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Abstract
Valid linear inequalities are substantial in linear and convex mixed-integer program-
ming. This article deals with the computation of valid linear inequalities for nonlinear
programs. Given a point in the feasible set, we consider the task of computing a
tight valid inequality. We reformulate this geometrically as the problem of finding
a hyperplane which minimizes the distance to the given point. A characterization of
the existence of optimal solutions is given. If the constraints are given by polynomial
functions, we show that it is possible to approximate the minimal distance by solving a
hierarchy of sum of squares programs. Furthermore, using a result from real algebraic
geometry, we show that the hierarchy converges if the relaxed feasible set is bounded.
We have implemented our approach, showing that our ideas work in practice.

Keywords Valid inequalities · Nonlinear optimization · Polynomial optimization ·
Semi-infinite programming · Sum of squares (sos) · Hyperplane location

Mathematics Subject Classification 90C30 · 90C11 · 90C10 · 14P10

1 Introduction

The problem we want to solve is the following: Given a subset S of R
n and a point q

in S, find a valid linear inequality for S which is as close as possible to q (a formal
definition is given in Sect. 2). Our motivation stems from the fact that valid linear
inequalities play an important role in solving mixed-integer linear and mixed-integer
convex programs. It is thus a natural task to study valid inequalities for themore general
class of mixed-integer nonlinear programs (MINLP). More specifically, we search for
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valid inequalities for the feasible set FI and its continuous relaxation F . We also
consider the special case where we require the objective and constraint functions to be
polynomials, which we refer to as mixed-integer polynomial programming (MIPP).
To avoid unnecessary clutter, we state our results for the set S which can be thought
of being equal to F or FI .

In mixed-integer linear and convex programming, one is interested in finding valid
inequalities for FI . One reason for this interest is that the convex hull of FI can be
described by finitely many valid inequalities for rational data in the mixed-integer
linear case [1]. This result does not generalize to the convex case; however, in mixed-
integer convex programming, a common solution approach is the generation of cuts.
A cut is a valid linear inequality for the feasible set that is violated at some point
of the relaxed feasible set. A second motivation to find valid linear inequalities is
“polyhedrification”, a special form of convexification [2], that is, outer approximation
of the sets F and FI by polyhedra. Note that the meaning of outer approximation is
twofold in the literature: It is the name of a celebrated solution method for a special
class of MINLP [3,4], and also describes the process of relaxing a complicated set to
a larger set that is easier to handle.

An early result on cuts in mixed-integer linear programming is the algorithmic gen-
eration of so-called Gomory cuts [5]. Later, it was shown that the repeated application
of all Gomory-type cuts yields the convex hull of FI for linear integer programming,
see Theorem 1.1 in [6]. Nowadays, the underlying theory of cuts has become quite
deep and the number of different types of cuts is—even though the underlying ideas
of the cuts are often related—vast. The article [6] is a modern presentation of the most
influential cuts, and the article [7] explores the relationships in the cut zoo. Recently,
maximal lattice-free polyhedra have attracted attention, since it can be shown that the
strongest cuts are derived from maximal lattice-free polyhedra, see [8].

Methods for generating cuts also exist in convex programming; for an early
approach, see [9]. A modern introduction into the key ideas on cuts for continuous
convex problems is given in [10]. For an overview on cuts for mixed-integer convex
problems, we refer to Chapter 4 in [11].

There is work on the computation of valid linear inequalities in the non-convex
setting: In [12], the authors compute outer approximations for separable non-convex
mixed-integer nonlinear programs, and require the feasible set to be contained in
a known polytope, i.e., a compact polyhedron. Another recent approach which has
proven to be quite successful is via so-called S-free sets, generalizing the idea of
lattice-free polyhedra. For example, in [13], an oracle-based cut generating algorithm
is presented that computes an arbitrarily precise—as measured by the Hausdorff-
distance—approximation of the convex hull of a closed set, if the latter is contained
in a known polytope. Related is the work [14], and its extension [15], where the
authors derive cuts for a pre-image of a closed set by a linear mapping via so-called
cut generating functions and show that these functions are intimately related to S-free
sets. There are also new results on cut generation for special cases. A framework is
proposed in [16] that creates valid inequalities for a reverse convex set using a cut
generating linear program. Also, maximal S-free sets for quadratically constrained
problems are computed [17].
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Finding avalid linear inequality canbe considered as a hyperplane locationproblem.
For an overview on a location theory approach, we refer to [18,19].

In this article, sos programming plays a key role. This technique can be traced
back to [20–23]. See [24] for a survey, and [25] for a focus on geometric aspects. An
algebraic approach is [26]. For a concise treatment, let us mention [27].

Nonlinear mixed-integer programming itself is a large problem class, and the liter-
ature is extensive. For an overview and several pointers to key results, let us mention
the survey [28], as well as [11,29].

The remainder of the paper is structured as follows. Section 2 settles notation and
prerequisites from sum of squares programming. Section 3 formulates the task of
finding a valid linear inequality for a given subset S of R

n that is close to a point q
in S. The distance is measured by a gauge. We give geometric characterizations that
ensure the existence of feasible and optimal solutions and formulate the problem as
a non-convex and semi-infinite optimization problem. In order to make the problem
tractable, we first linearize the objective function using a result from [30] in Sect. 4.
In Sect. 5, we give a convex reformulation if the distance is measured by a polyhedral
gauge and furthermore, restricting ourselves to a semi-algebraic set S in Sect. 6 we
receive a hierarchy of sos programs,which converge to the optimal value of the original
program if S is bounded. Illustrating examples are provided in Sect. 7. Extensions are
discussed in Sect. 8.

Our first main contribution—definitions deferred to Sect. 2—is Proposition 5.1: If
valid linear inequalities exist, we can find one that is tight with respect to a polyhedral
gauge by solving finitelymany linear semi-infinite problems. This result holds without
any structural assumptions on the set S, which is to the best of our knowledge a new
contribution. The second main contribution is Theorem 6.1: If S is semi-algebraic and
the gauge polyhedral, we can give a weakened formulation in terms of a hierarchy of
sos programs. Feasibility provided, the hierarchyyields a sequence of hyperplaneswith
decreasing distances to q. If the corresponding quadratic module is Archimedean, we
can guarantee convergence of the hierarchy towards a tight valid inequality. In contrast
with the approach of [12], we do not require S to be contained in a polytope to produce
feasible solutions (see Sect. 7 for an unbounded example). Similarly, for the method
in [13], an oracle is needed, and in the case of polynomial constraints, an oracle is
only provided if the feasible set is contained in a polytope. The approach in [14] is not
algorithmic and is, without further research, not directly applicable in our setting.

