
ORIGINAL RESEARCH
published: 25 May 2018

doi: 10.3389/fphy.2018.00039

Frontiers in Physics | www.frontiersin.org 1 May 2018 | Volume 6 | Article 39

Edited by:

Alain J. Pumir,

École Normale Supérieure de Lyon,

France

Reviewed by:

Tommaso Gili,

Enrico Fermi Center, Italy

Jacobo Cal-Gonzalez,

Medizinische Universität Wien, Austria

Sergio Alonso,

Universitat Politecnica de Catalunya,

Spain

*Correspondence:

Alexander Schlemmer

alexander.schlemmer@ds.mpg.de

Specialty section:

This article was submitted to

Biomedical Physics,

a section of the journal

Frontiers in Physics

Received: 15 January 2018

Accepted: 13 April 2018

Published: 25 May 2018

Citation:

Schlemmer A, Berg S, Lilienkamp T,

Luther S and Parlitz U (2018)

Spatiotemporal Permutation Entropy

as a Measure for Complexity of

Cardiac Arrhythmia. Front. Phys. 6:39.

doi: 10.3389/fphy.2018.00039

Spatiotemporal Permutation Entropy
as a Measure for Complexity of
Cardiac Arrhythmia
Alexander Schlemmer 1,2*, Sebastian Berg 1,2, Thomas Lilienkamp 1,2, Stefan Luther 1,2,3,4,5

and Ulrich Parlitz 1,2,3

1 Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany,
2 Institute for Nonlinear Dynamics, Georg-August-Universität Göttingen, Göttingen, Germany, 3German Center for

Cardiovascular Research (DZHK), Partner-Site Göttingen, Göttingen, Germany, 4 Institute of Pharmacology and Toxicology,

University Medical Center Göttingen, Göttingen, Germany, 5Department of Physics and Bioengineering, Northeastern

University, Boston, MA, United States

Permutation entropy (PE) is a robust quantity for measuring the complexity of time series.

In the cardiac community it is predominantly used in the context of electrocardiogram

(ECG) signal analysis for diagnoses and predictions with a major application found in

heart rate variability parameters. In this article we are combining spatial and temporal

PE to form a spatiotemporal PE that captures both, complexity of spatial structures

and temporal complexity at the same time. We demonstrate that the spatiotemporal PE

(STPE) quantifies complexity using two datasets from simulated cardiac arrhythmia and

compare it to phase singularity analysis and spatial PE (SPE). These datasets simulate

ventricular fibrillation (VF) on a two-dimensional and a three-dimensional medium using

the Fenton-Karma model. We show that SPE and STPE are robust against noise and

demonstrate its usefulness for extracting complexity features at different spatial scales.

Keywords: permutation entropy, cardiac arrhythmia, Fenton-Karma simulation, complexity, excitable media,

phase singularities

1. INTRODUCTION

A healthy heart is driven by periodic plane waves propagating over the cardiac tissue. These
waves can turn into potentially life-threatening self-sustained arrhythmias which are governed by
reentrant spiral-wave activity of different levels of complexity [1, 2].

A detailed understanding of the complexity of cardiac arrhythmias and the organization of
spiral-wave activity is crucial for the development of improvedmethods for the treatment of cardiac
arrhythmias [3–5].

In the healthy sinus rhythm a lot of information about the state of the heart is already contained
in the frequency and timings of individual heartbeats. Furthermore, the ECG is one of the
most important clinical tools for the identification of deviations from the normal rhythm and is
prevalently used formedical diagnoses. In case of cardiac arrhythmias with a spatiotemporallymore
unordered state, measures that allow for a quantification of the spatiotemporal complexity of the
system provide valuable information that can be used for investigating the mechanisms behind the
onset of arrhythmia and their possible termination.

In the picture of an arrhythmia being composed of many interacting spiral waves or three-
dimensional rotors, often the concept of phase singularities is used to assess the degree of
organization. A high number of phase singularities (NPS) corresponds to a state with more rotors
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and therefore indicates a situation with higher complexity.
However, in experimental situations where usually surface
electric activity of the heart is measured by optical mapping using
fluorescent dyes, several practical problems arise:

• As only two-dimensional information of a three-dimensional
medium is recorded, phenomena on the surface can not always
be suitably approximated by the concept of phase singularities.
For example, focal activity on the surface, which can be
produced by spirals located far away from the surface, would
not be covered by NPS.

• Noise can significantly impair the detection of phase
singularities, so usually the application of spatial kernel-
smoothing and temporal bandapass filters is required.

• Usually high-level algorithms for a reliable computation of
NPS involve sophisticated tracking algorithms for phase
singularities over time. These methods can be computationally
intensive and prevent real-time applications.

