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Abstract
Aim: The General Dynamic Model (GDM) links island biogeographical processes to is-
land geological history. A key premise of the GDM implies that environmental factors 
shaping the ecology and evolution of biota on oceanic islands follow a hump-shaped 
trend over the island's life span and drive dynamics in carrying capacity, species di-
versity and endemism. An important component of the GDM is environmental het-
erogeneity (EH), but its effects on insular diversity remain poorly understood. Here, 
we first quantified EH, tested whether EH follows the expected hump-shaped trend 
along island ontogeny and evaluated how EH relates to plant diversity.
Location: 135 oceanic islands of volcanic origin.
Taxon: Vascular plants.
Methods: We calculated 20 EH metrics focusing on topographic and climatic com-
ponents of EH, and compared whole-island metrics (e.g. range) and moving-window 
metrics (e.g. roughness). Using linear mixed-effects models, we evaluated the trends 
of EH with island age and the EH–plant diversity relationship expected based on the 
GDM.
Results: Our analysis revealed some EH components to be collinear, for example, 
elevation and temperature heterogeneity but also that EH metrics capture different 
aspects of EH, for example, climatic gradients versus climatic complexity. EH gener-
ally followed a hump-shaped trend with island age, peaking early during island ontog-
eny. Among the EH components, climatic heterogeneity had the strongest effect on 
plant species richness and elevational heterogeneity on endemism. Lastly, including 
EH metrics in GDMs (traditionally, only island age and area were included) improved 
their predictive power.
Main conclusions: The EH metrics compared here captured various attributes of the 
environment that influence insular plant diversity. In line with the GDM, our results 
strongly support a hump-shaped relationship between EH and island age, suggesting 
that islands become highly heterogeneous early in their ontogeny. Finally, the contri-
bution of EH to GDM-based models of species richness and endemism suggests that 
EH is a main driver of the diversity of oceanic island biotas.
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1  | INTRODUC TION

Environmental heterogeneity (EH) encompasses the spatial vari-
ation of key components of the abiotic and biotic environment, 
such as climate, topography, land cover and vegetation (here-
after ‘EH components’), and is a main driver of species richness 
(Keppel, Gillespie, Ormerod, & Fricker, 2016; Stein, Gerstner, & 
Kreft, 2014). Environments with high levels of heterogeneity, 
such as mountain ranges, usually host larger numbers of spe-
cies (Barthlott, Mutke, Rafiqpoor, Kier, & Kreft, 2005; Dufour, 
Gadallah, Wagner, Guisan, & Buttler, 2006) than homogeneous 
ones. EH affects species richness via three mechanisms (Stein 
& Kreft, 2015). First, greater EH allows more species to coexist 
by increasing the length of environmental gradients and habitat 
diversity, which also facilitates the chance of establishment for 
immigrant species (Antonelli et al., 2018; Hoorn, Mosbrugger, 
Mulch, & Antonelli, 2013; MacArthur & MacArthur, 1961). 
Second, EH enhances species diversification resulting from iso-
lation and adaptation of species to spatially variable conditions 
(Hortal et al., 2013; Molina-Venegas, Aparicio, Lavergne, & 
Arroyo, 2017). Third, EH facilitates species persistence by provid-
ing shelter and refugia from adverse environmental conditions, 
for example, during glacial cycles or periods of prolonged drought 
(Keppel et al., 2015; Svenning & Skov, 2007).

