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Evapotranspiration (ET) is a central flux in the hydrological cycle. Various approaches to compute ET via energy
balance models exist, but their handling is often complex and challenging. We developed QWaterModel as an
easy-to-use tool to make ET predictions available to broader audiences. QWaterModel is based on the DAT-
TUTDUT energy balance model and uses land surface temperature maps as an input. Such maps can e.g. be
obtained from satellite, drone or handheld camera imagery. In the present study, we successfully tested QWa-
terModel for predicting ET in a tropical oil palm plantation against the well-established eddy covariance method.
QWaterModel is compatible with all versions of QGIS3 and is available from the official QGIS Plugin Repository.

1. Introduction

Evapotranspiration (ET) is the combined water flux of evaporation
from soil, plant and water surfaces as well as transpiration from plants
(Allen et al., 1998). Terrestrial ET is a major flux in the hydrological
cycle consuming about 60% of terrestrial precipitation (Oki and Kanae,
2006). Associated with climate and land-use change, major trans-
formations in the global hydrological cycle are projected; therefore, a
broad understanding and knowledge of ET and its patterns are of
paramount importance (Kaushal et al., 2017; Ziegler et al., 2003). The
current understanding of how ecosystems respond to such changes is
limited by insufficient monitoring capabilities (Fisher et al., 2017). The
development of effective adaption strategies for agriculture, ecosystems
and water management will depend on the availability of ET assessment
schemes that can be readily applied from local to global scales (Fisher
et al., 2017). ET can be measured locally using e.g. the eddy covariance
method or estimated at larger spatial scales by applying energy balance
models. For many energy balance models remotely-sensed land surface
temperatures (LST) are used as principal input, therein assuming that
hot pixels are the result of low ET and cold pixels indicate high ET
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(Timmermans et al., 2015). Current developments such as increasing
computation power, extensive availability of free satellite imagery (e.g.
from Landsat 7 and 8) and a large variety of portable thermal cameras
that can be attached to drones or used as handheld devices foster the use
of energy balance modeling for ET estimation (Hoffmann et al., 2016;
Maes and Steppe, 2012; Timmermans et al., 2015; Xia et al., 2016).
However, most energy balance models are complex and their imple-
mentation requires advanced programming skills and technical exper-
tise, which constitutes a barrier for the application of energy balance
models for ET estimation.

To overcome this barrier, we developed the QGIS plugin ‘QWa-
terModel’, which addresses the following objectives: to facilitate the use
of energy balance and evapotranspiration modeling, to take LST images
and maps from a wide range of sources including satellites, planes,
drones and handheld thermal cameras as input, to reduce the use of
complementary data to a feasible level and to use a documented open
source structure to encourage further development. In the present study,
we explain and test key-features of QWaterModel in a scientific context,
using exemplary LST data from different sources recorded in an oil palm
plantation in Indonesia to compute ET estimates. We then compare the
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@ QwaterModel X

Model | Info

Define input/output files and time (minimum requirements) A
Select input raster

Select output raster
Select output file

Coordinated Universal Time UTC | 2017-08-05T06:00:00

Define model parameters (optional) B

Min. Temp. [K] Percentile Min. Temp. |0.5

Max. Temp. [K] Percentile Max. Temp. | 100
Short-wave irradiance [W/m?]

Net radiation [W/m?3]

Gound heat flux % 10
Atmospheric transmissivity 0.7
Atmospheric emissivity 0.8
Surface emissivity 1.0
Define location parameters manually (optional) C

Measured longitude [dec]
Measured latitude [dec]

Altitude above sealevel [m]

Define evapotranspiration parameters D
Time period [s] 3600

Air temperature (optional) [K]

Cancel

@ QWaterModel X
Model | Info

QWaterModel is a simple tool to calculate evapotranspiration |
from thermal images.

QWaterModel in a nutshelk

This tool provides a simple workflow to calculate
evapotranspiration from land surface temperature maps. It is
based on the energy balance model DATTUTDUT (Deriving
Atmosphere Turbulent Transport Useful To Dummies Using
Temperature) (Timmermans et al., 2015). Thermal maps from a
wide range of sources induding satellites, drones and handheld
thermal cameras can be used as input.

Index:

1. How to run QWaterModel

2. How to cite the use of QWaterModel

3. More information

4. References

1. How to run QWaterModek

To run QWaterModel please open the tab Model

1.1 Minimum requirements:

1.1.1 Select an input raster:

This raster should be a one-band .tif file with a single
temperature value per pixel in Kelvin, If possible try to use a .tif
file that has been georeferenced before. If this is not possible
(e.g. because the footprint of the temperature map is too
small) you can define the location parameters in a later step.
Example data is provided for download from this source:

https://github.comFloEll JQWaterModel/tree /master/
Data_Examples

1.1.2 Select an output raster:

Define a location where the output raster is stored. The output
raster will be a six band raster containing the following data:

Band 1: net radiation Rn [W/m?]