To tackle these problems other suitable methods for
characterizing and quantifying spatiotemporal complexity
are desired. In this article we show how a spatial and a
spatiotemporal version of PE can be used to accomplish this task.

Permutation entropy (PE, [6]) is a measure which is widely
used to analyse the complexity of time series signals. In the
cardiac community it is so far mainly used for analysis of ECG
signals, especially for the analysis of heart rate variability [7]. The
concept has already been extended to two-dimensional patterns
[8] and applied to optical imaging of cardiac cell culture [9].

Furthermore, its robustness against noise and the possibility
to study complexity on different scales will be subject to
this study. As our main motivation for the investigation of
these methods is their potential application in experiments,
we frame this numeric comparison to a realistic experimental
setting: As will be explained in section 2.6 a dataset from a
three-dimensional Fenton-Karma simulation is used to generate
“artificial camera data”. This means that we use four two-
dimensional projections of the three-dimensional simulations to
approximate an experimental camera setup. Additionally, we use
an algorithm for computing NPS which can also be employed for
experimental data. This algorithm is presented in section 2.5 and
makes use of some improved strategies to reliably detect and track
spiral waves on experimental cardiac tissue.

2. METHODS

This section will explain the concept of spatial and
spatiotemporal PE. It also intruduces a specialized algorithm for
tracking phase singularities which is used for comparison with
the permutation entropy based complexity measures. Section 2.6
describes the simulations that were used to create the two
numerical datasets which are subject of this investigation.

2.1. Permutation Entropy (PE)
PE [6, 7, 10] is a method for quantifying the complexity of a time
series using the distribution of order patterns. Order patterns are
small segments of time series of length D which are characterized
solely by the relative order of their constituents. The segments,

also called words w̃i = wi,1, . . . ,wi,D of length D, are extracted
from the original time series x1, x2, . . . , xN by taking successive
elements xi which can be separated by a time delay or lag Lt :
w̃i = xi, xi + Lt , xi + 2Lt , . . . , xi + (D−1)Lt . Using these words the
original time series can be transformed into a symbolic time
series {si} by computing the permutation index that quantifies the
relative order of the wi,j:

si =

D−1∑

j =1

(D− j)!λi,j (1)

λi,j =

D∑

k = j+1

{
1 if wi,j < wi,k

0 else
(2)

This procedure is illustrated in Figure 1A for D = 3 and
Lt = 1. PE is then defined as the Shannon entropy of the relative
frequencies pj, j ∈ {1, . . . ,D!} of the symbols si within the time
series:

H = −

D!∑

j =1

pj log2 pj (3)

2.2. Spatial Permutation Entropy (SPE)
The two-dimensional extension of PEwhich we call SPE is similar
to Ribeiro et al. [8] and has been previously applied to optical
mapping data of cardiac cell culture in Schlemmer et al. [9].
For SPE symbols are extracted from two-dimensional images as
depicted in Figure 1B by sampling words w̃i1 ,i2 of length D × D
from the two dimensional dataM ∈ R

n1×n2

w̃i1 ,i2 = mi1 ,i2 ,mi1+Lx ,i2 ,mi1+2Lx ,i2 , . . . mi1+(D−1)Lx ,i2 ,

mi1 ,i2+Lx , . . . ,mi1+(D−1)Lx ,i2+(D−1)Lx (4)

with a spatial separation Lx which replaces the one dimensional
lag. So each word contains data from a grid ofD×D points which
are separated in both directions by the spatial separation Lx. The
number of possible symbols is (D · D)! which grows very rapidly
withD. Therefore, we chooseD = 2 which leads to the simplified
form:

w̃i1 ,i2 = mi1 ,i2 ,mi1+Lx ,i2 ,mi1 ,i2+Lx ,mi1+Lx ,i2+Lx (5)

which is also shown in Figure 1B.
The grid is moved over all possible positions within the image

leading to a distribution pj of symbols si1 ,i2 which are computed
using (Equation 2). SPE is defined as the Shannon entropy
(Equation 3) of this symbol distribution.