Oceanic islands are highly dynamic systems with heteroge-
neous environments, unique biota and outstanding levels of en-
demism (Kier et al., 2009; Weigelt, Jetz, & Kreft, 2013). Oceanic 
islands are typically characterized by a rapid volcanic growth and 
a relatively short life span, which can range from days (Sabrina, 
Azores in 1811) to tens of millions of years (Fuerteventura 20 Ma) 
(Fernández-Palacios, Otto, Thebaud, & Price, 2014). Some oce-
anic islands reach remarkable elevations, such as the Mauna Kea 
(4,207 m a.s.l.) on the Island of Hawai'i or Mount Teide (3,718 m 
a.s.l.) on Tenerife, and these impressive elevational gradients cause 
marked differences in temperature, orographic precipitation re-
gimes and rain shadow effects over short geographical distances. 
Over geological time scales, island surfaces change from high and 
smooth volcanos, through highly rugged terrain when erosion 
shapes mountain ridges, to flat island remnants (Paulay, 1994; 
Price & Clague, 2002). Such changes are caused by the interplay 
between volcanic activity, erosion, landslides and subsidence 
(Badgley et al., 2017; Carracedo et al., 2011). Certain oceanic is-
lands have a complex geological history with repeated episodes of 
volcanism and mega-landslides (Gillespie & Roderick, 2014; Neall 
& Trewick, 2008). Hence, oceanic islands may exhibit high EH in 
terms of topography, climate (e.g. orographic precipitation regimes) 

and soil conditions (Seijmonsbergen, Guldenaar, & Rijsdijk, 2018; 
Whittaker et al., 2007). However, little is known about how eco-
logically relevant components of EH change over the life span of 
oceanic islands and how these changes affect the biogeographical 
processes generating and maintaining insular diversity.

Investigating how the dynamic nature of EH through the on-
togeny of islands (i.e. island development through its geological 
life span from island emergence, island building, advanced island 
age to island submergence) affects colonization, speciation and 
extinction rates and emergent patterns of insular species diver-
sity is at the forefront of modern island biogeography (Borregaard 
et al., 2017; Whittaker, Fernández-Palacios, Matthews, Borregaard, 
& Triantis, 2017). The General Dynamic Model (GDM) links the geo-
logical dynamics of oceanic islands to biogeographical rates and 
diversity patterns (Whittaker, Triantis, & Ladle, 2008). One of the 
three premises of the GDM states that island elevational range, 
topographic complexity (both belonging to the topographic com-
ponent of EH) and island area change in a predictable manner over 
time and peak at intermediate island age, causing a hump-shaped 
pattern in island carrying capacity and species richness (Lim & 
Marshall, 2017; Valente, Etienne, & Phillimore, 2014; Whittaker 
et al., 2008). The peaks in carrying capacity and species richness 
are assumed to occur between the time when an island first reaches 
its maximum elevation with steep climatic gradients, and the time 
when it reaches maximum topographic complexity after having ex-
perienced erosion, that is, a rugged and dissected landscape with a 
large number of different habitats. The hump-shaped relationship 
between species diversity, island area and age has been summa-
rized in the GDM and was originally mathematically expressed as: 
Biodiversity ~ ln(Area) + Time + Time2, called the ‘ATT2 model’ 
(Whittaker et al., 2008).

Despite these clear theoretical underpinnings, the complex geo-
logical histories and often idiosyncratic trajectories of individual 
oceanic islands (Ali, 2017) may limit the applicability of the GDM 
(Borregaard et al., 2017; Keppel et al., 2016). Most empirical tests 
of the GDM have focused on the relationship of island area and age 
with species richness (Borregaard et al., 2017; Lenzner, Weigelt, 
Kreft, Beierkuhnlein, & Steinbauer, 2017; Steinbauer, Dolos, Field, 
Reineking, & Beierkuhnlein, 2013). The few studies that included EH 
found species diversity best explained when both area and EH were 
included in the models (Keppel et al., 2016). However, the validity of 
the assumption of a hump-shaped relationship between EH and island 
age – to the best of our knowledge – has never been tested before. 
Also, the effect of EH on insular plant diversity (i.e. inclusion of EH 
in the ATT2 model) and species diversity remains poorly understood 
(but see e.g. Hortal, Triantis, Meiri, Thébault, & Sfenthourakis, 2009; 
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Triantis, Mylonas, Lika, Natural, & Museum, 2003). The apparent re-
search gap of EH research on islands is partly due to EH being a 
multifaceted concept and difficult to quantify in an ecological mean-
ingful way, that is, to capture all attributes of heterogeneity in an 
environment that may drive species diversity.

