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A B S T R A C T   

Evapotranspiration (ET) is a central flux in the hydrological cycle. Various approaches to compute ET via energy 
balance models exist, but their handling is often complex and challenging. We developed QWaterModel as an 
easy-to-use tool to make ET predictions available to broader audiences. QWaterModel is based on the DAT-
TUTDUT energy balance model and uses land surface temperature maps as an input. Such maps can e.g. be 
obtained from satellite, drone or handheld camera imagery. In the present study, we successfully tested QWa-
terModel for predicting ET in a tropical oil palm plantation against the well-established eddy covariance method. 
QWaterModel is compatible with all versions of QGIS3 and is available from the official QGIS Plugin Repository.   

1. Introduction 

Evapotranspiration (ET) is the combined water flux of evaporation 
from soil, plant and water surfaces as well as transpiration from plants 
(Allen et al., 1998). Terrestrial ET is a major flux in the hydrological 
cycle consuming about 60% of terrestrial precipitation (Oki and Kanae, 
2006). Associated with climate and land-use change, major trans-
formations in the global hydrological cycle are projected; therefore, a 
broad understanding and knowledge of ET and its patterns are of 
paramount importance (Kaushal et al., 2017; Ziegler et al., 2003). The 
current understanding of how ecosystems respond to such changes is 
limited by insufficient monitoring capabilities (Fisher et al., 2017). The 
development of effective adaption strategies for agriculture, ecosystems 
and water management will depend on the availability of ET assessment 
schemes that can be readily applied from local to global scales (Fisher 
et al., 2017). ET can be measured locally using e.g. the eddy covariance 
method or estimated at larger spatial scales by applying energy balance 
models. For many energy balance models remotely-sensed land surface 
temperatures (LST) are used as principal input, therein assuming that 
hot pixels are the result of low ET and cold pixels indicate high ET 

(Timmermans et al., 2015). Current developments such as increasing 
computation power, extensive availability of free satellite imagery (e.g. 
from Landsat 7 and 8) and a large variety of portable thermal cameras 
that can be attached to drones or used as handheld devices foster the use 
of energy balance modeling for ET estimation (Hoffmann et al., 2016; 
Maes and Steppe, 2012; Timmermans et al., 2015; Xia et al., 2016). 
However, most energy balance models are complex and their imple-
mentation requires advanced programming skills and technical exper-
tise, which constitutes a barrier for the application of energy balance 
models for ET estimation. 

To overcome this barrier, we developed the QGIS plugin ‘QWa-
terModel’, which addresses the following objectives: to facilitate the use 
of energy balance and evapotranspiration modeling, to take LST images 
and maps from a wide range of sources including satellites, planes, 
drones and handheld thermal cameras as input, to reduce the use of 
complementary data to a feasible level and to use a documented open 
source structure to encourage further development. In the present study, 
we explain and test key-features of QWaterModel in a scientific context, 
using exemplary LST data from different sources recorded in an oil palm 
plantation in Indonesia to compute ET estimates. We then compare the 
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ET predictions from the plugin with simultaneous ET reference mea-
surements with the well-established eddy covariance method. 

2. Methods 

2.1. Software design 

To facilitate the use of energy balance modeling for ET estimation for 
a broad audience, we chose QGIS3 (QGIS Development Team, 2020) as a 
platform. QGIS is a free and open source geographic information system 
that provides a versatile environment for work flows with spatial data 
such as LST maps. It offers subsystems for data input and management, 
analysis, easy visualization of spatial data, has a large community of 
developers and is supported by most operating systems (Bhatt et al., 
2014; Criollo et al., 2019). The use of QGIS is frequently taught in sci-
entific institutions and its functionality can be extended with a large 
variety of available plugins. For example, the WET (Water Ecosystems 
Tool) plugin (Nielsen et al., 2017) provides easy access to complex 
watershed modeling. To our knowledge, no such easy-to-use plugins 
exist in the QGIS environment for instantaneous flux modeling or ET 
prediction. The presented plugin, QWaterModel, was developed to fill 