2.3. Spatiotemporal Permutation Entropy
(STPE)
A natural extension of this approach to three-dimensional data
can be constructed by sampling the words from volumes instead
of images. This enables us to take into account spatial and
temporal dimensions at the same time. It is obvious that a lot of
different possibilities exist to actually sample three dimensional
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FIGURE 1 | Construction of temporal (A), spatial (B) and spatiotemporal (C)

PE. (D) Shows the tripod used for STPE. See text in sections 2.1, 2.2, 2.3 for

details. (A) Shows the extraction of one-dimensional order patterns from a

time series xi and the assignment to symbols si . (B) Illustrates how

two-dimensional order patterns are sampled from an individual image. The

2× 2 sampling-grid is moved over all possible positions of the image. (C)

Sketches how three-dimensional order patterns are extracted from

subsequent images which form the video under investigation.

data points. Since the number of possible symbols grows very
rapidly with the number of sampling points we restrict this
approach to a “sampling tripod” which is shown in Figure 1D.
The words are defined as:

w̃i1 ,i2 ,i3 = vi1 ,i2 ,i3 , vi1+Lx ,i2 ,i3 , vi1 ,i2+Lx ,i3 , vi1 ,i2 ,i3+Lt (6)

where V ∈ R
n1 ,n2 ,nt denotes a spatiotemporal volume with the

third axis being the temporal axis. n1 and n2 correspond to the
image size and nt is the total number of timesteps in the video.
There also exists a high flexibility in the choice of sampling
parameters for the different types of separation. We chose a
distinct spatial separation Lx and a different temporal separation
Lt . Analogous to SPE we can again assign order patterns si1 ,i2 ,i3 to
the words using (Equation 2).

The procedure for extracting three-dimensional order
patterns is sketched in Figure 1C. For computing the value of
STPE at one timestep t all symbols si1 ,i2 ,i3 from a subvolume
Vs,t ∈ R

n1 ,n2 ,ns ⊂ V of the original video are taken into account
to generate the distribution pj of symbols s for this timestep and
t ≤ i3 < t + ns. ns can be called the window size, because it
denotes the temporal size of the subvolume of the video from
which the symbol distribution is taken.

In summary the STPE method in the version described here
comprises three parameters:

• Lx: The spatial separation which selects the spatial scale for
highlighting complexity.

• Lt : The temporal lag which specifies the temporal scale taken
into account for each word.

• ns: The window size which indicates the length of the interval
analyzed by the method at a single point in time.

Scanning of all parameters has revealed that wide ranges for
Lx and Lt are possible to visualize changes in complexity for
all datasets analyzed here. The spatial separation Lx has been
found to display some fine-grained information which will be
discussed in sections 3.1, 3.4. Lt = 9 which is on the order of
a short action potential has been used in all analyses here. The
window size has an effect that is similar to a smoothing window
size: Small ns will take into account only very few timesteps and
therefore create results similar to SPE. This usually produces
strong fluctuations as the exact distribution of spatial patterns
is influenced by periodic fluctuations due to finite size effects.
Therefore it is usually desirable to tune ns to a typical periodicity
within the video, like a small multiple of the period of spiral
rotation. If ns is chosen too high, changes in complexity are
smoothed out. We use ns = 250 throughout this study.

It is interesting to notice, that the order in which the points
are sampled from the images or volumes does not change SPE
and STPE. It solely influences the assignment of the patterns to
symbols, but the distribution of symbols remains the same apart
from this change in labels. We used the forward construction for
sampling STPE which means that one sampling point is placed at
t + Lt .

2.4. Normalized Quantities
For comparing SPE and STPE obtained for different parameters,
especially different Lx, it is useful to use temporally normalized
versions of the quantities. The reason for this is that for larger
spatial separations the spatial and spatiotemporal permutation
entropies usually increase. These quantities are normalized here
by subtracting the temporal mean (MEAN) and afterwards
dividing by the temporal standard deviation (STD). For
comparison, the normalized NPS is defined analogously. So
for time series STPE, SPE and NPS we obtain the three
corresponding normalized quantities as:

nSTPE =
STPE−MEAN(STPE)

STD(STPE)
(7)

nSPE =
SPE−MEAN(SPE)

STD(SPE)
(8)
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nNPS =
NPS−MEAN(NPS)

STD(NPS)
(9)

2.5. Phase Singularity Tracking
Phase singularities (PS) are a widespread measure for the
description of complexity of excitable media. They are found at
the centers of rotation of spiral waves. In cardiac dynamics spirals
and their breakup are directly related to the onset and sustaining
of arrhythmias allowing for a straight-forward interpretation of
PS statistics in this field of research. In this formalism every
cell is assumed to undergo a phase oscillation between zero and
2π with neighboring cells typically having only a slight shift in
their respective phases. In such systems points or defects where
the phase is non-continuous are important features that follow
certain topological laws [11].

In practice, especially with a noisy signal, PS tracking is non-
trivial. Without enough smoothing an abundance of short lived
PS can skew the result. Also in practice very short lived PS are
often not of general interest, such as for example at the front
of colliding waves, while the definition of the phase itself is not
always unambiguous for high dimensional oscillators such as
cardiac cells.