Regarding the scope of the paper, let us note that, for MINLP, it is an important
question how cuts can be generated from valid inequalities. One reason for this is that
they can improve the strength of an optimization model by only using information
inherent in the model, see, e.g., [5,6,8,13–17]. Also, it is an interesting question how
different choices of q affect the obtained valid inequalities. Both questions are not
within the scope of this article and left as starting points for future research.

2 Preliminaries for Our Approach

In this section, we introduce basic concepts and notation that is used throughout this
article. The natural, integer, and real numbers are denoted by N, Z and R. The natural
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numbers do not contain 0, and we denote N0 := N ∪ {0} and put [k] := {1, . . . , k} for
k ∈ N.

2.1 Tight Valid Inequalities

An inequality (aT x ≤ b) is given by some a ∈ R
n , a �= 0, b ∈ R. We say that

(aT x ≤ b) is

– valid for S ⊂ R
n if it is satisfied for all x ∈ S, that is, aT x ≤ b holds for all x ∈ S,

– violated by x ∈ S if aT x > b,
– tight for S if it is valid for S and for any b′ < b, the inequality (aT x ≤ b′) is
violated by some x ∈ S,

– tight for S at q ∈ S if the inequality is tight for S and aT q = b.

A linear inequality (aT x ≤ b) corresponds to the half-space {x ∈ R
n : aT x ≤ b}.

The associated hyperplane is denoted by

H(a, b) := {x ∈ R
n : aT x = b}.

2.2 Polynomials, Sum of Squares, and Quadratic Modules

We denote the ring of polynomials in n unknowns X1, . . . , Xn and coefficients in R

by R[X1, . . . , Xn]. A polynomial is a sum of squares or sos for short if it has a repre-
sentation as a sum of squared polynomials. Formally, we have p ∈ R[X1, . . . , Xn] is
sos if there are q1, . . . , ql ∈ R[X1, . . . , Xn] with

p = q21 + · · · + q2l . (1)

We denote the set of all sos polynomials by

Σn :=
⎧
⎨

⎩
p ∈ R[X1, . . . , Xn] : ∃q1, . . . , ql ∈ R[X1, . . . , Xn], p =

l∑

j=1

q2j

⎫
⎬

⎭
.

What makes this notion useful is that an immediate consequence of a representation
of p as in (1) is that p is nonnegative on all of R

n , and the qi certify nonnegativity. It
turns out that deciding if a polynomial is a sum of squares can be reformulated as a
semidefinite program (SDP), and SDPs in turn are well-understood and can be solved
efficiently, see, e.g., [31,32]. The set Σn of all sos polynomials is a convex cone in
R[X1, . . . , Xn].

We also need the notion of semi-algebraic sets: Given a finite collection of mul-
tivariate polynomials h1, . . . , hs ∈ R[X1, . . . , Xn], consider the subset of R

n where
all polynomials hi attain nonnegative values

K (h1, . . . , hs) := {
x ∈ R

n : h1(x) ≥ 0, . . . , hs(x) ≥ 0
}
. (2)
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A subset of R
n is called basic closed semi-algebraic, or in this article semi-algebraic

for short, if it is of the form (2) for some polynomials h1, . . . , hs . For example, we note
that for a MIPP with constraint polynomials h1, . . . , hs , we have F = K (h1, . . . , hs).

Given the constraints hi (x) ≥ 0 to a MIPP, a way to infer further valid inequalities
is to scale the hi by sos (and thus nonnegative) polynomials and add them up. This is
formalized in the algebraic definition of a quadratic module generated by the hi :

M(h1, . . . , hs) :=
{

s∑

i=0

σi hi : σ0, . . . , σs ∈ Σn

}

(3)

where h0 := 1.
In sos programming, the coefficients of the σi appearing in (3) are unknowns that

we optimize. As there is no degree bound on the σi , this is impractical. Hence, we
instead use the truncated quadratic module of order k ∈ {−∞} ∪ N, given by

M(h1, . . . , hs)[k] :=
{

s∑

i=0

σi hi : σi ∈ Σn, deg(σi hi ) ≤ k, i = 0, . . . , s

}

, (4)

where, again, h0 := 1.
We address now the question how polynomials in M(h1, . . . , hs) and polynomials

nonnegative on K (h1, . . . , hs) are related. The following observation which derives
a geometric statement from an algebraic one, follows directly from the definitions of
K (h1, . . . , hs) and M(h1, . . . , hs).

Observation 2.1 Let h1, . . . , hs ∈ R[X1, . . . , Xn] and p ∈ M(h1, . . . , hs). Then
p ≥ 0 on K (h1, . . . , hs).

The question addressing the “converse direction”—suppose a polynomial p is non-
negative on K (h1, . . . , hs), does p ∈ M(h1, . . . , hs) hold?—is more difficult to
answer. Conditions that guarantee such representations are addressed in Positivstellen-
sätzen. In this article, we use a Positivstellensatz by Putinar. It holds under a technical
condition that we outline next.

2.3 The Archimedean Property and Putinar’s Positivstellensatz

The condition needed for the Positivstellensatz to hold is that the quadratic module
M = M(h1, . . . , hs) needs to be Archimedean. The quadratic module M is Archime-
dean if for all p in R[X1, . . . , Xn] there exists k ∈ N with p + k ∈ M . The following
equivalent characterization is useful for our purposes.

Theorem 2.1 (see, e.g., Corollary 5.2.4 in [26]) Given h1, . . . , hs ∈ R[X1, . . . , Xn] ,
let M = M(h1, . . . , hs) be the associated quadratic module. Then M is Archimedean
if and only if there is a number k ∈ N such that k − ∑n

i=1 X
2
i ∈ M.