this gap. It is based on the energy balance model DATTUTDUT (Deriving 
Atmosphere Turbulent Transport Useful To Dummies Using Tempera-
ture) (Timmermans et al., 2015), which uses LST maps as main input 
and, except for time and location of the LST recording, requires no 
further input of ancillary data. In the original DATTUTDUT model the 
radiation budget is simply modelled from a set of parameters and 
sun-earth geometrics (Timmermans et al., 2015). This approach works 
well for cloud-free conditions. For a broader usability under conditions 
of cloudy skies and high relative air humidity we extended this original 
model concept, giving the user the possibility to configure model pa-
rameters according to in-situ field measurements. The radiation budget 
can be complemented by measurements of short-wave irradiance or net 
radiation at the study sites via manual input. The DATTUTDUT model 
has successfully been tested for a broad range of LST input types, from 
satellite recorded images (Timmermans et al., 2015) to plane and drone 
recorded images (Brenner et al., 2018; Xia et al., 2016). The plugin was 
built using Plugin Builder 3.2.1 (GeoApt, 2019) and Plugin Reloader 
0.7.9 (Juriel, 2020). We used Qt Creator 4.11.0 (The Qt Company, 2020) 
to develop the graphical user interface (GUI) and Python 3.8 with the 
QGIS3/Python standard libraries (gdal, math, numpy, datetime and os) 
for the associated functionality. 

Fig. 1. Both tabs of the graphical user interface (GUI) of the plugin version 1.0 with the ‘Model’-tab input boxes highlighted in red.  
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Detailed installation instructions and the source code can be found 
on: github.com/FloEll/QWaterModel/blob/master/README.md. 

2.2. Application and testing 

To test the plugin, we used data recorded in a mature monoculture 
oil palm (Elaeis guineensis Jacq.) plantation located in the lowlands of 
Sumatra (Jambi province, Indonesia, 103.3914411 E, � 1.6929879 N, 
76 m a.s.l., see Meijide et al. (2017) for further details). We exemplarily 
use LST recordings from two independent sources (drone and handheld 
camera) to test the QWaterModel plugin against eddy covariance 
reference measurements:  

1. Images recorded with an octocopter drone (MK EASY Okto V3; 
HiSystems, Germany) equipped with a radiometric thermal camera 
FLIR Tau 2 640 (FLIR Systems, USA) attached to a TeAx Thermo- 
capture module (TeAx Technology, Germany). The data have a 
spatial resolution of 0.2 m and cover a footprint of 0.8 ha and are 
thus suitable for tree-scale to stand-scale assessments of ET. 13 im-
ages from 09:00 to 15:00 h local time on 7th of August 2017 were 
recorded in 30 min intervals.  

2. Images taken from a tower at 10 m above the canopy with a handheld 
Fluke ti100 thermal camera (Fluke Systems, USA). The data have an 
approx. spatial resolution of 0.06 m and a footprint of 0.006 ha and 
are thus suitable for leaf to canopy assessments of ET. 5 images from 
11:00 to 15:00 h on 7th of August 2017 were taken in 60 min 
intervals. 

Data are provided for download at: github.com/FloEll/QWaterModel/ 
tree/master/Data_Examples 

We did not include satellite images into this study since this was 
already included in the original DATTUTDUT model study (Timmer-
mans et al., 2015). In addition, satellite (Landsat 7 and 8) recorded LST 
maps for our study region contain a very high cloud cover fraction (for 
2017: min. 23%, mean 72%, max. 100%). Our study thus focuses on 
drone and handheld thermal camera acquired images. 

A widely accepted ground-based reference method for ET assess-
ments is the eddy covariance method, which provides measurements of 
ET at the stand-scale. Eddy covariance data at the oil palm site was 
recorded, filtered and processed according to the methodology 
described in Meijide et al. (2017). Because the energy-balance model 
used in the plugin assumes full energy balance closure, eddy covariance 
data was processed using the Bowen ratio closure method (Pan et al., 
2017; Twine et al., 2000). Horizontal energy flows or incomplete energy 
balance closure might introduce certain errors to this reference method 
(Loescher et al., 2006). To derive ET from latent heat fluxes, latent heat 
of vaporization was calculated using in-situ air temperature measure-
ments for eddy covariance measurements and the lowest pixel temper-
atures from the LST maps for the plugin estimates following the 
methodology described in Timmermans et al. (2015). 