Unless, or even if, strong spatiotemporal smoothing is used,
it is thus necessary to remove or ignore short lived PS as well as
to be able to track the path of PS which can, in principle, move
arbitrarily fast. Only by employing tracking reliable life times can
be defined.

2.5.1. Definition of Phase
Within cardiac dynamics two main approaches for PS detection
exist. One based on the definition of phases obtained from delay
reconstruction [2, 12] or Hilbert transform of the signal and the
other on finding of pivoting points or wave breaks based on
threshold crossings [13–15]. Further improvements have been
suggested for example by Rogers using wavefront tracking to
improve the identification of PS [16].

The difference in these approaches lies in a slightly different
phase definition. They use either a phase defined by delay
embedding or the Hilbert transform, or apply threshold crossings
which implicitly define a specific phase at the waves up- and
downstroke. In the context of a phase defined using embedding
PS are usually detected by a line integral around the current
position. When using thresholds PS are naturally found at
the end of lines of same phase given by the points where
up- and downstroke meet. Both concepts are equivalent when
interpreting the wavefront and -back each as a phase step of π .

The methodology used here is an improved detection
procedure based on the aforementioned concepts. Our method
is based on the idea that the upstroke is the single well and
clearly defined phase, though the exact classification as such will
in practice always depend on choosing some threshold. Further,
we will later assume that after each upstroke the cardiac cell has a
refractory period, removing the necessity of also reliably finding
the APD.

After possibly preprocessing with a spatial smoothing (not
done in this simulation study, see section 3.3), instead of using
thresholds to identify the upstroke we use the local maximum of

a correlation with a smooth upstroke-like wavelet (Figure 2B).
Additionally for each pixel a threshold is set, below which
a maximum is ignored, since small local maxima may arise
due to noise. During this step local maxima which are very
close are discarded picking the most prominent upstrokes first.
An example of this procedure is shown in Figure 2. After
identification the times when each upstroke occurred are stored.
This is used as input for the PS identification and tracking since
the time of the upstrokes defines a zero phase at the wavefront.

2.5.2. Tracking of PS
To track PS including their exact trajectories we now make
two additional assumptions. First, we assume that there exists a
period of time τ during which a wavefront will have traveled at
least one pixel, so a slowest reasonable conduction velocity.

For our data here, this threshold for the period of time is set to
8 frames. Second, we assume that no further upstroke will occur
within a time of 2τ , so 16 frames, so that the wavefront may be
uniquely identified as those edges where on one side activation
had occurred within the last 8 frames and on the other side
activation will occur no more than 8 frames later.

This behaves much like defining a specific zero phase at the
upstroke time and increases this phase to π within the time τ

FIGURE 2 | Sketch of the method used for defining the upstrokes. (A) The

original and noisy time trace. The dots show the final times of the upstroke

based on the noisy time trace. (B) The kernel which is correlated with the noisy

signal in (A) to find the upstroke position. (C) Result of the correlation of the

noisy signal in (A) and the kernel in (B). Local maxima identify the upstroke

position (as indicated in A). A threshold is used to ignore unclear events.
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FIGURE 3 | Sketch of the PS tracking. The plot shows a clockwise rotating spiral with the green line identifying the wave front. The spiral movement is indicated by

the arrow in the first panel. Red colors indicate those pixels that will be activated within the next five frames with the darkest red indicating activation within the next

timestep. Blue colors show those areas that were recently activated with lighter colors indicating a longer time since the last activation. PS are identified by black or

white dots. The wavefront connects a PS pair, while their possible future track is identified by a red line. In this plot τ = 5. t = 2 and 5 show the behavior at an inactive

(gray) area, t = 8 and 10 at an prematurely activated area and t = 12 at the turning point.

and to −π for times activated within τ before the upstroke. All
other times would be assumed to have phase π .

Figure 3 sketches this procedure and shows that tracking
becomes unambiguous, no matter how fast a PS moves. A
linear reentry is shown with an inactive region and an area
for which activation is delayed. Since it is known which area
will be activated within the next τ time units (red area),
the red lines surrounding the area identify the possible path
for the PS, including possible annihilation. At t = 2 the
inactive region leads to the creation of a new pair, which then
annihilates at t = 6. At t = 8 we see that a short delay in
activation times will not affect the PS positions. The PS that
could be considered existing in this area are filtered due to their
comparatively short lifespan. The activity may also be viewed
as focal or just noise. At t = 10 and 12 the black PS is
considered stationary, since slow conduction can be assumed
to be happening in vertical direction as well (activation occurs
within τ ).