A consequence of M(h1, . . . , hs) being Archimedean, which is straightforward,
well-known but nevertheless important, is that the basic closed semi-algebraic set
associated with the polynomials hi is compact.
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Corollary 2.1 Let h1, . . . , hs ∈ R[X1, . . . , Xn] and suppose M(h1, . . . , hs) is Archi-
medean. Then K (h1, . . . , hs) is compact.

Proof This follows from Observation 2.1 and Theorem 2.1. ��
On the other hand, if K (h1, . . . , hs) is compact, then M(h1, . . . , hs) need not be

Archimedean, see, e.g., Example 7.3.1 in [26]. As one of our main results (Theo-
rem 6.1) requires M(h1, . . . , hs) to be Archimedean, it is a natural question if one can
decide whether a given quadratic module satisfies this property.

Remark 2.1 If S = K (h1, . . . , hs), it is possible to enforce the Archimedean property
on the associated quadratic module M if we have a known bound R ≥ 0 such that
‖x‖2 ≤ R for all x ∈ S.1 Specifically, by adding the redundant constraint hs+1 :=
R2−∑n

i=1 X
2
i to the description of S, we still have the equality S = K (h1, . . . , hs+1),

but nowTheorem 2.1 guarantees thatM(h1, . . . , hs+1) is Archimedean, see, e.g., [33].

We can now give the Positivstellensatz. Note that the theorem requires positivity, a
stronger requirement than nonnegativity.

Theorem 2.2 (Putinar’s Positivstellensatz, see, e.g., Theorem 5.6.1 in [26]) Let p,
h1, . . . , hs ∈ R[X1, . . . , Xn] and M(h1, . . . , hs) be Archimedean. Then p(x) > 0 for
all x ∈ K (h1, . . . , hs) implies p ∈ M(h1, . . . , hs).

2.4 Gauge Functions

A gauge is a function γ : R
n → R of the form

γ (x) = γ (x; A) := inf{t ≥ 0 : x ∈ t A}

for A ⊂ R
n compact, convex with 0 ∈ int A. Note that every norm with unit ball B

is a gauge γ (·; B). On the other hand, a gauge γ (·; A) satisfies definiteness, positive
homogeneity and the triangle property as norms do. It is a norm if additionally absolute
homogeneity holds, equivalently, if A is symmetric, i.e., −A = A.

Given C, D ⊂ R
n and a gauge γ on R

n , the distance from C to D is

d(C, D) := inf {γ (d − c) : c ∈ C, d ∈ D} .

For a singleton set C = {c} we also write d(c, D). Analogous to norms, the distance
measured by gauges between two nonempty sets C , K ⊂ R

n is attained if C is closed
and K compact, i.e., there exist c∗ ∈ C and k∗ ∈ K with

d(c∗, k∗) = d(C, K ) (5)

in this case.

1 In theory, this is equivalent to S being compact. However, computing R for S given by constraint functions
is itself a nonlinear continuous optimization problem.
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The polar of a set A ⊂ R
n is

A◦ := {x ∈ R
n : xT y ≤ 1 ∀y ∈ A}. (6)

It can be shown that if A is compact, convex with 0 ∈ int A, the same holds for A◦,
see, e.g., Corollary 14.5.1 in [34]. For a gauge γ , the function

γ ◦(x) := sup{xT y : y ∈ R
n, γ (y) ≤ 1}

is the polar of γ . It then holds that

γ ◦(x; A) = γ (x; A◦), (7)

that is, the polar of a gauge is again a gauge, see, e.g., Theorem 15.1 in [34].
We also consider gauges γ that are polyhedral: A gauge γ (·, A) is called polyhedral

if A is a polyhedron. As the polar of a polyhedron is a polyhedron (see, e.g., Corollary
19.2.2 in [34]), it is clear in view of (7) that the polar of a polyhedral gauge is again
a polyhedral gauge. For a polyhedral gauge γ (·, A), the extreme points of A of are
called fundamental directions of γ .

3 A Geometric Reformulation and Its Properties

In this section we formulate the task to find a tight valid linear inequality as the
following geometric optimization2 problem:Given q ∈ S, find a valid linear inequality
for S such that the associated hyperplane has a minimum distance (defined by an
arbitrary gauge function3) to q.

min d(q, H(a, b)) (V1)

s.t. a �= 0

aT x ≤ b for all x ∈ S

a ∈ R
n, b ∈ R.

Let us interpret solutions of Program V1 geometrically.

Proposition 3.1 For Program V1, it holds:

1. Every feasible solution (a, b) yields a valid inequality (aT x ≤ b) for S.
2. Every optimal solution (a, b) yields an inequality (aT x ≤ b) that is tight for S.
3. Every optimal solution (a, b) with objective value 0 yields an inequality that is

tight for S at q.

2 Throughout this article, we do not assume that the minimum of a minimization problem exists, but allow
for +∞ and −∞ as optimal values, so the optimal value always exists.
3 Let us point out that gauges also play a central role in [14], where they arise as a counterpart to S-free
sets, and are then used to generate cuts.
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Proof Claim 1 is clear. To see Claim 2, let (a, b) be an optimal solution and assume the
contrary, i.e., there is b′ < b with (aT x ≤ b′) valid for S. By (5) there is u ∈ H(a, b)
with γ (u − q) = d(q, H(a, b)). Using q ∈ S, we get the inequalities

aT q ≤ b′ < b = aT u, (8)

and hence aT (u − q) > 0. Put

û := u + λ(q − u) with λ := b − b′

aT (u − q)
.

Observe that û is a point on H(a, b′):

b′ = aT u + b′ − b = aT u + aT (q − u)

aT (q − u)
(b′ − b) = aT u + λaT (q − u) = aT û.

Note that (8) implies λ > 0 and λ ≤ b−b′
b−b′ = 1. Since û − q = (1− λ)(u − q), all our

observations combine to

d
(
q, H(a, b′)

) ≤ γ (û − q) = (1 − λ)γ (u − q) < γ (u − q) = d(q, H(a, b)).

Hence (a, b′) is a feasible solution to V1 with better objective value, contradicting
optimality of (a, b).

To see Claim 3, note that if the objective value is 0 at (a, b) we know from (5) that
d(q, u) = 0 for some u ∈ H(a, b), hence q = u and we conclude q ∈ H(a, b). The
claim follows. ��

It turns out that feasibility of V1 is sufficient for the existence of optimal solutions.