3. Results 

3.1. Software implementation results 

The QWaterModel plugin can be installed from the official QGIS3 
python plugin repository. The plugin GUI consists of a main window 
with four different input sections (A, B, C, D, Fig. 1) and an information 
window, which are both organized using tabs. In the main window, 
section A contains the inputs that are essential for the plugin to work 
with in a minimal data approach: a thermal image with temperatures in 
Kelvin (e.g. from satellite, drone or handheld camera), the definition of 
an output raster and an output file where key statistics will be summa-
rized, and the coordinated universal time (UTC) when the picture was 
taken. Providing information in boxes B, C and D is optional, but may 
improve the quality of the ET estimates. The default values that are 

visible in the input fields of box B are taken from Timmermans et al. 
(2015) and can be adjusted if more local data are available from field 
measurements or previous studies. The info tab offers detailed infor-
mation on input, output and usage of the plugin. The plugin outputs a 
raster with 6 bands (net radiation Rn [W m� 2], latent heat flux LE [W 
m� 2], sensible heat flux H [W m� 2], ground heat flux G [W m� 2], 
evaporative fraction EF in [%] and evapotranspiration ET [mm/time 
period]). Input raster details and output statistics are stored in a.csv file. 

Fig. 2 shows a workflow example with LST data from different 
sources, i.e. recorded from drone and handheld thermal camera and the 
corresponding output. 

3.2. Software experimental testing results 

Land surface temperatures differed with the time of recording. 
Thermal variability was high in both drone and handheld camera 

Fig. 2. The ET modelling workflow with input and output examples. The input 
files are one-layer.tif files where each pixel contains a temperature value in 
Kelvin. The output files are raster files with 6 bands of which the ET estimates 
are contained in the 6th band, which is presented separately in the lower 
panels. ET was extracted from the 6-band output raster using the Rearrange 
Bands tool from the Processing Toolbox in QGIS 3.10. 

Table 1 
Input key-values of land surface temperatures from both sources.  

Temperatures Drone (13 maps) Handheld camera (5 maps) 

Mean Temp. [K] 298.3–305.5 300.8–308.3 
Minimum Temp. [K] 297.2–303.0 299.6–305.5 
Maximum Temp. [K] 301.2–325.1 302.4–317.0  
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obtained maps (Table 1). To compare the ET estimates from drone and 
handheld thermal camera maps with a measured reference, we plotted 
them against the daily course of eddy covariance derived ET values 
(Fig. 3) and into a scatterplot comparing measurements and predictions 
of ET (Fig. 4). 

Applying the energy balance model in its original version with 
minimal data input resulted in overestimations of ET during the morning 
and afternoon hours, but in acceptable estimates around noon (Fig. 3a). 
Errors were smaller for the estimates based on handheld camera pictures 
than on drone recordings (Table 2). More precise results were achieved 
by adding measured short-wave irradiance (Fig. 3b) or net radiation 
measurements (Fig. 3c) to the model inputs, i.e. ET estimates closely 
follow the reference method if additional radiation data is supplied. The 
handheld thermal camera maps generally produce slightly more 
congruent results with the eddy covariance measurements than drone 

maps; therein, around noon ET estimates from drone maps are slightly 
higher than eddy covariance ET measurements. In the minimal data 
approach, ET predictions are most congruent with eddy covariance 
measurements when ET is high (Fig. 4a), while in contrast predictions 
are most congruent at low ET when measurements of short-wave irra-
diance or net radiation are used in the model (Fig. 4b and c). Congruence 
generally increases with increasing measurement-based input; errors are 
thus smallest for models computed with directly measured net radiation 
(Table 2). 