The quantification of EH is complicated by at least two main 
challenges. First, EH comprises a potentially large number of differ-
ent components (e.g. related to precipitation, topography and soil 
types). Second, different quantification methods may capture differ-
ent aspects of EH (Stein & Kreft, 2015). In addition, the spatial scale 
at which EH is calculated may affect the results of EH quantification 
(Jackson & Fahrig, 2015) and interactions with island area can po-
tentially modify the effect of EH on diversity (Allouche, Kalyuzhny, 
Moreno-Rueda, Pizarro, & Kadmon, 2012; Hortal et al., 2013). For 
instance, the area-heterogeneity trade-off hypothesis predicts spe-
cies diversity to decrease at high levels of EH, because the effective 
area of individual habitats is reduced (Allouche et al., 2012). While 
theoretical arguments opposing the area-heterogeneity trade-off 
hypothesis have been raised (Hortal et al., 2013), it remains largely 
unknown if there is an interactive (positive or negative) effect of is-
land area and EH on diversity on islands (but see Hortal et al., 2009) 
and how this relates to the GDM.

Therefore, we set three aims for the present study. First, we aim 
to calculate and compare various alternative, ecologically meaningful 
EH metrics across a large number of oceanic islands worldwide by 
focusing on two main abiotic EH components, namely climatic and 
topographic heterogeneity. Second, we test the GDM premise that 
EH exhibits a hump-shaped relationship with island age. Finally, we 
evaluate the effect of EH on plant diversity of oceanic islands and 
examine the EH effect on predictor variables of the GDM (island area 
and time) and the potential interaction between EH and island area 
on diversity, by including different variants of EH in the ATT2 model.

2  | MATERIAL S AND METHODS

We studied spatial environmental heterogeneity (EH), its relation-
ship with island age and its effect on species diversity of vascular 
plants for 135 oceanic islands of volcanic origin (Figure 1), which be-
long to 41 archipelagos worldwide (Figure S1.1). We restricted the 
analysis to islands >2 km2, as EH could not be calculated in a mean-
ingful way for smaller islands, given the spatial grain of the climatic 
variables (1 km). We worked with two aspects of plant diversity, (a) 
species richness of native species and (b) single-island endemics. 
The latter reflects evolutionary processes on islands, such as in situ 
speciation (Weigelt, Steinbauer, Cabral, & Kreft, 2016). We obtained 
the information about plant diversity, as well as island characteristics 
(island age and area), from the Global Inventory of Floras and Traits 
(GIFT). The GIFT database provides information on distributions 
and floristic status (native, endemic, alien) of plant species based 
on a wide range of regional floristic databases, floras and checklists 
(Weigelt, König, & Kreft, 2020). The full list of original literature re-
sources used to obtain species diversity information is available in 
Appendix 1.

2.1 | Environmental heterogeneity components

To assess the climatic component of EH, we used mean annual 
precipitation (PREC; mm/year) and mean annual temperature 
(TEMP; °C). Both variables influence the water and energy avail-
able to plants and are strong determinants of plant diversity (Kreft 
& Jetz, 2007). The information of PREC and TEMP were derived 
from the Climatologies at High resolution for the Earth's Land 
Surface Areas (CHELSA) dataset at a spatial grain of c. 1 km (Karger 
et al., 2017). To evaluate the topographic component of EH, we used 