Theorem 3.1 Let S ⊂ R
n and q ∈ S. Then, the following are equivalent:

1. Program V1 is feasible.
2. Program V1 has optimal solutions.
3. conv S � R

n.

Proof To see Claim 1 ⇒ Claim 3, let Program V1 be feasible, and hence S ⊂ (aT x ≤
b) for some a ∈ R

n , a �= 0, b ∈ R. Now

conv S ⊂ conv(aT x ≤ b) = (aT x ≤ b) � R
n

follows.
For the implication Claim 3 ⇒ Claim 1, let z ∈ R

n \ conv S. By the Separating
Hyperplane Theorem (see, e.g., Theorem 4.4 in [35]), we may separate z from conv S
by a hyperplane H(a, b) with aT x ≤ b for all x ∈ conv S, and this hyperplane yields
a feasible solution to Program V1.

To see Claim 1 ⇒ Claim 2, we construct an optimal solution that corresponds to a
supporting hyperplane at a suitably chosen point on the boundary of the closure of the
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convex hull of S. So let (aT x ≤ b) be an inequality that is valid for S and thus conv S.
Moreover, as half-spaces are closed, (aT x ≤ b) remains valid for C := cl conv S, and
we conclude C � R

n . Also, C is convex as it is the closure of a convex set (see, e.g.,
Corollary 11.5.1 in [34]). As q ∈ S ⊂ C , C is a nonempty, proper closed subset of
R
n , so its boundary B := bdC is nonempty. As B is closed, (5) ensures the existence

of x1 ∈ B with d(q, x1) = d(q, B). By the Supporting Hyperplane Theorem (see,
e.g., Chapter 2.5.2, p. 51 in [36]), there is a half-space (aT1 x ≤ b1) containing C with
aT1 x1 = b1. We claim that (a1, b1) is optimal.

Suppose it is not, so there is (a2, b2) such that (aT2 x ≤ b2) is valid for S and the
corresponding hyperplane H2 := H(a2, b2) satisfies the inequality d2 := d(q, H2) <

d(q, H1) =: d1. Again there is x2 ∈ H2 with d(q, x2) = d2. We now distinguish two
possible locations for x2 and derive a contradiction in every case.

1. x2 ∈ R
n \ intC . As q ∈ C , the line segment from x2 to q crosses the boundary B

of C at a point x3. But then d(x3, q) ≤ d2 < d1, contradicting the optimality of
x1.

2. x2 ∈ intC . Hence there is ε > 0 with x2 + εa2 ∈ C , and we conclude aT2 (x2 +
εa2) = b2 + εaT2 a2 > b2 as x2 ∈ H(a2, b2). Consequently, (aT2 x ≤ b2) is not a
valid inequality forC . On the other hand, S ⊂ {x ∈ R

n : aT2 x ≤ b2} by assumption
on (aT2 x ≤ b2). Since half-spaces are convex and closed, we may conclude that
also C = cl conv S ⊂ (aT2 x ≤ b2), contradicting our observation that (aT2 x ≤ b2)
is not valid for x2 + εa2 ∈ C .

We conclude that x2 cannot exist, so neither can (a2, b2). Hence (a1, b1) is an optimal
solution to Program V1.

There is nothing to prove for Claim 2 ⇒ Claim 1. ��

4 Linearizing the Objective

In this section, we linearize the objective function d(q, H(a, b)) in Program V1. As
a first step, we use an analytic expression for the objective from the literature.

Theorem 4.1 (Theorem 1.1 in [30]) Let γ be a gauge on R
n and denote its polar by

γ ◦. Furthermore, let 0 �= a ∈ R
n and b ∈ R. Then

d(q, H(a, b)) =
{

(b − aT q)/γ ◦(a), aT q ≤ b,

(aT q − b)/γ ◦(−a), aT q > b.
(9)

Let us first note that γ ◦(a) > 0: Since γ is a gauge, there is A ⊂ R
n closed, convex

with 0 ∈ int A such that γ (·) = γ (·; A). By (7), we have γ ◦(·) = γ (·; A◦), and we
saw in Sect. 2.4 that A◦ is also closed, convex with 0 ∈ int A◦. Thus γ ◦(x) = 0 if and
only if x = 0, hence γ ◦(a) > 0. The variable a enters the fractions in (9) in a nonlinear
fashion. Moreover, the constraint a �= 0 is not closed. Now compare Program V1 with
the following programwith linear objective that avoids a constraint of the form a �= 0:
R1T3

min b − aT q (V2)
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s.t. aT x ≤ b for all x ∈ S

γ ◦(a) ≥ 1

a ∈ R
n, b ∈ R.

It turns out that Programs V1 and V2 are closely related. To this end let us introduce
the following notion: Two solutions (a, b) and (a′, b′) are geometrically equivalent if

H(a, b) = H(a′, b′).

We say that two programs have geometrically equivalent feasible/optimal solutions if
for every feasible/optimal solution (a, b) of the first program there is a geometrically
equivalent feasible/optimal solution (a′, b′) of the second program and vice versa.

Proposition 4.1 Let q ∈ S ⊂ R
n and γ be a gauge on R

n. Then, the following hold:

1. Programs V1 and V2 have geometrically equivalent feasible solutions.
2. The optimal values of both programs coincide.

In particular, both programs have geometrically equivalent optimal solutions.

Proof By (9) and using the fact that aT q ≤ b, Program V1 is the same as

min (b − aT q)/γ ◦(a) (V1′)
s.t. aT x ≤ b for all x ∈ S

a �= 0

a ∈ R
n, b ∈ R.

For the first claim, let (a, b) be feasible for V1′. Then γ ◦(a)−1 · (a, b) is feasible
for V2 and geometrically equivalent to (a, b). On the other hand, if (a, b) is feasible
for V2, it is also feasible for V1′.