4. Discussion and conclusions 

The QWaterModel plugin is an easy-to-use open-source tool for 
predicting evapotranspiration from land surface temperatures. It is 
aimed at applications in ecology, bioclimatology and land-use science, 
but is also useful for a broader utilization including hydrological and 
ecosystem management. It offers a link between science and practical 
application of energy balance modelling for ET prediction. Meeting our 
objectives, a variety of LST data from very different sources and spatial 
extends can be used as input and complementary data input re-
quirements were kept at a minimum level. The case study showed that 
images taken at the same time but with different camera setups (drone 
and handheld) result in comparable results for ET estimates and show 
high congruence with reference eddy covariance measurements. 
Because in the minimal data approach the radiation budget is calculated 
from sun-earth geometry, clouds and relative humidity or haze are not 
considered. This explains the overestimation of ET in the morning and 

Fig. 3. Temporal comparison of measured reference ET (eddy covariance) and estimated ET from different LST sources during the course of a day.  

Fig. 4. Comparison of measured reference ET (eddy covariance) and estimated ET from different LST sources; metrics on the respective relationships are provided 
in Table 2. 

Table 2 
Key metrics of linear regressions between in-situ measurements and model 
output for different data input options (a-c) and recording methods (handheld 
thermal camera and drone).  

Metrics (a) minimal data (b) with short wave 
irradiance 

(c) with net 
radiation 

handheld drone handheld drone handheld drone 

r2 0.61 0.66 0.96 0.88 0.95 0.89 
MAE 0.17 0.2 0.1 0.11 0.05 0.1 
RMSE 0.19 0.23 0.12 0.14 0.06 0.14  
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afternoon hours (Fig. 3a). In-situ measurements of short-wave irradi-
ance or net radiation significantly improved the ET estimates (Fig. 3b 
and c). Similar observations were made in other studies e.g. on European 
grasslands where additional short-wave irradiance measurements 
improved the overall accuracy of the DATTUTDUT model (Brenner 
et al., 2018). A method comparison of the DATTUTDUT model with the 
eddy covariance method over varying weather conditions and day times 
showed the general applicability of this approach in the tropics and 
suggested no difference between drone-based and eddy covariance 
method for certain configurations (Ells€aßer et al., submitted). However, 
even when using measured short-wave or net radiation, ET estimates 
based on drone recorded LST data showed overestimations around noon, 
which did not occur in the estimates based on handheld images. A 
possible reason is the presence of artefacts (e.g. roofs, cars, rocks) in the 
drone images, which have a much larger footprint than the handheld 
images. Temperatures on such non-canopy components can differ 
greatly from surface temperatures of vegetation, and these temperature 
outliers have a strong effect on the quality of predictions. This was also 
observed in a study with big temperature differences conducted in 
vineyards (Xia et al., 2016). A potential solution would be to manually 
exclude known artefacts from the images before analysis or to manually 
define minimal and maximal temperatures in the GUI of the plugin. 
Unfortunately, no matching satellite images were available for the time 
and date when drone and handheld camera maps were recorded there-
fore further analyses are not performed in this study. This should be 
followed up upon in future studies, even though a major restriction in 
our study region is that satellite images are generally hard to acquire 
since a considerable cloud cover is present on most days of the year. A 
further challenge is the fixed overpass time of satellites, which is often 
not around noon and therefore not ideal for ET derivation (Delogu et al., 
2012). To overcome these limitations, complementary ET methods from 
planes, drones and handheld or fixed thermal cameras can potentially be 
calibrated against simultaneously acquired satellite images (e.g. using 
QWaterModel) and then be applied to increase temporal and spatial 
coverage. 

The scatterplots reveal a gap between lower and higher ET estimates 
(Fig. 4b and c). This gap and its absence in the ET estimates based on 
modelled Rn in Fig. 4a demonstrates the effects of clouds on prediction 
accuracy. If clouds are present, and measurements of short-wave irra-
diance or net radiation can represent this adequately in the model, ET 
estimates are clearly lower than with the Rn modelling approach. 

