGFRAmutated and wt GISTs whereas no sig-

nificance was reached for the other proteins.

Concerning the RFS, GIST with high p53 (TP53) expression showed a significant lower five

years RFS (45.9%) than those with a low p53 expression (62.4%, p = 0.012, logrank test, Figs 1

and 2).

Similar results were obtained for the expression of E2F1. 243 samples were negative for the

expression of E2F1 whereas 77 were strongly positive correlating with a shorter RFS (45.3%

versus 60.7%; p = 0.027, log-rank test). Surprisingly, the expression of CDK4, observed in 105

cases, was associated with a longer RFS (p = 0.014, log-rank test, Figs 1 and 2).

No significant correlation of RFS and the expression of cyclin D1 (CCND1, p = 0.170), p21

(CDKN1A, p = 0.505), p16 (CDKN2A, p = 0.320), MDM2 (p = 0.060) and pRB1 (p = 0.605)

could be observed. In summary, it can be stated that although the high expression of p53

Table 1. Association of expression of 8 proteins in primary GIST with recurrence-free survival in the SSGXVIII trial.

Factor Cut-off (median) No. of tumours (%) 5-year RFS (%) p#

p16 (CDKN2A), mean �2 vs. 178 (55.6) 60.4

>2 142 (44.4) 52.2 0.320

Cyclin D1 (CCDN1), mean 0 vs. 178 (55.6) 55.0

>0 142 (44.4) 59.3 0.170

p53 (TP53), mean �2 vs. 207 (64.7) 62.4

>2 113 (35.3) 45.9 0.012�

MDM2, mean 0 vs. 281 (87.8) 58.7

>0 39 (12.2) 46.7 0.060

CDK4, mean 0 vs. 215 (67.2) 52.2

>0 105 (32.8) 67.6 0.014+

p-RB1, mean 0 vs. 241 (75.3) 56.5

>0 79 (24.7) 57.8 0.605

p21 (CDKN1A), mean �3 vs. 185 (57.8) 59.0

>3 135 (42.2) 53.5 0.605

E2F1, mean �2 vs. 167 (52.2) 60.0

>2 153 (57.8) 53.2 0.234

# determined by log-rank test, p < 0.05 was defined as significance,

� Expression of TP53 is associated with an unfavorable recurrence-free survival,
+ CDK4 expression was associated with a better recurrence-free survival

https://doi.org/10.1371/journal.pone.0193048.t001
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Fig 1. Representative immunohistochemical stainings of CDK4, MDM2,p53, p21 and p16 expression. The

expression of different proteins was evaluated by immunohistochemistry. In (A), (C), (E), (G) and (I) the

representative high expression pattern of CDK4, MDM2 and p53 (TP53) in different GISTs are shown in contrast to

the non/low expression patterns (B), (D), (F), (H) and (J) (100x).

https://doi.org/10.1371/journal.pone.0193048.g001

Cell cycle regulators in GIST

PLOS ONE | https://doi.org/10.1371/journal.pone.0193048 February 16, 2018 6 / 17

https://doi.org/10.1371/journal.pone.0193048.g001
https://doi.org/10.1371/journal.pone.0193048


Fig 2. Recurrence free survival of patients with CDK4, MDM2 and p53 expression or TP53 mutated tumors.

Kaplan-Meier survival curve showing analysis of recurrence free survival in patients from the SSGXVIII study. A high

expression of CDK4 is positively correlated with recurrence free survival (red line, p = 0.01) in contrast to a high

expression of MDM2 and p53 (TP53, red line, p = 0.06 and p = 0.01, respectively, log-rank test). TP53 mutations tend

to correlate to a worse recurrence free survival but did not reach significant levels due to a small number of mutated

tumors (p = 0.24, log-rank test).

https://doi.org/10.1371/journal.pone.0193048.g002
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(TP53) and E2F1 was significantly associated with a shorter RFS and the expression of CDK4

with a favorable RFS, in the multivariate survival analysis no independent prognostic value for

any of the cell cycle regulators could be determined. The result remained the same when the

duration of adjuvant imatinib (either for 1 year or for 3 years) was added as a covariable to the

model. The main immunohistochemical findings of this study are displayed in Table 2 and a

model of cell cycle regulators and apoptosis modulators in Fig 3.