For the second claim, we note that the programs V1′ and V2 are either both feasible
or both infeasible, so in the following we may assume they are feasible. Let z′1 be the
optimal value of V1′ and z2 be the optimal value of V2. Let (a, b) be feasible for
V1′. Then γ ◦(a)−1 · (a, b) is feasible for V2 and geometrically equivalent to (a, b).
Furthermore, this shows that z2 ≤ z′1. Now, let (a, b) be feasible for V2. Then (a, b)
is feasible for V1′. Since γ ◦(a) ≥ 1, we have

z′1 ≤ (b − aT q)/γ ◦(a) ≤ (b − aT q).

As (a, b) was an arbitrary feasible solution to V2, we have shown that z′1 ≤ z2. The
claim about geometrically equivalent optimal solutions follows immediately from the
first two statements. ��

To summarize, instead of solving V1 we may solve V2.
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5 A Linear Semi-Infinite Program for Polyhedral Gauges

Program V2 contains the non-convex constraint γ ◦(a) ≥ 1. This constraint can be
linearized if we restrict ourselves to polyhedral gauges. This is not a hard restriction
since due to [37] every norm can be approximated arbitrarily closely by a block norm,
and similarly every gauge by a polyhedral gauge.

We need the following characterization of the facets of a unit ball in terms of the
extreme points of the polar polyhedron defined in (6).

Theorem 5.1 (see, e.g., Proposition 3.2, and Theorems 5.3 and 5.5 in Chapter I.4 in
[38]) If P is a full-dimensional and bounded polyhedron and 0 ∈ int P then

P =
⋂

k∈K

{
x ∈ R

n : πT
k x ≤ 1

}

where {πk}k∈K are the extreme points of P◦. The inequalities πT
k x ≤ 1 describe

exactly the facets of P.

Now suppose γ is a polyhedral gauge. Denote its fundamental directions by
v1, . . . , vl ∈ R

n , and the unit ball of the polar gauge γ ◦ by B◦. As γ is a polyhedral
gauge, so is the polar gauge γ ◦, cf. Sect. 2. This implies that B◦ is a polyhedron which
is full-dimensional, bounded, with 0 in its interior. Thus, B◦ satisfies the assumptions
of Theorem 5.1, and hence

B◦ =
⋂

k∈K̂
{x ∈ R

n : π̂T
k x ≤ 1}

where {π̂k}K̂ are the extreme points of B◦◦ := (B◦)◦. Using the fact that B◦◦ = B—
this holds for all closed, convex sets containing the origin, see, e.g., Theorem 14.5
in [34]—we have {π̂k}k∈K̂ = {v1, . . . , vl}, and hence

B◦ =
⋂

j∈[l]
{x ∈ R

n : vTj x ≤ 1}. (10)

We use this characterization as follows.

Corollary 5.1 Let γ be a polyhedral gauge and denote its fundamental directions by
v1, . . . , vl ∈ R

n. Then

{
x ∈ R

n : γ ◦(x) ≥ 1
} =

⋃

j∈[l]

{
x ∈ R

n : vTj x ≥ 1
}

, (11)

and

{
x ∈ R

n : γ ◦(x) = 1
} =

⋃

j∈[l]

{
x ∈ R

n : vTi x ≤ 1 ∀i ∈ [l], vTj x ≥ 1
}

. (12)
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Proof For the interior of the unit ball B◦ of γ ◦ it holds that

int B◦ = {
x ∈ R

n : γ ◦(x) < 1
}
.

Since B◦ is polyhedral, we have from (10)

int B◦ =
⋂

j∈[l]
{x ∈ R

n : vTj x < 1}.

This means that the set {x ∈ R
n : γ ◦(x) ≥ 1} equals

R
n \ int B◦ = R

n \
⋂

j∈[l]
{x ∈ R

n : vTj x < 1} =
⋃

j∈[l]

{
x ∈ R

n : vTj x ≥ 1
}

,

proving the first equality. The second equality follows from the fact that

{x ∈ R
n : γ ◦(x) = 1} = {x ∈ R

n : γ ◦(x) ≤ 1} ∩ {x ∈ R
n : γ ◦(x) ≥ 1}, (13)

and then using distributivity for union and intersection of sets on the explicit repre-
sentations (10) and (12) of the two sets on the right hand side in (13). ��

The idea now is to use Corollary 5.1 to decompose the nonlinear program V2 into
a set of l linear programs, one for each fundamental direction v j , j ∈ [l] of the
polyhedral gauge γ . These programs are given as

min b − aT q (V3 j )

s.t. vTj a ≥ 1

aT x ≤ b for all x ∈ S

a ∈ R
n, b ∈ R.

The relation between the programs V3 j and V2 is described next.

Proposition 5.1 Let q ∈ S ⊂ R
n and γ be a polyhedral gauge onR

n with fundamental
directions v1, . . . , vl ∈ R

n. Denote the optimal value of ProgramV2 by z∗ and for V3 j

by z∗j . Let (a, b) ∈ R
n × R. Then the following hold:

1. (a, b) is a feasible solution of V2 if and only if it is a feasible solution of V3 j for
some j ∈ [l].

2. z∗ = min j∈[l] z∗j .
3. (a, b) is an optimal solution of V2 if and only if there is j0 ∈ [l] such that (a, b)

is an optimal solution to V3 j for j = j0 with z∗j0 = min j∈[l] z∗j .

Proof Denote the feasible set of V2 by F ′ and of V3 j by Fj . From (11) we then have
F ′ = ⋃

j∈[l] Fj and all claims follow easily. ��
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Remark 5.1 Note that V3 j has a single linear constraint involving the fundamental
directions. This is the reason why in V2, we did not use the constraint γ ◦(a) = 1
instead of γ ◦(a) ≥ 1: In view of Corollary 5.1, we would have l additional constraints
involving the fundamental directions.

Remark 5.2 For practical purposes let us note that the number l of fundamental direc-
tions of a gauge, and therefore the number of programs V3 j , can vary tremendously.
For example, the gauge given by the 1-norm onR

n has l = 2n fundamental directions,
i.e., is linear in the dimension n, whilst the gauge given by the ∞-norm on R

n has
l = 2n fundamental directions, i.e., is exponential in the dimension, see, e.g., p. 5
in [39].

To summarize, instead of solving V1 we may solve the linear and semi-infinite
programs V3 j for all j ∈ [l]. How the semi-infinite constraint can be circumvented is
shown in the next section.