Technically, this is implemented by looking τ time units into
the future and then finding the edges between the area activated
within τ using the marching squares algorithm [17]. These edges
can then be defined as either wavefront or possible future path.
In rare cases of a checkerboard like pattern, two PS within a PS
pair may lie above each other at this time and the pair is removed
immediately.

Using this method, we find all PS including their tracks
between frames and which pairs are created/annihilated. Short
lived PS (≤ τ ) are then removed in a greedy fashion starting with
the one having the shortest lifetime. Note that removing one PS
pair can increase the lifespan of another since its path may have
been broken by a short lived pair. In a last processing step PS at
an outside edge or only shortly disconnected due to noise are not
considered valid PS. For example, this step would hide the white
outer PS in Figure 3.

To summarize our method:

• After a possible spatial smoothing the upstroke time is defined
as the local maximum of its correlation with an upstroke-
like wavelet. While the action potential shape, especially close
to the PS, is typically not clear in experimental data during
ventricular fibrillation, the wavefront is still characterized by

an increase in membrane potential which is quantified by this
correlation.

• The phase is then effectively defined by the upstroke time and
assumed to advance by π each before and after the upstroke
within a constant time τ .

• τ defines a limit on the slowest wave propagation that is not
considered a new wave initiation while 2τ is the assumed
(minimal) refractory period, so that no second upstroke can
occur within this period of time. These assumptions implicitly
filter some PS with lifespan shorter then τ .

• The exact track for each PS can be defined by following the
area of next activation.

• Tracking allows for short living PS pairs to be removed starting
with the PS with shortest lifespan.

The constant τ and thus reliance on an assumed refractory period
is a certain limitation. However, we believe that all approaches
implicitly have similar limitations due to the methods of filtering
or phase definition used. Different methods of PS tracking will
behave differently especially in rare events or when it comes to
the exact position of a non-stationary PS.

In general, however, we believe that the approach described
here is comparably robust and allows for a straight forward
tracking of PS movement over time with clear assumptions about
how the phase behaves after an upstroke.

2.6. Numerical Simulations
Episodes of ventricular fibrillation have been simulated on
a realistic rabbit heart geometry obtained from a previously
recorded computer tomography scan (CT scan). A system of
coupled reaction-diffusion equations was used to describe the
evolution of the membrane potential Vm which determines the
electrical excitation patterns in the heart, where the Fenton-
Karma model [18] was used to model the local cell dynamics:

∂Vm

∂t
= D1Vm − Iion(Vm, h)/Cm, (10)

∂v

∂t
= 2(Vc − Vm)(1− v)

(
2(Vm − Vv)

τ−v1
+

2(Vv − Vm)

τ−v2

)

− 2(Vm − Vc)
v

τ+v
, (11)
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∂w

∂t
= 2(Vc − Vm)

1− w

τ−w
− 2(Vm − Vc)

w

τ+w
. (12)

with the diffusion constant D = 3.8 × 10−2cm2/s and the
electrical capacitance of the membrane per surface area of the cell
membrane Cm = 1µF/cm2. The ionic currents in Equation (10)
are given by

Iion(Vm, v,w) = −Jfi(Vm, v)− Jso(Vm)− Jsi(Vm,w), (13)

with

Jfi(Vm, v) = −
v

τd
2(Vm − Vc)(1− Vm)(Vm − Vc), (14)

Jso(Vm) =
Vm

τ0
2(Vc − Vm)+

1

τr
2(Vm − Vc), (15)

Jsi(Vm,w) = −
w

2τsi

(
1+ tanh

[
k(Vm − Vsi

c )
])
. (16)

The parameter set shown in Table 1 (taken from [19]) depicts the
chosen parameters, which promote spiral wave break-up. During
the simulations, snapshots of the membrane potential Vm were
taken each 10 time units (=̂ 1 frame).

2.6.1. 3D Simulation Dataset
For the first dataset which we will refer to as the 3D simulation,
Equations (10)–(12) were solved on a regular grid with a grid size
of (Nx, Ny, Nz) = (151, 165, 130) (with a grid spacing of h =

0.013cm) using an explicit Euler scheme. A time constant of dt =
0.1 was used, where one time unit may be interpreted as 1 ms
for this model and parameter set. The diffusion and grid spacing
were chosen to allow a realistic number of filaments to develop.
No-flux boundary conditions at the irregular boundary of the
realistic heart geometry have been implemented using the phase
field method [20, 21]. During the simulations, the sinus rhythm
was modeled by local stimuli at the apex of the heart. Episodes of
spatio-temporal chaos were then initiated by the application of a
far field shock. With the proper timing of this shock, the induced

TABLE 1 | Parameters used for numerical simulations of the Fenton-Karma

model.