F I G U R E  1   Workflow of quantifying environmental heterogeneity (EH) for 135 oceanic islands worldwide, displayed as black dots in the 
world map. A total of 20 EH metrics were calculated for each island to capture four EH components: elevation (ELEV; m a.s.l.), mean annual 
precipitation (PREC; mm/year) and mean annual temperature (TEMP; °C), and heat load index (HLI). Two types of metrics were investigated: 
(i) whole-island metrics that summarized EH per island by its range (rg) or standard deviation (sd) of the four EH components and (ii) 
moving-window metrics that first calculated statistics for a focal cell within the specified window size (9 km2), resulting in heterogeneity 
rasters for each EH component, and then summarized EH for each island using the mean value of the heterogeneity rasters, that is, mean of 
dissection (dis), standard deviation (msd) and roughness (rou). Tenerife island (2034 km2) is shown as an example displaying the different EH 
components, heterogeneity rasters and the 9 km2 window size [Colour figure can be viewed at wileyonlinelibrary.com] 
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elevation (ELEV; m a.s.l.) from the Shuttle Radar Topography Mission 
(SRTM) dataset, at a spatial grain of 250 m (Jarvis, Reuter, Nelson, & 
Guevara, 2008). From the ELEV data, we derived the heat load index 
(HLI), using the formula: HLI = −1.467 + 1.582 * cos(L) * cos(S) − 1.5 * 
cos(Fα) * sin(S) * sin(L) − 0.262 * sin(L) * sin(S) + 0.607 * sin(Fα) * sin(S), 
where L = latitude, S = slope and Fα = folded aspect (see equation 1 
in McCune, 2007; McCune & Keon, 2002). HLI assesses topography-
associated thermal gradients by including the slope aspect. Slope 
aspect strongly influences local temperature, that is, equatorial fac-
ing slopes are warmer than polar facing slopes. Thus, slope aspect 
influences the thermal condition in a habitat (McCune, 2007). HLI 
has already been related to distribution patterns of plant diversity 
(He et al., 2017).

2.2 | Quantification of environmental heterogeneity 
across oceanic islands

To quantify the two main EH components, climatic and topographic 
heterogeneity, we calculated two types of metrics (Figure 1). First, 
we used whole-island metrics describing the range and the spatial 
variability of the EH components over the whole island. These met-
rics can describe island carrying capacity of an entire oceanic island 
(Stein et al., 2015). To this end, we summarized EH per island by the 
range (rg) and the standard deviation (sd) of the environmental vari-
ables ELEV, HLI, PREC and TEMP. Second, we used moving-window 
metrics to calculate the local environmental turnover of either cli-
mate or topography within a defined area (Amatulli et al., 2018). This 
group of EH metrics can provide information about climatic and top-
ographic complexity, and potential topography-associated dispersal 
barriers within islands.

We applied a moving-window approach (Hagen-Zanker, 2016) 
that calculates statistics for a focal cell within a specified window 
size (here 9 km2 comprised 3 × 3 and 12 × 12 pixels for CHELSA 
and SRTM data, respectively). Within the 9 km2 window, we calcu-
lated three statistics (1) dissection = (z − zmin)/(zmax − zmin), where 
zmax = maximum, zmin = minimum and z = focal cell value within the 
window, (2) standard deviation and (3) roughness (i.e. the largest in-
ter-cell difference of a focal cell and its surrounding cells) (Amatulli 
et al., 2018; Riley, DeGloria, & Elliot, 1999). This produced three new 
raster layers for each EH component (hereafter ‘heterogeneity ras-
ters’) with identical spatial extent and grain as the input and each 
new cell describing the heterogeneity within the window. We then 
summarized EH for each island by calculating the mean value of the 
heterogeneity rasters and termed them ‘dis’, ‘msd’ and ‘rou’, respec-
tively (Figure 1). We named the EH metrics by referring first to the 
environmental variable abbreviation in uppercase, followed by the 
calculation metric abbreviation in lower case, for example, ELEVrou 
for the mean roughness in elevation per island and PRECrg for the 
range in precipitation per island.