6 An Approximating Hierarchy for Polynomial Constraints and
Polyhedral Gauges

In this section we approximate ProgramV3 j by a hierarchy of sos programs. Themain
reason is that the constraint

aT x ≤ b for all x ∈ S

is semi-infinite if S contains infinitely many points. There is much literature on semi-
infinite programming problems. Classical overview articles are, e.g., [40,41]; a more
recent survey is [42]. A bi-level approach is explored in [43]. Also, several numerical
solution methods exist, for an overview, we refer to [44–46].

However, in this article we take a different route. Let us explore how semi-infinite
constraints can be sidestepped by the requirement of semi-algebraic S and a polyhedral
gauge γ . For example when consideringMIPP, the set S = F is semi-algebraic. In the
following, we use an arbitrary basic closed semi-algebraic set S = K (h1, . . . , hs).

With this in mind, we consider the following hierarchy of programs, where k ∈ N,
h1, . . . , hs ∈ R[X1, . . . , Xn], S := K (h1, . . . , hs) a semi-algebraic set with q ∈ S,
and v1, . . . , vl ∈ R

n .

min b − aT q (VR j,k)

s.t. vTj a ≥ 1

b −
n∑

i=1

ai Xi ∈ M (h1, . . . , hs) [k]

a ∈ R
n, b ∈ R.
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The number k is called the truncation order of program VR j,k . Next we show
that VR j,k is an sos program, i.e., that it has the form

max cT y (SOSP)

s.t. pi0 + y1 pi1 + · · · + ym pim ∈ Σn, i ∈ [r ],
y ∈ R

m

for c ∈ R
m and fixed polynomials pi0, pi j ∈ R[X1, . . . , Xn], i ∈ [r ], j ∈ [m], and

decision variables y ∈ R
m . This is helpful since it is possible to solve sos programs.

For a detailed introduction to sos programming, we refer to [24,25].

Proposition 6.1 Program VR j,k is an sos program.

Proof As is common in sos programming, a constraint of the form

p0 + y1 p1 + · · · + ym pm ∈ M(h1, . . . , hs)[k]
y ∈ R

m

for some pi ∈ R[X1, . . . , Xn] and k ∈ N translates to a classical sos programming
constraint as follows: The statement

p0 + y1 p1 + · · · + ym pm ∈ M(h1, . . . , hs)[k]

is, using the fact that h0 = 1 in the defining equation (4) of M[k], equivalent to

p0 + y1 p1 + · · · + ym pm −
s∑

j=1

σ j h j ∈ Σn

deg σi ≤ k − deg hi , i ∈ [s],
σi ∈ Σn, i ∈ [s].

The degree bounds ensure that only finitely many real decision variables appear in the
σi , and thus they can be rewritten by constraints of the form SOSP. Note that we tacitly
assume hi �= 0, otherwise we may remove the constraint. Also, linear programming
constraints can be used in sos programming, since for c ∈ R, the requirement c ≥ 0 is
equivalent to c ∈ Σn . Finally, we note that the objective of Program VR j,k is linear. ��

The next proposition shows that feasible solutions to Program VR j,k yield feasible
solutions to Program V3 j .

Proposition 6.2 Let h1, . . . , hs ∈ R[X1, . . . , Xn] and S := K (h1, . . . , hs). Further-
more, let v1, . . . , vl ∈ R

n be given. If (a, b) is feasible to VR j,k for j ∈ [l], k ∈ N,
then (a, b) is feasible to V3 j .
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Proof Let (a, b) feasible to VR j,k . Feasibility implies that

b −
n∑

i=1

ai Xi ∈ M (h1, . . . , hs) [k],

which imposes b−aT x ≥ 0 on S by Observation 2.1. Hence (a, b) is feasible to V3 j .
��

The next theorem shows that, if M(h1, . . . , hs) is Archimedean, we get a hierarchy
of sos programs indexed by the truncation order k, producing a sequence of valid
inequalities for S. Also, as k → ∞, we can show that the distance of the hyperplanes
to the point q is monotonically decreasing and converges to the optimal solution of V1.

Theorem 6.1 Let h1, . . . , hs ∈ R[X1, . . . , Xn]andq ∈ S := K (h1, . . . , hs). Suppose
further that M(h1, . . . , hs) is Archimedean. Also, let a polyhedral gauge γ onR

n with
fundamental directions v1, . . . , vl ∈ R

n be given. Then, it holds:

1. For every j ∈ [l], Program VR j,k is feasible for large enough values of k.
2. Denote the optimal value of V1 by z∗. For j ∈ [l], k ∈ N denote the optimal value

of VR j,k by z j,k and put zk = min j∈[l] z j,k . Then zk ↘ z∗ for k → ∞.

Proof Let M := M(h1, . . . , hs). To see Claim 1, fix j ∈ [l]. Put a∗ := v j/‖v j‖2 and
note that vTj a

∗ ≥ 1. By Corollary 2.1, S is compact, hence the map

μ : R
n → R, x �→ (a∗)T x,

attains its maximum b∗ on S. Define the family of polynomials

p(a, b) := b −
n∑

i=1

ai Xi ∈ R[X1, . . . , Xn], a ∈ R
n, b ∈ R.

Nowfix some ε > 0, and note that p(a∗, b∗+ε) is positive on S. The Positivstellensatz
(Theorem 2.2) ensures that p(a∗, b∗ + ε) ∈ M . There is kε ∈ N with p(a∗, b∗ + ε) ∈
M[kε], and by definition of M[k], p(a∗, b∗ + ε) ∈ M[k] for k ≥ kε. In other words,
(a∗, b∗ + ε) is feasible for VR j,k for k ≥ kε.

Concerning Claim 2 we note that compactness of S implies feasibility of V1, and
hence z∗ < +∞. By Theorem 3.1, V1 has an optimal solution (a, b). By Proposi-
tion 4.1 and rescaling if necessary, we may further assume that (a, b) solves V2 to
optimality, that is,

z∗ = b − aT q.

By Proposition 5.1, there is j0 ∈ [l] such that (a, b) solves V3 j0 to optimality. Let ε >

0.Hence, the linear polynomial p(a, b+ε) is positive on S and by the Positivstellensatz
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lies in M[kε] for some kε ∈ N. Put differently, (a, b + ε) is feasible for VR j0,kε with
objective value

b + ε − vTj0a = z∗ + ε.