Parameter Value

τ+v 3.33

τ−v1 15.6

τ−v2 5

τ0 9

τr 34

τsi 26.5

τ+w 350

τ−w 80

τd 0.407

Vsic 0.45

Vc 0.15

Vv 0.04

This is parameter set five taken from Fenton et al. [19] and promotes spiral wave break-up.

excitation wave creates spiral waves by the interaction with the
refractive back of the plane wave which originated from the
sinus rhythm. The surface activity was determined by detecting
the outer layer of the simulation geometry, and then extracting
the excitation patterns from four directions. By this procedure,
the surface activity of two opposing directions complement each

FIGURE 4 | Sketch showing the four different camera perspectives in relation

to the heart. LV indicates the position of the left ventricle and RV the position of

the right ventricle.

FIGURE 5 | Snapshots of the 3D simulation. (A) Camera 1 at frame 560

showing complex wave activity. (B) Camera 1 at frame 3000 showing plane

waves. (C,D) Same as A,B, but with noise added at noise level two. (E,F)

Frames 560 and 3000 seen by camera 2. Camera 2 is facing a spiral wave at

frame 3000 which causes plane wave activity seen in B.
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FIGURE 6 | (A) nSTPE displayed for different values of the spatial separation in a spectrogram-like view. (B–E) Show the time series for STPE at different values of the

spatial separation together with NPS (gray). The values of Lx are given in the subfigure legends respectively. NPS has been smoothed using a moving average filter

with a width of 155 frames.

other to the full surface activity. Thus, neighboring directions
cover partially the same excitation activity. In analogy to the
experimental setup the different directions are referred to as
camera 1–4. A sketch of the setup is shown in Figure 4.

2.6.2. 2D Simulation Dataset
For the second dataset which we will refer to as the 2D
simulation, parameters identical to the 3D version were

used. The simulation grid was (Nx, Ny) = (400, 400) with
the same time step and grid spacing as before. Boundaries
were implemented as no-flux boundary conditions and a
circular inhomogeneity of radius 60 placed into the center
and implemented using the phase field method [20, 21].
A single spiral wave was initiated and simulated for a
transient of 5,000 time units before the actual simulation
started.
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2.6.3. Noise
For the investigation of the effect of noise on the quantities
in section 3.3 uniformly distributed random numbers r ∈

[−0.5, 0.5) have been added to Vm as:

Vm,a = Vm + r · a (17)

We will refer to the two noise amplitudes a = 1 and a = 2
as noise level one and two, respectively. Note that Vm is scaled
between zero and one in the model.

The motivation for using this implementation of noise is that
we want to investigate the effect of measurement noise which
typically arise from optical instruments and camera chips. We
explicitly do not want to investigate dynamical noise whichwould
influence the evolution of the model differential equations, as
this would lead to different and possibly more complex types of
arrhythmia. Furthermore, we do not expect dynamical noise to
have a strong influence on the comparison of the methods for
quantifying complexity.

3. RESULTS

3.1. Parameter Scan of the Spatial
Separation
In this section the effect of varying the spatial separation
is investigated using the 3D simulation dataset which was
introduced in section 2.6.1. Figure 5 shows snapshots of the 3D
simulation.

Figure 6 shows the result of STPE applied to the simulated VF
using camera one. In order to show the effect of different values
for the spatial separation Lx a spectrogram-like display has been
created where the spatial separation is aligned on the y-axis and
each row is one time series of nSTPE calculated using this value
of Lx. Figures 6B–E show the time series for (non-normalized)
STPE for different values of the spatial separation Lx.

For comparing the complexity as measured by STPE to a
standard measure, NPS has been plotted in gray in Figures 6B–E.
NPS can fluctuate heavily, therefore it has been smoothed here
using a moving average filter with a width of 155 frames. It can
be seen that starting from a spatial separation of Lx = 2 a drop
in complexity around frame 2,700 is detected which corresponds
to a drop in NPS to zero around the same time. A second very
dominant drop in STPE is found around frame 1,000 which is
in accordance with NPS which also drops to zero around the
same time. In general the match between STPE and NPS seems
to be quite good, although some differences are visible especially
during the initial period of the simulation and at the end of the
video.

The differences for different levels of Lx are not very
pronounced for this dataset. However, the possibility to detect
complexity at different scales can be a valuable feature of
this method. Another example of a STPE spectrogram where
differences between the different scales are visible is presented in
section 3.4.