Future improvements of the software could include a referencing 
tool that links ground measurements of hot and cold surfaces with LST 
data. This would allow for a simple radiometric correction of LST images 
and maps. To make the plugin applicable to the needs of a broader range 
of users, upcoming versions could further include other LST map-based 
indices such as the CWSI (crop water stress index) (Bian et al., 2019; Idso 
et al., 1981; Jones, 2014). We appreciate all user input and ideas to 
further develop the plugin and encourage to modify the plugin for other 
ET related applications or to report bugs via our bug tracker. In the 
present study, the software was only tested at one site, a commercial 
monoculture oil palm plantation in lowland Sumatra. We strongly 
encourage the testing and use of the software in other climatic regions 
and on other crop and ecosystem types for further validation. 

We provide the source code for the plugin and plan to consistently 
add more functionality to the QWaterModel. 

5. Software availability 

Name of Software: QWaterModel. 
Software version: 1.0. 
Developers: Florian Ells€aßer; 
Software license: GNU - General Public License; 
Contact Address: Tropical Silviculture and Forest Ecology, University 

of G€ottingen, Büsgenweg 1, 37077 G€ottingen, Germany. 
Email: fellsae@gwdg.de. 

Availability: plugins.qgis.org/plugins/qwatermodel github.com/ 
FloEll/QWaterModel. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

This study was funded by the Deutsche Forschungsgemeinschaft 
(DFG, German Research Foundation) – project number 192626868 – 
SFB 990 (subprojects A02 and A03) and the Ministry of Research, 
Technology and Higher Education (Ristekdikti) Indonesia. We thank 
Ristekdikti for providing the research permit for field work (No. 28/ 
EXT/SIP/FRP/E5/Dit.KI/VII/2017). We thank our field assistant Zulfi 
Kamal for his support and technician Edgar Tunsch for taking canopy 
pictures. We also thank Perseroan Terbatas Perkebunan Nusantara VI, 
Batang Hari Unit (PTPN6) for giving us permission to conduct our 
research at the oil palm plantation. Thanks to all ‘EFForTS’ colleagues 
and friends in Indonesia, Germany, and around the world. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.envsoft.2020.104739. 

References 

Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop Evapotranspiration - Guidelines 
for Computing Crop Water Requirements - FAO Irrigation and Drainage Paper 56. 
FAO, Rome.  

Bhatt, G., Kumar, M., Duffy, C.J., 2014. A tightly coupled GIS and distributed hydrologic 
modeling framework. Environ. Model. Software 62, 70–84. https://doi.org/ 
10.1016/j.envsoft.2014.08.003. 

Bian, J., Zhang, Z., Chen, J., Chen, H., Cui, C., Li, X., Chen, S., Fu, Q., 2019. Simplified 
evaluation of cotton water stress using high resolution unmanned aerial vehicle 
thermal imagery. Rem. Sens. 11, 267. https://doi.org/10.3390/rs11030267. 

Brenner, C., Zeeman, M., Bernhardt, M., Schulz, K., 2018. Estimation of 
evapotranspiration of temperate grassland based on high-resolution thermal and 
visible range imagery from unmanned aerial systems. Int. J. Rem. Sens. 39, 
5141–5174. https://doi.org/10.1080/01431161.2018.1471550. 

Criollo, R., Velasco, V., Nardi, A., Manuel de Vries, L., Riera, C., Scheiber, L., Jurado, A., 
Brouy�ere, S., Pujades, E., Rossetto, R., V�azquez-Su~n�e, E., 2019. AkvaGIS: an open 
source tool for water quantity and quality management. Comput. Geosci. 127, 
123–132. https://doi.org/10.1016/j.cageo.2018.10.012. 

Delogu, E., Boulet, G., Olioso, A., Coudert, B., Chirouze, J., Ceschia, E., Le Dantec, V., 
Marloie, O., Chehbouni, G., Lagouarde, J.-P., 2012. Reconstruction of temporal 
variations of evapotranspiration using instantaneous estimates at the time of satellite 
overpass. Hydrol. Earth Syst. Sci. 16, 2995–3010. https://doi.org/10.5194/hess-16- 
2995-2012. 

Ells€aßer, F., Stiegler, C., R€oll, A., June, T., Hendrayanto, Knohl, A., H€olscher, D., 
submitted. Predicting evapotranspiration from drone-based thermography – a 
method comparison in a tropical oil palm plantation. Biogeosciences. 