Note that z∗ ≤ z j0,kε , and our estimates combine to

z∗ ≤ z j0,kε ≤ b + ε − vTj0a = z∗ + ε,

and we conclude z j0,kε → z∗ for ε → 0. On the other hand, we have

z∗ ≤ z j,k+1 ≤ z j,k, j ∈ [l], k ∈ N,

since M[k] ⊂ M[k+1] by definition of M[k], which yields z j0,k ↘ z∗ for k → +∞.
The claim min j∈[l] z j,k = zk ↘ z∗ follows. ��

7 Illustration

We have implemented the hierarchy using SOSTOOLS and SeDuMi and illustrate our
results on some examples. 4 Our implementation is published as open-source software
[49].

In our first example, we consider the polynomials

h1 = 1 − X2
2 − X2

1, h2 = X1 + X3
2 ∈ R[X1, X2]. (14)

Thus, the set S = {x ∈ R
2 : h1(x) ≥ 0, h2(x) ≥ 0} ⊂ R

2 is thus the compact
set given by the intersection of the Euclidean unit norm ball and the epigraph of the
function x1 �→ x2(x1) = − 3

√
x1.

Note that 1−X2
1−X2

2 = 0·1+1·h1+0·h2 ∈ M(h1, h2), hence by Theorem 2.1 the
associated quadratic module M(h1, h2) is Archimedean, and the hierarchy converges
by Theorem 6.1. The point q = (0.4,−0.5) lies in S. We have solved our hierarchy
for the polyhedral gauge γ = ‖ · ‖1 (in this case a block norm) with fundamental
directions {(1, 0), (0, 1), (−1, 0), (0,−1)} and two different truncation orders, which
we report in Table 1.

Figures 1 and 2 show the vanishing sets V (h1) and V (h2) of h1 and h2, that is,
V (hi ) = {x ∈ R

2 : hi (x) = 0}, and the point q. The figures show a computed
optimal hyperplane for a low (k = 2) and a high (k = 5) truncation order k. The
optimal solutions and optimal values along with the computation times can be found
in Table 1. Allowing for a higher truncation order of k = 6 did not improve the result
further. We infer from these first examples that a low truncation order of, say, k = 2
cannot be expected to give an optimal hyperplane—however, for k = 2, we get a valid

4 We useMATLAB2016b 64-bit (MATLAB is a registered trademark of TheMathWorks Inc., Natick,Mas-
sachusetts), SOSTOOLS 3.01 [47] to translate the sos programs into semidefinite programs and SeDuMi 1.3
[48] to solve the latter. The experiments were conducted on an Intel Core i3 Laptop with 2.6 GHz and 2
cores, 4 GB, running GNU/Linux.
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Table 1 Example configurations, computed values and computation times

Program h1, h2 k q1 q2 obj. a1 a2 b s Figures

VR j,k (14) 2 0.40 −0.50 0.59 0.80 −1.00 1.41 4.00 1

VR j,k (14) 5 0.40 −0.50 0.24 −0.61 −1.00 0.49 55.38 2

VR j,k (15) 4 0.25 0.50 0.39 0.66 −1.00 0.06 48.66 3

VbR j,k (16) 4 n/a n/a −0.71 1.00 1.00 −0.71 60.90 4

VnRk (16) 4 n/a n/a 0.58 −1.00 1.00 0.58 40.98 5

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

S

Fig. 1 Bounded example, k low

inequality that already can be used as approximation in a very short computation time.
The examples also show that an optimal solution (a, b) for VR j,k does not necessarily
yield a tight inequality for S.

An unbounded example (Fig. 3) is given by

h1 = X2 − X2
1, h2 = X2

2 − X1. (15)

The set S = {x ∈ R
2 : h1(x) ≥ 0, h2(x) ≥ 0} is the intersection of the filled unit

parabola given by x2 ≥ x21 and the outside of the rotated unit parabola given by x1 ≤
x22 . The set S is thus indeed unbounded, hence M(h1, h2) cannot be Archimedean.
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S

-1.5
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0
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1
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-1.5 -1 -0.5 0 0.5 1 1.5

Fig. 2 Bounded example, k high

Nevertheless we can apply our approach (now without convergence guarantee). We
choose q = (0.25, 0.5) on the boundary of S.We report the computed values for k = 4
in Table 1. This example shows that, even though the Archimedean condition does not
hold, it can still be possible to obtain a valid inequality that is close to q and nearly
tight. For lower orders (k = 3), no solution was found. This can also be concluded
directly from (4), as we would have to express a nontrivial linear polynomial as a
linear combination of h1 and h2, which is impossible. The objective did not improve
by increasing to k = 5 or k = 6.

8 Modifications and Extensions

In this section we consider some modifications of Program V1. Namely, we consider
the case that a point q ∈ S is not known, and the case that the normal a is fixed. We
will state the modifications as general optimization problems (similar to V1) along
with a reformulation using sos programming (similar to VR j,k).
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Fig. 3 Unbounded example

8.1 FindingValid inequalitiesWithout a known q ∈ S

As a first modification, we search for a tight valid inequality for S without knowing
a point q ∈ S. We formulate the program and its sos variant with the constraint
γ ◦(a) = 1 that leads to more constraints—cf. Remark 5.1—as follows. As before, let
S ⊂ R

n , M = M(h1, . . . , hs) for hi ∈ R[X1, . . . , Xn], and v j ∈ R
n .

min b (Vb)

s.t. γ ◦(a) = 1

aT x ≤ b for all x ∈ S

a ∈ R
n, b ∈ R.

min b (VbR j,k)

s.t. vTj a ≥ 1

vTi a ≤ 1, i ∈ [l],
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b −
n∑

i=1

ai Xi ∈ M[k]

a ∈ R
n, b ∈ R.

We require an equation in Vb as opposed to V2 because otherwise the program
would be unbounded from below whenever the optimal objective is negative. Let us
again state some observations.

Proposition 8.1 Let S ⊂ R
n and γ be a gauge on R

n.

1. Every feasible solution (a, b) of Vb yields a valid inequality (aT x ≤ b) for S. If
(a, b) is optimal, the inequality is tight.