3.2. Comparison to SPE and NPS
To compare STPE, SPE, and NPS, the time series of these
quantities have been plotted for each camera of the 3D

FIGURE 7 | NPS, SPE, and STPE for the four different cameras of the 3D

simulation. The spatial separation was fixed to Lx = 14. (A) NPS, smoothed

with a running average filter with a width of 155 frames. (B) The raw SPE time

series are displayed transparently in (B) in the background. Smoothed time

series of SPE are plotted in the foreground. A running average filter with a

width of 155 frames has been used. (C) shows the STPE time series.

simulation individually in Figure 7. NPS is smoothed with
a running average filter with a width of 155 frames. NPS
shows that the simulation contains varying complexity in all
four camera videos. One special feature is the relatively long
period of low complexity starting from approximately frame
2,700. It is visible that camera one (blue) and four (red)
record an NPS of zero during this period. The value of
NPS as seen from camera three (green) is between zero and
one and the value of NPS for camera two (orange) remains
approximately one at the same period indicating that one spiral
is seen on camera two and partly on camera three while
the other cameras register plane waves emerging from that
spiral.

SPE shows a strongly fluctuating signal which is the reason
why for easier interpretation the raw signal has been plotted
transparent in the background with a smoothed version of SPE
as a thick solid line. The smoothing has been applied using an
running mean filter with window length of 155 frames. SPE also
registers that during the long low complexity period camera four
and partly also camera three and one reveal a low complexity
period. At the same time SPE assigns a high complexity for
camera two.

STPE shows a very pronounced drop in complexity for camera
four and camera three at the long low complexity period, a much
less pronounced drop in complexity for camera one and a high
complexity in camera two. Similar to SPE also STPE assigns a
higher value of complexity to camera one than to camera three
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FIGURE 8 | Comparison of NPS, SPE, and STPE under the influence of noise for the case of the 3D simulation dataset. The left column shows the plain quantities

without normalization. The right column shows the quantities again with normalization applied. (A,B) The sum of the NPS over all cameras. (C,D) Mean of SPE and

nSPE over all cameras. (E,F) Mean of STPE and nSTPE over all cameras. STPE and SPE were computed with Lx = 14 for this comparison.

which is different to the information extracted from NPS during
this period of time. This is a hint that in fact different information
than mere information about spiral waves is extracted by the
spatial- and spatiotemporal PE.

3.3. Robustness Against Noise
For testing the robustness against noise for SPE and STPE
noisy versions of the 3D simulation datasets have been
generated as described in section 2.6.3. Figure 8 shows the
result of applying NPS, SPE and STPE to the dataset with
noise. As a simplification the results are not shown for each
camera separately, but the sum of NPS over all cameras
and the mean of the permutation entropy quantities are
shown. In this case both are displayed, the plain quantities

and the normalized quantities which had been introduced in
section 2.4.

Our implementation of the NPS detection struggles to find
PS in the presence of stronger noise (see also the comments
in section 3.5.). While for noise level one (see section 2.6.3 for
definitions) it is still possible to identify a period of time around
frame 3,000 with less PS, this feature is completely gone for noise
level two. As visible in Figure 8A the total number of PS increases
strongly. In real applications this problemmay bemitigated using
smoothing.

SPE and STPE which are displayed in Figures 8C,E generally
increase in absolute values. This can be explained by the fact that
higher noise leads to a higher variety of order patterns resulting
in a flatter distribution for pj in Equation (3). However, it is still
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possible to identify all features from the video without noise from
the noisy data using the normalized versions of SPE and STPE.
Especially in case of nSTPE in Figure 8F all three curves seem to
overlap almost perfectly.

3.4. STPE Spectrogram for the 2D
Simulation
In order to demonstrate that STPE can be tuned to detect
complexities at different scales a parameter scan similar to the
one in section 3.1 has been used to generate a STPE spectrogram.
This time the method has been applied to the 2D simulation
dataset described in section 2.6.2. To illustrate the activity visible
in the simulation dataset snapshots are presented in Figure 9.
This dataset features many interactions between spiral waves
and different levels of complexity. Starting from approximately
frame 3,740 only one spiral wave, which is pinned to the circular
heterogeneity in the center, remains.

The STPE spectrogram is visible in Figure 10. This time in
addition to the overview of different nSTPE at specific values
of Lx in A, and four different excerpts of STPE at some scales,
the four snapshots of the simulation which are displayed in
Figures 9A–D are marked in Figure 10A as blue vertical lines
with the corresponding letter.

It can be seen that the main transition in complexity, the
takeover of one pinned spiral at the end of the simulation close
to frame 3,700, is clearly visible on all scales. Furthermore it can
be seen that the different scales are similar in many features. For
example the two periods of high complexity around frames 600
and 2,200 are present in all scales analyzed here. Out of the four
excerpts, the one for Lx = 29 seems to match the NPS time series
best, but the complexity measured by NPS has a lot of similarity
with all excerpts of STPE here.