Fig. 1. Both tabs of the graphical user interface (GUI) of the plugin version 1.0 with the ‘Model’-tab input boxes highlighted in red.

ET predictions from the plugin with simultaneous ET reference mea-
surements with the well-established eddy covariance method.

2. Methods
2.1. Software design

To facilitate the use of energy balance modeling for ET estimation for
a broad audience, we chose QGIS3 (QGIS Development Team, 2020) as a
platform. QGIS is a free and open source geographic information system
that provides a versatile environment for work flows with spatial data
such as LST maps. It offers subsystems for data input and management,
analysis, easy visualization of spatial data, has a large community of
developers and is supported by most operating systems (Bhatt et al.,
2014; Criollo et al., 2019). The use of QGIS is frequently taught in sci-
entific institutions and its functionality can be extended with a large
variety of available plugins. For example, the WET (Water Ecosystems
Tool) plugin (Nielsen et al., 2017) provides easy access to complex
watershed modeling. To our knowledge, no such easy-to-use plugins
exist in the QGIS environment for instantaneous flux modeling or ET
prediction. The presented plugin, QWaterModel, was developed to fill

this gap. It is based on the energy balance model DATTUTDUT (Deriving
Atmosphere Turbulent Transport Useful To Dummies Using Tempera-
ture) (Timmermans et al., 2015), which uses LST maps as main input
and, except for time and location of the LST recording, requires no
further input of ancillary data. In the original DATTUTDUT model the
radiation budget is simply modelled from a set of parameters and
sun-earth geometrics (Timmermans et al., 2015). This approach works
well for cloud-free conditions. For a broader usability under conditions
of cloudy skies and high relative air humidity we extended this original
model concept, giving the user the possibility to configure model pa-
rameters according to in-situ field measurements. The radiation budget
can be complemented by measurements of short-wave irradiance or net
radiation at the study sites via manual input. The DATTUTDUT model
has successfully been tested for a broad range of LST input types, from
satellite recorded images (Timmermans et al., 2015) to plane and drone
recorded images (Brenner et al., 2018; Xia et al., 2016). The plugin was
built using Plugin Builder 3.2.1 (GeoApt, 2019) and Plugin Reloader
0.7.9 (Juriel, 2020). We used Qt Creator 4.11.0 (The Qt Company, 2020)
to develop the graphical user interface (GUI) and Python 3.8 with the
QGIS3/Python standard libraries (gdal, math, numpy, datetime and os)
for the associated functionality.
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Detailed installation instructions and the source code can be found
on: github.com/FloEll/QWaterModel/blob/master/README.md.

2.2. Application and testing

To test the plugin, we used data recorded in a mature monoculture
oil palm (Elaeis guineensis Jacq.) plantation located in the lowlands of
Sumatra (Jambi province, Indonesia, 103.3914411 E, —1.6929879 N,
76 m a.s.l., see Meijide et al. (2017) for further details). We exemplarily
use LST recordings from two independent sources (drone and handheld
camera) to test the QWaterModel plugin against eddy covariance
reference measurements:

1. Images recorded with an octocopter drone (MK EASY Okto V3;
HiSystems, Germany) equipped with a radiometric thermal camera
FLIR Tau 2 640 (FLIR Systems, USA) attached to a TeAx Thermo-
capture module (TeAx Technology, Germany). The data have a
spatial resolution of 0.2 m and cover a footprint of 0.8 ha and are
thus suitable for tree-scale to stand-scale assessments of ET. 13 im-
ages from 09:00 to 15:00 h local time on 7% of August 2017 were
recorded in 30 min intervals.

2. Images taken from a tower at 10 m above the canopy with a handheld
Fluke ti100 thermal camera (Fluke Systems, USA). The data have an
approx. spatial resolution of 0.06 m and a footprint of 0.006 ha and
are thus suitable for leaf to canopy assessments of ET. 5 images from
11:00 to 15:00 h on 7™ of August 2017 were taken in 60 min
intervals.

Data are provided for download at: github.com/FIoEll/QWaterModel/
tree/master/Data_Examples

We did not include satellite images into this study since this was
already included in the original DATTUTDUT model study (Timmer-
mans et al., 2015). In addition, satellite (Landsat 7 and 8) recorded LST
maps for our study region contain a very high cloud cover fraction (for
2017: min. 23%, mean 72%, max. 100%). Our study thus focuses on
drone and handheld thermal camera acquired images.