TP53 mutation frequency in GISTs

Nine of the 245 analyzed GIST samples exhibited a mutation in the TP53 gene (3.5%, Table 3,

Fig 4). No double mutations could be detected and only one case showed the TP53 mutation

in a low allelic frequency (case 9). Six of these mutations resulted in a non-functional protein,

two in a partially functional protein and one had no influence on the protein function [29]. A

closer look at the clinical-pathological findings reveals that eight of the nine TP53 mutated

GIST were suitable for mutation analysis of KIT and PDGFRA. Four cases harbored a KIT
exon 11, one sample a KIT exon 13, one case a PDGFRAmutation and one showed a wildtype

status for the two genes. Seven of the 167 gastric samples (52.2% of the whole cohort) showed a

TP53 mutation (4.2%). The other two TP53 mutations were detected in a GIST localized in the

colon and another in a small intestinal GIST.

Although no significant correlation was observed to tumor size, morphological subtype,

risk classification, localization and KIT/PDGFRAmutation, it is interesting to note that seven

of the nine TP53 mutated GIST were localized in the stomach including the one case with a

TP53 mutation not altering the protein function. Although gastric GISTs are thought to behave

less aggressive than intestinal GISTs they were overrepresented among the TP53 mutant

GISTs. Therefore we conclude that TP53 mutations tend to occur more frequently in gastric

GISTs associated with a worse RFS.

Discussion

In this study, we demonstrated that a high expression of CDK4 was surprisingly associated

with a favorable recurrence free survival (RFS), whereas a high expression of MDM2 or p53

(TP53) was associated with unfavorable RFS. These results were independent from the under-

lying primary KIT or PDGFRAmutation.

High p53 (TP53) expression is related to an increased half-life time of the mutated protein

[30, 31] Here, we showed that 7.1% (n = 2) of the 28 tumors with a high p53 (TP53) expression

showed a mutation in the TP53 gene. The screening of the whole cohort for TP53 mutations

revealed an overall frequency of 3.5%. This is in concordance with other studies showing a

very low TP53 mutation frequency despite a high TP53 protein expression in a higher number

Table 2. Main immunohistochemical findings of this study.

Protein Cases with high expression [%] Correlation with clinico-pathological parameters predicitve value

cyclin D1 (CCDN1) 44.4 tumor site, mitotic count -

p21 (CDKN1A) 42.2 KIT mutation -

p16 (CDKN2A) 44.4 tumor site -

CDK4 32.8 - Better RFS

E2F1 47.8 mitotic count, tumor site, KIT mutation -

MDM2 12.2 - Worse RFS

p53 (TP53) 35.3 age, mitotic count Worse RFS

p-RB1 24.7 - -

https://doi.org/10.1371/journal.pone.0193048.t002
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of GIST [11, 32–35]. One explanation of this mutation independent activation of p53 (TP53)

might be amplification or posttranscriptional modifications such as phosphorylation, acetyla-

tion or sumoylation [36, 37].

By correlating the TP53 status with clinico-pathological parameters, we demonstrated that

TP53 mutations tend to correlate with a poor RFS. Nevertheless, the results did not reached

significance. Obviously, TP53 mutations are a rather late event in GIST progression as the per-

centage of TP53 mutated GISTs was higher in the study of Romeo et al. in a metastatic GIST

cohort and in a study of Ryu et al. in a series of 125 localized GIST with 22% TP53 mutated

tumors. Interestingly, both studies preselected the tumor samples for mutation analysis

depending on their immunohistochemical p53 (TP53) expression which is, according to our

results, not a sensitive biomarker for the TP53 genotype.

Others have shown that TP53 mutations are necessary for the malignant progression of

breast cancer from lower to higher grades [38] and that these mutations therefore significantly

correlate to a higher mitotic count and a higher risk group in GIST [34]. In ovarian cancer

TP53 mutations significantly correlate to resistance to platinum-based chemotherapy and

Fig 3. Model of cell cycle regulators and apoptosis modulators that are associated with impaired p53 (TP53) function in GIST. Constitutive

activated KIT or PDGFRA promotes proliferation and can be inhibited by imatinib. Impaired p53 function leads as well to a higher proliferation and

inhibits apoptosis by modulation of cell cycle regulators. The analyzed proteins are displayed as circles with a bold boarder. Filled green circles indicate

that this protein is associated with a favorable recurrence free survival in our study, filled red circles indicate that these regulators are associated with an

unfavorable recurrence free survival.

https://doi.org/10.1371/journal.pone.0193048.g003
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shortened survival [39]. The same tendency could be observed in supratentorial WHO Grade

II astrocytomas and oligoastrocytomas [40] where TP53 mutations were unfavorable predic-

tors of progression free survival. In our cohort the absolute number of TP53 mutations in

GIST is too low to draw final conclusions. However, determining the TP53 mutational status

may help to identify patients with a relatively high risk of recurrence prior to treatment and

therefore the TP53 status should be considered to select patients who will best benefit from an

adjuvant treatment.