Two very important differences among the different scales
seen here are the drop in complexity at small scales approximately
at frame 1,221 marked with the blue B and the big kink for STPE
for Lx > 80 around frame 1,764 marked with the blue C. The
former feature is not visible in STPE at larger scales while the
latter low complexity phase is only reflected in larger scales.

3.5. Speed of Computations
For practical applications speed of computations of the specific
methods are highly relevant. The algorithms involved in this
article are written in Python using NumPy [22] and SciPy [23].
The implementations of SPE and STPE are written in Cython
[24] which generates C code that is afterwards compiled to binary
code. The algorithm requires only a single pass over the data
and only few basic operations making the compiled code very
efficient. The application of the PS analysis involves tracking of
PS (see section 2.5.2) which becomes inefficient in the case of
a large number of PS. Therefore, this method suffers a lot from
noisy data which may in practice be smoothed, but kept here for
demonstrational purposes. For comparison, our implementation
needs approximately 6 min to identify and track the singularities
for the 2D simulation dataset (without noise).

In contrast the speed of computation of SPE and STPE is
independent of noise. For the 2D simulation dataset computation
of SPE takes approximately 4.3 s and STPE needs less than

FIGURE 9 | Snapshots showing different regimes of complexity in the 2D

simulation dataset. The white circle in the center is a non-conductive

heterogeneity. (A) Frame 510 showing lots of interacting spiral waves.

(B) Frame 1221 is taken from a regime with two spirals pinned to the

heterogeneity and some remaining complex activity in the top right quadrant.

(C) In frame 1764 several spiral waves contained mostly in the lower left

triangle of the domain generate synchronized plane wave activity that travels to

the upper right corner. (D) A single pinned spiral wave remains until the end of

the video. This snapshot shows frame 4500.

5 s. These values have been obtained using an Intel R© CoreTM

i7-7500U processor at 2.7 GHz (Turbo Boost until 3.5GHz).

4. DISCUSSION

In this article we have presented a detailed analysis of simulated
excitable media using SPE and STPE as complexity measures.
Because phase singularities can be thought of as the structuring
elements of spiral-wave activity on the heart [1] we use it as the
baseline for our comparisons.

We find that SPE and STPE can extract complexity
information from simulated excitable media which partly
corresponds to information extracted by PS analysis.

While the overlap between NPS and the spatial- and
spatiotemporal PE is very high in many cases, some differences
can be seen which stem from the fact that the PE quantifies the
distribution of patterns on the medium and does not favor a
specific type of phenomenon such as spiral waves.

We furthermore demonstrated that both, SPE and STPE
are very robust under the influence of noise without any
computational performance penalty. NPS, in contrast, breaks
down for high levels of noise while becoming computationally
even more demanding.

It was shown that STPE reveals different levels of complexity
at different scales highlighting the possibility to tune it to specific
patterns of interest.
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FIGURE 10 | STPE spectrogram and excerpts for the 2D simulation. (A) nSTPE displayed for different values of the spatial separation in a spectrogram-like view. The

blue lines annotated with blue letters mark the frames which are shown in Figures 9A–D. (B–E) Show the time series for STPE at different values of the spatial

separation together with NPS (gray). NPS has been smoothed using a moving average filter with a width of 155 frames.

In-depth interpretations of the exact levels of complexity at
specific scales will require further analysis not covered by this
article. However, we conclude that especially STPE provides

a very good, fast, and robust alternative for distinguishing
high complexity and low complexity periods. The larger
speed may especially be relevant in an experiment where
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time consuming PS analysis is not feasible. Even in a
computational context permutation entropy provides a different
approach for complexity estimation and comparison with other
methods such as Lyapunov dimensions may be interesting,
although they are not reliably available for experimental
data.

Especially the low susceptibility to noise of SPE and STPE
make them suitable for the analysis of massive data from ex-
vivo experiments. We plan to apply these methods to recordings
of ex-vivo hearts obtained in optical mapping experiments. For
these data SPE and STPE can provide a complexity marker
additional to phase singularity analysis which will be used
for investigating the onset of arrhythmia, the mechanisms of
termination and the analysis of complexity variations [25]. We
plan to also adapt these methods to other types of signals
from cardiac research. In particular the application to ECG
signals involving multiple channels, where the low spatial
resolution renders phase singularity analysis impossible, might
be promising. In addition to the application to multichannel
ECG, also investigations of the atrium with basket catheters may
allow the transfer of SPE and STPE analysis to clinically relevant
settings.
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