Fisher, J.B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., McCabe, M.F., 
Hook, S., Baldocchi, D., Townsend, P.A., Kilic, A., Tu, K., Miralles, D.D., Perret, J., 
Lagouarde, J.-P., Waliser, D., Purdy, A.J., French, A., Schimel, D., Famiglietti, J.S., 
Stephens, G., Wood, E.F., 2017. The future of evapotranspiration: global 
requirements for ecosystem functioning, carbon and climate feedbacks, agricultural 
management, and water resources: the future of evapotranspiration. Water Resour. 
Res. 53, 2618–2626. https://doi.org/10.1002/2016WR020175. 

GeoApt, LLC. https://g-sherman.github.io/Qgis-Plugin-Builder/. 
Hoffmann, H., Nieto, H., Jensen, R., Guzinski, R., Zarco-Tejada, P., Friborg, T., 2016. 

Estimating evaporation with thermal UAV data and two-source energy balance 
models. Hydrol. Earth Syst. Sci. 20, 697–713. https://doi.org/10.5194/hess-20-697- 
2016. 

Idso, S.B., Jackson, R.D., Pinter, P.J., Reginato, R.J., Hatfield, J.L., 1981. Normalizing the 
stress-degree-day parameter for environmental variability. Agric. Meteorol. 24, 
45–55. https://doi.org/10.1016/0002-1571(81)90032-7. 

Jones, H.G., 2014. Plants and Microclimate: a Quantitative Approach to Environmental 
Plant Physiology, third ed. Cambridge University Press, Cambridge ; New York.  

Juriel, B.. https://github.com/borysiasty/plugin_reloader. 
Kaushal, S., Gold, A., Mayer, P., 2017. Land use, climate, and water resources—global 

stages of interaction. Water 9, 815. https://doi.org/10.3390/w9100815. 
Loescher, H.W., Law, B.E., Mahrt, L., Hollinger, D.Y., Campbell, J., Wofsy, S.C., 2006. 

Uncertainties in, and interpretation of, carbon flux estimates using the eddy 

F. Ells€aßer et al.                                                                                                                                                                                                                                 

mailto:fellsae@gwdg.de
https://doi.org/10.1016/j.envsoft.2020.104739
https://doi.org/10.1016/j.envsoft.2020.104739
http://refhub.elsevier.com/S1364-8152(20)30324-8/sref1
http://refhub.elsevier.com/S1364-8152(20)30324-8/sref1
http://refhub.elsevier.com/S1364-8152(20)30324-8/sref1
https://doi.org/10.1016/j.envsoft.2014.08.003
https://doi.org/10.1016/j.envsoft.2014.08.003
https://doi.org/10.3390/rs11030267
https://doi.org/10.1080/01431161.2018.1471550
https://doi.org/10.1016/j.cageo.2018.10.012
https://doi.org/10.5194/hess-16-2995-2012
https://doi.org/10.5194/hess-16-2995-2012
https://doi.org/10.1002/2016WR020175
https://g-sherman.github.io/Qgis-Plugin-Builder/
https://doi.org/10.5194/hess-20-697-2016
https://doi.org/10.5194/hess-20-697-2016
https://doi.org/10.1016/0002-1571(81)90032-7
http://refhub.elsevier.com/S1364-8152(20)30324-8/sref11
http://refhub.elsevier.com/S1364-8152(20)30324-8/sref11
https://github.com/borysiasty/plugin_reloader
https://doi.org/10.3390/w9100815


Environmental Modelling and Software 130 (2020) 104739

6

covariance technique. J. Geophys. Res. 111, D21S90. https://doi.org/10.1029/ 
2005JD006932. 

Maes, W.H., Steppe, K., 2012. Estimating evapotranspiration and drought stress with 
ground-based thermal remote sensing in agriculture: a review. J. Exp. Bot. 63, 
4671–4712. https://doi.org/10.1093/jxb/ers165. 