A widely accepted ground-based reference method for ET assess-
ments is the eddy covariance method, which provides measurements of
ET at the stand-scale. Eddy covariance data at the oil palm site was
recorded, filtered and processed according to the methodology
described in Meijide et al. (2017). Because the energy-balance model
used in the plugin assumes full energy balance closure, eddy covariance
data was processed using the Bowen ratio closure method (Pan et al.,
2017; Twine et al., 2000). Horizontal energy flows or incomplete energy
balance closure might introduce certain errors to this reference method
(Loescher et al., 2006). To derive ET from latent heat fluxes, latent heat
of vaporization was calculated using in-situ air temperature measure-
ments for eddy covariance measurements and the lowest pixel temper-
atures from the LST maps for the plugin estimates following the
methodology described in Timmermans et al. (2015).

3. Results
3.1. Software implementation results

The QWaterModel plugin can be installed from the official QGIS3
python plugin repository. The plugin GUI consists of a main window
with four different input sections (A, B, C, D, Fig. 1) and an information
window, which are both organized using tabs. In the main window,
section A contains the inputs that are essential for the plugin to work
with in a minimal data approach: a thermal image with temperatures in
Kelvin (e.g. from satellite, drone or handheld camera), the definition of
an output raster and an output file where key statistics will be summa-
rized, and the coordinated universal time (UTC) when the picture was
taken. Providing information in boxes B, C and D is optional, but may
improve the quality of the ET estimates. The default values that are
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Fig. 2. The ET modelling workflow with input and output examples. The input
files are one-layer.tif files where each pixel contains a temperature value in
Kelvin. The output files are raster files with 6 bands of which the ET estimates
are contained in the 6th band, which is presented separately in the lower
panels. ET was extracted from the 6-band output raster using the Rearrange
Bands tool from the Processing Toolbox in QGIS 3.10.

visible in the input fields of box B are taken from Timmermans et al.
(2015) and can be adjusted if more local data are available from field
measurements or previous studies. The info tab offers detailed infor-
mation on input, output and usage of the plugin. The plugin outputs a
raster with 6 bands (net radiation Rn [W rn’Z], latent heat flux LE [W
m_z], sensible heat flux H [W m_z], ground heat flux G [W m_z],
evaporative fraction EF in [%] and evapotranspiration ET [mm/time
period]). Input raster details and output statistics are stored in a.csv file.

Fig. 2 shows a workflow example with LST data from different
sources, i.e. recorded from drone and handheld thermal camera and the
corresponding output.

3.2. Software experimental testing results

Land surface temperatures differed with the time of recording.
Thermal variability was high in both drone and handheld camera

Table 1
Input key-values of land surface temperatures from both sources.

Temperatures Drone (13 maps) Handheld camera (5 maps)
Mean Temp. [K] 298.3-305.5 300.8-308.3
Minimum Temp. [K] 297.2-303.0 299.6-305.5
Maximum Temp. [K] 301.2-325.1 302.4-317.0
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Fig. 3. Temporal comparison of measured reference ET (eddy covariance) and estimated ET from different LST sources during the course of a day.
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Fig. 4. Comparison of measured reference ET (eddy covariance) and estimated ET from different LST sources; metrics on the respective relationships are provided

in Table 2.

Table 2

Key metrics of linear regressions between in-situ measurements and model
output for different data input options (a-c) and recording methods (handheld
thermal camera and drone).

Metrics (a) minimal data (b) with short wave (c) with net
irradiance radiation
handheld drone  handheld drone handheld  drone
r 0.61 0.66 0.96 0.88 0.95 0.89
MAE 0.17 0.2 0.1 0.11 0.05 0.1
RMSE 0.19 0.23 0.12 0.14 0.06 0.14

obtained maps (Table 1). To compare the ET estimates from drone and
handheld thermal camera maps with a measured reference, we plotted
them against the daily course of eddy covariance derived ET values
(Fig. 3) and into a scatterplot comparing measurements and predictions
of ET (Fig. 4).

Applying the energy balance model in its original version with
minimal data input resulted in overestimations of ET during the morning
and afternoon hours, but in acceptable estimates around noon (Fig. 3a).
Errors were smaller for the estimates based on handheld camera pictures
than on drone recordings (Table 2). More precise results were achieved
by adding measured short-wave irradiance (Fig. 3b) or net radiation
measurements (Fig. 3c) to the model inputs, i.e. ET estimates closely
follow the reference method if additional radiation data is supplied. The
handheld thermal camera maps generally produce slightly more
congruent results with the eddy covariance measurements than drone

maps; therein, around noon ET estimates from drone maps are slightly
higher than eddy covariance ET measurements. In the minimal data
approach, ET predictions are most congruent with eddy covariance
measurements when ET is high (Fig. 4a), while in contrast predictions
are most congruent at low ET when measurements of short-wave irra-
diance or net radiation are used in the model (Fig. 4b and c). Congruence
generally increases with increasing measurement-based input; errors are
thus smallest for models computed with directly measured net radiation
(Table 2).