Furthermore, we could detect a significant correlation of high expression of MDM2 with

poor RFS. This is in concordance with the current literature. High MDM2 expression is corre-

lated with poor progression free survival in ovarian clear cell carcinoma [41] and with poor

overall survival in urothelial neoplasms of the bladder [42]. In GIST a high mRNA expression

of MDM2 is described with an aggressive clinical behavior and an unfavorable prognosis ana-

lyzing 38 GIST samples of all risk classifications [43].

We also detected a high expression of CDK4 in 32.8% of the cases. High expression of

CDK4 is frequently seen in human cancer [44]. Dai et al., analyzing triple negative breast can-

cer, described a high expression of CDK4 correlating with poor overall survival and relapse

free survival [45]. In contrast, Peurala et al., found no correlation of CDK4 expression with

survival data in human breast cancer [44]. An upregulation of CDK4 is described in 85% of

myxoid and round cell liposarcoma [46]. Furthermore, a high level of CDK4 amplification is a

poor prognostic marker in well-differentiated and dedifferentiated liposarcoma [47]. In GIST,

Table 3. Clinical and histopathological findings of GIST with TP53 mutations.

Case

No.

Age/

Gender

Localization Size

(cm)

Morphological

subtype

KIT/PDGFRA mutation TP53 mutation

(effect on

protein#)

TP53 (p53)

expression

Follow up

1 60/F Stomach 5.5 Epitheloid PDGFRA exon 18: p.

I843_D846del

Exon 8: p.H297Y

(non-functional)

Non/low 36 Mo; NED�� 9.0 yrs

2 67/M Stomach 13.0 Spindle KIT exon 13: p.K642E Exon 8: p.

A276Lfs�29

(non-functional)

high 12 Mo; rec. 1.4 yrs,

DOD§ 4 yrs

3 66/M Stomach 6.0 Epitheloid

leiomyomatous

Wildtype~ Exon 5: p.V172F

(non-functional)

high 12 Mo; rec. 0.6 yrs,

DOD§ 1 yrs

4 54/F Colon 5.0 Spindle KIT exon 11: p.

K550_Q556delinsM

Exon 7: p.L257V

(non-functional)

high 12 Mo; rec. 5.7 yrs

5 56/F Stomach 6.0 Mixed PDGFRA exon 18: p.D842V Exon 4b: p.S94A

(functional)

high 36 Mo; rec. 0.9 yrs

6 26/F Small

intestine

15.0 Spindle KIT exon 11: p.V559D Exon 7: p.C242Y

(non-functional)

Non/low 36 Mo; rec. 3.2 yrs

7 71/F Stomach 10.5 Spindle KIT exon 11: p.

K550_Q556del

Exon 5: p.Q165K

(partially

functional)

Non/low 36 MO; NED 5.9 yrs

8 61/M Stomach 3.0 Epitheloid KIT exon 11: p.L576P Exon 5: p.A161S

(partially

functional)

Non/low 12 Mo; rec. 2.0 yrs

9 55/M Stomach 11.0 Spindle NA Exon8: p.R273H

(non-functional)

high 36 Mo; NED 5.2 yrs

NA, not available.
# According to the International Agency for Research on Cancer (IARC) TP53 database [29].
§ DOD, death of disease

�� NED, no evidence of disease
~ immunohistochemically no loss of expression of succinate dehydrogenase subunit B (SDHB) was detected

https://doi.org/10.1371/journal.pone.0193048.t003
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Fig 4. Representative electropherograms of TP53 mutated GIST samples. TP53 mutations were detected by Sanger sequencing.

Representative electropherograms are shown for each TP53 mutated sample (A-I) in the same order as shown in Table 1. Six mutations

resulted in a non-functional p53 (A-D, F, I), two mutations resulted in a partially functional p53 (G-H) and one mutation could be

detected without influence on the p53 function (E).

https://doi.org/10.1371/journal.pone.0193048.g004

Cell cycle regulators in GIST

PLOS ONE | https://doi.org/10.1371/journal.pone.0193048 February 16, 2018 11 / 17

https://doi.org/10.1371/journal.pone.0193048.g004
https://doi.org/10.1371/journal.pone.0193048


Sabah et al. detected CDK4 expression in 100% of the samples but without an association

between CDKs and histological classification [48].