Meijide, A., R€oll, A., Fan, Y., Herbst, M., Niu, F., Tiedemann, F., June, T., Rauf, A., 
H€olscher, D., Knohl, A., 2017. Controls of water and energy fluxes in oil palm 
plantations: environmental variables and oil palm age. Agric. For. Meteorol. 239, 
71–85. https://doi.org/10.1016/j.agrformet.2017.02.034. 

Nielsen, A., Bolding, K., Hu, F., Trolle, D., 2017. An open source QGIS-based workflow 
for model application and experimentation with aquatic ecosystems. Environ. 
Model. Software 95, 358–364. https://doi.org/10.1016/j.envsoft.2017.06.032. 

Oki, T., Kanae, S., 2006. Global hydrological cycles and world water resources. Am. 
Assoc. Adv. Sci. 313, 1068–1072. https://doi.org/10.1126/science.1128845. 

Pan, X., Liu, Y., Fan, X., Gan, G., 2017. Two energy balance closure approaches: 
applications and comparisons over an oasis-desert ecotone. J. Arid Land 9, 51–64. 
https://doi.org/10.1007/s40333-016-0063-2. 

QGIS Development Team, 2020. QGIS Geographic Information System. Open Source 
Geospatial Foundation Project. http://qgis.osgeo.org. 

Timmermans, W.J., Kustas, W.P., Andreu, A., 2015. Utility of an automated thermal- 
based approach for monitoring evapotranspiration. Acta Geophys. 63, 1571–1608. 
https://doi.org/10.1515/acgeo-2015-0016. 

Twine, T.E., Kustas, W.P., Norman, J.M., Cook, D.R., Houser, P.R., Meyers, T.P., 
Prueger, J.H., Starks, P.J., Wesely, M.L., 2000. Correcting eddy-covariance flux 
underestimates over a grassland. Agric. For. Meteorol. 103, 279–300. https://doi. 
org/10.1016/S0168-1923(00)00123-4. 

Xia, T., Kustas, W.P., Anderson, M.C., Alfieri, J.G., Gao, F., McKee, L., Prueger, J.H., 
Geli, H.M.E., Neale, C.M.U., Sanchez, L., Alsina, M.M., Wang, Z., 2016. Mapping 
evapotranspiration with high-resolution aircraft imagery over vineyards using one- 
and two-source modeling schemes. Hydrol. Earth Syst. Sci. 20, 1523–1545. https:// 
doi.org/10.5194/hess-20-1523-2016. 

Ziegler, A.D., Sheffield, J., Maurer, E.P., Nijssen, B., Wood, E.F., Lettenmaier, D.P., 2003. 
Detection of intensification in global- and continental-scale hydrological cycles: 
temporal scale of evaluation. J. Clim. 16, 13. 

The Qt Company (2020). Qt Creator 4.11.0. https://www.qt.io/. 

F. Ells€aßer et al.                                                                                                                                                                                                                                 

https://doi.org/10.1029/2005JD006932
https://doi.org/10.1029/2005JD006932
https://doi.org/10.1093/jxb/ers165
https://doi.org/10.1016/j.agrformet.2017.02.034
https://doi.org/10.1016/j.envsoft.2017.06.032
https://doi.org/10.1126/science.1128845
https://doi.org/10.1007/s40333-016-0063-2
http://qgis.osgeo.org
https://doi.org/10.1515/acgeo-2015-0016
https://doi.org/10.1016/S0168-1923(00)00123-4
https://doi.org/10.1016/S0168-1923(00)00123-4
https://doi.org/10.5194/hess-20-1523-2016
https://doi.org/10.5194/hess-20-1523-2016
http://refhub.elsevier.com/S1364-8152(20)30324-8/sref22
http://refhub.elsevier.com/S1364-8152(20)30324-8/sref22
http://refhub.elsevier.com/S1364-8152(20)30324-8/sref22
https://www.qt.io/

	Introducing QWaterModel, a QGIS plugin for predicting evapotranspiration from land surface temperatures
	1 Introduction
	2 Methods
	2.1 Software design
	2.2 Application and testing

	3 Results
	3.1 Software implementation results
	3.2 Software experimental testing results

	4 Discussion and conclusions
	5 Software availability
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	References