Window size and spatial grain can influence EH quantification. 
We therefore tested three alternative window sizes (3, 25 and 
49 km2) on three different spatial grains (250 m, 500 m and 1 km, 

the last two grains were aggregated from initial ELEV at 250 m) using 
the ELEV data only (Figure S2.6). Following the same procedure as 
described above for moving-window metrics, we obtained EH val-
ues per island and compared values across islands using correla-
tion analysis. We calculated the EH metrics using R version 3.5.2 (R 
Development Core Team, 2018) using the extract function from the 
package raster (Hijmans et al., 2018). For computing the HLI and the 
heterogeneity rasters dissection, roughness and standard deviation, 
we used the Spatial Analyst extension and the Geomorphometry & 
Gradient Metrics toolbox (Evans, Oakleaf, & Cushman, 2014) in ESRI 
ArcGIS version 10.4.

2.3 | Statistical analysis

We used Pearson's correlation coefficients to relate EH metrics to 
each other, and to assess similarities among EH components and the 
two types of metrics. To test the GDM premise of a hump-shaped 
trend in EH over island age (see relationships between island age and 
individual EH metrics in Figure S3.7), we replaced ‘Biodiversity’ with 
a respective EH metric as a response variable in a modified GDM for-
mula that uses a log-transformation of Time (Steinbauer et al., 2013): 
ln(EH metric) ~ ln(Area) + ln(Time) + ln(Time2) + (1|Archipelago), 
where ‘ln’ is the natural logarithm (hereafter ‘EH ~ ATT2’ model). 
We fitted the EH ~ ATT2 formula using linear mixed-effect models 
(LMM) that account for the variation across archipelagos as random 
intercept because EH and species diversity of individual islands 
depend on archipelago characteristics (Borregaard, Matthews, 
Whittaker, & Field, 2016; Bunnefeld & Phillimore, 2012). All EH met-
rics were scaled to zero mean and unit variance to facilitate com-
parisons among different EH measures. We then produced model 
predictions to assess the trend of EH with island age, by keeping 
island area and archipelago constant (median island area and one se-
lected archipelago, Hawaii). We verified if the log-transformation of 
island age produced statistically more robust models by fitting the 
EH ~ ATT2 formula without log-transforming island age and using 
Akaike's information criterion (AIC), and how island area influenced 
the EH metrics, as area may interfere with the identification of EH 
per se (Stein et al., 2014), by plotting coefficient estimates for the 
EH ~ ATT2 models.

We evaluated the effect of EH on the diversity of vascu-
lar plants, by including each EH metric separately as a predictor 
variable in the modified GDM formula (Steinbauer et al., 2013): 
Biodiversity ~ ln(EH metric) + ln(Area) + ln(Time) + ln(Time2) + 
(1|Archipelago) + (1|Observation) (hereafter ‘EHATT2’ model), 
where we replaced Biodiversity by (a) number of native species 
and (b) number of single-island endemic species of vascular plants. 
We fitted the EHATT2 models and for comparison also the ATT2, 
which did not include EH, using generalized linear mixed-effect 
models (GLMM, with Poisson distribution error). To identify the 
differential effect of the investigated predictor variables, that 
is, Area, Time, and each EH metric (we assessed the effect of 
log-transforming the metrics, see Table S3.2, Figures S2.2 and 
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S3.9), we compared the EHATT² model coefficient estimates. To 
determine if EH in addition to Area and Time improved model 
support, we used AIC values. Additionally, to test if island area 
affected the effect of EH on plant diversity, we ran the ATT2 
and EHATT2 models including the interaction term ln(EH metric) 
* ln(Area). Lastly, based on model predictions, we evaluated the 
trend of plant diversity over island age, and tested the effect of 
excluding the quadratic term of age (Time2) from all EHATT2 and 
ATT2 models to identify the importance of this term, based on AIC 
values. For a complete model assessment, we first evaluated ab-
solute model fit by computing marginal (fixed effects) and condi-
tional (random effects) R2 values (Nakagawa & Schielzeth, 2013) 
for EH ~ ATT2, as well as for EHATT2 and ATT2 models (Tables S3.1 
and S3.3). Second, using model diagnostics (QQ plot and resid-
ual versus predicted values), we determined whether there were 
significant degrees of overdispersion for GLMM (i.e. EHATT2 
and ATT2). Overdispersion is common in models for count data 
and can be caused by aggregation among observations (Harrison 
et al., 2018), that is, islands. It may cause Type I errors (false posi-
tives), as standard errors are underestimated. To fix this, we used 
the observation-level random effect approach (i.e. the identity of 
islands was set as random intercept), which gives more accurate 
estimates of standard errors (Harrison, 2014, 2015). R2 values and 
overdispersion tests were computed in MuMIn (Bartoń, 2018) and 
DHARMa (Hartig, 2019), respectively. All statistical analyses were 
done using R 3.5.2 (R Development Core Team, 2018). The LMM 
and GLMM were fitted using the package lme4, and model coeffi-
cient estimates plots were produced using the package dotwhisker 
(Solt & Hu, 2015).