2. Suppose further S = K (h1, . . . , hs) for hi ∈ R[X1, . . . , Xn]and letγ be apolyhe-
dral gauge with fundamental directions v1, . . . , vl . If (a, b) is feasible for VbR j,k ,
then (a, b) is feasible for Vb.

3. Additionally, let M = M(h1, . . . , hs) be Archimedean. Then, for j ∈ [l], VbR j,k is
feasible for eventually all k. Denote the optimal value of Vb by z∗ and the optimal
value of VbR j,k by z j,k and put zk = min j z j,k . Then zk ↘ z∗ for k → ∞.

Proof Statements 1 and 3 are shown analogously to Proposition 3.1 and Theorem 6.1,
respectively. We prove Statement 2. Let (a, b) be a feasible solution for VbR j,k . The
constraint b − ∑n

i=1 ai Xi ∈ M[k] implies b − aT x ≥ 0 on S = K (h1, . . . , hs) by
Observation 2.1. By Corollary 5.1, the constraint γ ◦(a) = 1 is of the form vTi a ≤ 1
for i ∈ [l] and vTj a ≥ 1 for some j ∈ [l]. The claim follows. ��

For this modification, we consider the following example (Fig. 4):

h1 = 8X1X2 − 1, h2 = 1

16
−

(

X1 + 1

2

)2

. (16)

The set S = {x ∈ R
2 : h1(x) ≥ 0, h2(x) ≥ 0} is the intersection of a branch of a

hyperbola {(x1, x2) ∈ R
2 : x1 < 0 and x2 ≤ 1

8x1
} and a strip given by {(x1, x2) ∈

R
2 : |x1 + 1

2 | ≤ 4}. Hence, S is unbounded. We ran the hierarchy VbR j,k for k = 4
(let us stress that we did not specify a point q ∈ S). The values of the computed tight
inequality are shown in Table 1. No feasible solution could be found for k = 3 and
the objective did not improve for k = 5 or k = 6, which is to be expected since Fig. 4
reveals that the hyperplane is tight.

8.2 Fixed Normal

The second modification we consider is the variant where a fixed normal a ∈ R
n ,

a �= 0, is given and we want to find b ∈ R such that (aT x ≤ b) is valid for S and as
tight as possible, i.e., b ∈ R is the only decision variable.5 The programs read

min b (Vn)

5 We omit the obvious variation with a zero objective.
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Fig. 4 Example without q, …

s.t. aT x ≤ b for all x ∈ S

b ∈ R,

min b (VnRk)

s.t. b −
n∑

i=1

ai Xi ∈ M[k]

b ∈ R.

In the next result we show that for a fixed normal and provided some q ∈ S is known,
the optimal solutions do not change by replacing the objective by d(q, H(a, b)).

Observation 8.1 Let q ∈ S ⊂ R
n, a gauge γ and 0 �= a ∈ R

n be given. Consider the
program

min d(q, H(a, b))

s.t. aT x ≤ b for all x ∈ S

b ∈ R.

(17)

Then, Vn and (17) have the same feasible and optimal solutions.
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Fig. 5 …with a fixed, optimized for b

Proof The claim regarding feasibility is trivial. From Theorem 4.1 we know that
d(q, H(a, b)) = (b − aT q)/γ ◦(a). Since a is fixed, both objectives only differ by a
constant positive scaling and a constant translation, hence optimal solutions coincide.

��
Let us state some properties of Vn and VnRk . We omit the proof since it is similar

to the proof for the corresponding statements of V2 and VR j,k .

Proposition 8.2 Let S ⊂ R
n.

1. Every feasible solution b of Vn yields a valid inequality (aT x ≤ b) for S. If b is
optimal, the inequality is tight.

2. Suppose further S = K (h1, . . . , hs) for hi ∈ R[X1, . . . , Xn] and let γ be a
polyhedral gauge with fundamental directions v1, . . . , vl . If b is feasible forVnRk ,
then b is feasible for Vn.

3. Additionally, let M = M(h1, . . . , hs) be Archimedean. Then, VnRk is feasible
for eventually all k. Denote the optimal value of Vn by z∗ and the optimal value
of VnRk by z j,k and put zk = min j z j,k . Then zk ↘ z∗ for k → ∞.

We illustrate this modification in our last example (Fig. 5), where we use h1 and h2
from (16) but fix the normal to a = (−1, 1). We report the computed optimal value of
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b in Table 1. Again, no solution was found for k = 3 and the objective did not improve
for k = 5 and k = 6, which is again to be expected since the figure reveals that the
hyperplane is tight in this example, too.

9 Conclusions

To summarize, we have shown that the problem to find a tight valid inequality for a
subset S ofRn , using apolyhedral gaugeγ , canbe approximatedwith sos programming
if the set S is semi-algebraic, i.e., if S is given as K (h1, . . . , hs) for some polynomials
h1, . . . , hs . The approximating hierarchy is guaranteed to converge if the quadratic
module M(h1, . . . , hs) is Archimedean. In view of Remark 2.1, this is the case if S is
a bounded set.

Sos programs like ours are computationally tractable on current SDP solvers for
small instances (few variables and low degrees of the polynomials). We hence can
find cuts for MIPP instances in reasonable time in this case. If the corresponding
semidefinite programs become too large for current state-of-the-art solvers, there are
promising ideas that keep larger instances tractable, e.g., restrictions to subsets of sos
polynomials that translate to linear or second-order cone programs [50,51] as well as
column generation [52]. Still, our sos programs translate to SDPs which can, leaving
technical details aside, essentially be solved in polynomial time [53]. Note that we
cannot expect much more, since MIPP is known to be NP-hard. In the continuous
case, this can be seen since deciding nonnegativity of a polynomial of degree 4 is
NP-hard [54] and thus minimization of a polynomial of degree 4 is NP-hard. In the
integer case, it can be shown that no algorithm for integer programming with quadratic
constraints exists [55].

Further research includes to identify situations when a cut may be derived from
a given tight valid inequality. That is, given a tight valid inequality for S, are there
assumptions that ensure that there is a way to derive a related inequality which is valid
for the integer points in S but violated at (a non-integer) point q in S, say? First ideas
in this direction are given in [56].
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