CDK4 is an important regulator of the cell cycle G1 phase progression and the G1 to S

phase transition. In detail, CDK4 phosphorylates RB1 protein, lead to the inactivation of

RB1 and the dissociation from E2F1 transcription factor [49]. RB1 is a tumor suppressor

that undergoes periodic phosphorylation when cells transverse the cell cycle [50]. RB1 is

dephosphorylated when cells exit the mitosis and phosphorylated in late G1 phase and

remains so throughout the progression through S phase to mitosis. This results in the activa-

tion of multiple genes encoding proteins that are required for DNA synthesis or to enter the

S phase.

Therefore, the activated, hypophosphorylated RB1 protein restricts proliferation [51]. By

phosphorylation and therefore inactivation of RB1, CDK4 is an essential regulator of prolifera-

tion. CDK4 is crucial for various oncogenic transformation processes suggesting that many

cancer cells may be addicted to high CDK4 activity [44]. However, we detected a significant

correlation of CDK4 expression with a favorable RFS. This is in contrast to the current litera-

ture and in contrast to the findings expected from the biological function of CDK4. One expla-

nation might be the unique cohort of well-characterized high risk GIST prior to treatment and

the high number of samples analyzed. To our knowledge, this is the only study analyzing more

than 200 high risk GIST prior to treatment for the expression of cell cycle regulators.

Furthermore, we observed a significantly higher expression of E2F1 in KIT mutated GISTs

compared to PDGFRAmutated and wt GISTs, in tumors with non-gastric location and with

higher mitotic counts. Similarly, expression of p16 (CDKN2A) was upregulated in KIT com-

pared to PDGFRAmutated and wt GISTs and associated with a non-gastric location. GISTs

with higher mitotic counts showed a significantly increased expression of cyclin D1 (CCND1)

and p53 (TP53). These results are in concordance with other studies [43, 52, 53]. A comparable

p53 (TP53) expression profile was described in 25–38% of GISTs by different groups [34, 54–

56]. In a study of Romero et al., 2009, which analyzed samples from patients with advanced

metastasized GIST and which tested 400 mg versus 800 mg imatinib daily [25], proved that

tumors had a higher expression of p16 (CDKN2A, 57%) and of p53 (TP53, 47%), whereas

expression of p21 (CDKN1A, 27%) and cyclin D1 (CCND1, 8%) was lower. Their expression

data of MDM2 (in 13%) and CDK4 (in 31%) were comparable to our findings. The higher fre-

quency of p53 (TP53) immunohistochemical positive samples in their cohort of metastatic

GISTs may reflect the more advanced stage of disease compared to our cohort of still localized

non-metastatic but high risk GISTs prior to adjuvant imatinib treatment. In another study,

Haller et al. showed that GISTs with a KIT exon 11 deletion exhibited a higher cyclin D1

(CCND1) expression that correlated with an accelerated proliferation and shorter disease

free survival in untreated primary GISTs and that high mRNA expression of CDK4, p16

(CDKN2A), RB1, MDM2, p53 (TP53) and E2F1 correlated with poor prognosis [43, 57]. Sur-

prisingly, we detected a marginal significance between the lack of CCND1 (cyclin D1) expres-

sion and larger tumors. This is likely due to the SSGXVIII trial inclusion criteria, since patients

with a large GIST (>10 cm in diameter) were considered high risk GISTs regardless of the

tumor mitotic count (according to the modified NIH risk stratification scheme). Therefore,

many large GISTs with a small mitotic count were included in the trial, which explains the

marginally significant association between absence of CCND1 expression and a small tumor

diameter.

In our study on formalin-fixed, paraffin-embedded tissue, p16 (CDKN2A) showed no sig-

nificant correlation with RFS. This discrepancy might be due to the use of different material.

However, we detected a correlation of p16 (CDKN2A) expression with non-gastric localiza-

tion. Extra-gastrointestinal stromal tumors (E-GIST) show aggressive clinico-pathological
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parameters as shown for hepatic E-GIST (high mitotic counts: >5/50 HPF, large tumor size:

>5 cm) resulting in a high risk classification [58, 59]. Therefore, we could indirectly show that

the expression of p16 (CDKN2A) correlated with a worse prognosis.

In summary, although none of the eight histological parameters was independently associ-

ated with recurrence-free survival (RFS) in a multivariable analysis with the standard prognos-

tic factors, we demonstrated an increased expression of several cell cycle regulating proteins in

GIST. The result remained the same when the duration of adjuvant imatinib (either for 1 year

or for 3 years) was added as a covariable to the model.

Our study suggests that the expression of MDM2, CDK4 and p53 (TP53) and the muta-

tional status of TP53 may be useful to identify patients with high risk localized GIST who carry

an increased recurrence risk and may benefit from a prolonged adjuvant treatment with imati-

nib although the TP53 mutation frequency is very low in treatment naïve, high risk GIST.
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