4. Discussion and conclusions

The QWaterModel plugin is an easy-to-use open-source tool for
predicting evapotranspiration from land surface temperatures. It is
aimed at applications in ecology, bioclimatology and land-use science,
but is also useful for a broader utilization including hydrological and
ecosystem management. It offers a link between science and practical
application of energy balance modelling for ET prediction. Meeting our
objectives, a variety of LST data from very different sources and spatial
extends can be used as input and complementary data input re-
quirements were kept at a minimum level. The case study showed that
images taken at the same time but with different camera setups (drone
and handheld) result in comparable results for ET estimates and show
high congruence with reference eddy covariance measurements.
Because in the minimal data approach the radiation budget is calculated
from sun-earth geometry, clouds and relative humidity or haze are not
considered. This explains the overestimation of ET in the morning and
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afternoon hours (Fig. 3a). In-situ measurements of short-wave irradi-
ance or net radiation significantly improved the ET estimates (Fig. 3b
and c). Similar observations were made in other studies e.g. on European
grasslands where additional short-wave irradiance measurements
improved the overall accuracy of the DATTUTDUT model (Brenner
et al., 2018). A method comparison of the DATTUTDUT model with the
eddy covariance method over varying weather conditions and day times
showed the general applicability of this approach in the tropics and
suggested no difference between drone-based and eddy covariance
method for certain configurations (EllsaBer et al., submitted). However,
even when using measured short-wave or net radiation, ET estimates
based on drone recorded LST data showed overestimations around noon,
which did not occur in the estimates based on handheld images. A
possible reason is the presence of artefacts (e.g. roofs, cars, rocks) in the
drone images, which have a much larger footprint than the handheld
images. Temperatures on such non-canopy components can differ
greatly from surface temperatures of vegetation, and these temperature
outliers have a strong effect on the quality of predictions. This was also
observed in a study with big temperature differences conducted in
vineyards (Xia et al., 2016). A potential solution would be to manually
exclude known artefacts from the images before analysis or to manually
define minimal and maximal temperatures in the GUI of the plugin.
Unfortunately, no matching satellite images were available for the time
and date when drone and handheld camera maps were recorded there-
fore further analyses are not performed in this study. This should be
followed up upon in future studies, even though a major restriction in
our study region is that satellite images are generally hard to acquire
since a considerable cloud cover is present on most days of the year. A
further challenge is the fixed overpass time of satellites, which is often
not around noon and therefore not ideal for ET derivation (Delogu et al.,
2012). To overcome these limitations, complementary ET methods from
planes, drones and handheld or fixed thermal cameras can potentially be
calibrated against simultaneously acquired satellite images (e.g. using
QWaterModel) and then be applied to increase temporal and spatial
coverage.

The scatterplots reveal a gap between lower and higher ET estimates
(Fig. 4b and c). This gap and its absence in the ET estimates based on
modelled Rn in Fig. 4a demonstrates the effects of clouds on prediction
accuracy. If clouds are present, and measurements of short-wave irra-
diance or net radiation can represent this adequately in the model, ET
estimates are clearly lower than with the Rn modelling approach.

Future improvements of the software could include a referencing
tool that links ground measurements of hot and cold surfaces with LST
data. This would allow for a simple radiometric correction of LST images
and maps. To make the plugin applicable to the needs of a broader range
of users, upcoming versions could further include other LST map-based
indices such as the CWSI (crop water stress index) (Bian et al., 2019; Idso
et al., 1981; Jones, 2014). We appreciate all user input and ideas to
further develop the plugin and encourage to modify the plugin for other
ET related applications or to report bugs via our bug tracker. In the
present study, the software was only tested at one site, a commercial
monoculture oil palm plantation in lowland Sumatra. We strongly
encourage the testing and use of the software in other climatic regions
and on other crop and ecosystem types for further validation.

We provide the source code for the plugin and plan to consistently
add more functionality to the QWaterModel.

5. Software availability

Name of Software: QWaterModel.

Software version: 1.0.

Developers: Florian EllsaBer;

Software license: GNU - General Public License;

Contact Address: Tropical Silviculture and Forest Ecology, University
of Gottingen, Biisgenweg 1, 37077 Gottingen, Germany.

Email: fellsae@gwdg.de.
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Availability: plugins.qgis.org/plugins/qwatermodel github.com/
FloEll/QWaterModel.
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