3  | RESULTS

3.1 | Assessment of environmental heterogeneity 
metrics

Our comparison of different EH metrics revealed strong similarities 
among topographic and climatic heterogeneity, namely between 
ELEV and TEMP heterogeneity (Pearson's correlation coefficients 
between 0.5–1 and average 0.72, see Figure S2.3). PREC heteroge-
neity, on the other hand, was only relatively weakly correlated with 
the other EH components (Pearson's correlation coefficients be-
tween 0.1 and 0.7 and average 0.29). Within the whole-island met-
rics, that is, range (rg) and standard deviation (sd), we found a strong 
and positive correlation (Pearson's correlation coefficients between 
0.5 and 0.9 and average 0.61) and within two moving-window met-
rics roughness (rou) and standard deviation (msd) the correlation was 
also positive (Pearson's correlation coefficients between 0.6 and 0.8 
and average 0.57). Across whole-island metrics and moving-window 
metrics, the correlation was somewhat weaker (Pearson's correlation 
coefficients between 0.1 and 0.9 and average 0.49). In contrast, the 
moving-window metric using dissection weakly to negatively corre-
lated with the other EH metrics (Pearson's correlation coefficients 

commonly <0.4 and average 0.08). Our test using different window 
sizes and spatial grains showed high correlations across small and 
intermediate windows (3, 9, 25 km2 calculated with 250 m, 500 m 
and 1 km spatial grain), yielding almost identical EH values per island 
(correlation coefficients >0.88, Figure S2.6), whereas the larger win-
dow 49 km2 showed a slight difference in EH values (Figure S2.6). In 
addition, we found that the heterogeneity rasters based on 9 km2 
window size clearly identified landscape features, such as ravines 
and mountainous areas, while the 49 km2 window generally led to 
more diffuse patterns (see example in Figure S2.4).

3.2 | Trends of environmental heterogeneity over 
island age

We found hump-shaped relationships between EH and island age 
for 16 out of the 20 EH metrics (Figure 2). Those 16 EH metrics 
showed a similar pattern over time, that is, EH rapidly increased and 
peaked early, followed by a slow decrease over time. The remain-
ing four EH metrics (moving-window metrics using dissection, see 
yellow lines in Figure 2) showed an asymptotically or exponentially 
decreasing trend over time. The model comparison revealed that 

F I G U R E  2   Temporal trends of environmental heterogeneity (EH) 
over island age (in millions of years, i.e., Ma) based on data for 135 
oceanic islands. Predictions were derived from EH ~ ATT2 models 
where island area and archipelago were kept constant (median 
island area and one selected archipelago, i.e., Hawaii). The EH 
components are displayed separately, (a) mean annual precipitation 
(PREC), (b) mean annual temperature (TEMP), (c) elevation (ELEV) 
and (d) heat load index (HLI). Coloured lines correspond to the type 
of metrics used, whole-island metrics are displayed in blue = range 
(rg) and green = standard deviation (sd), and moving-window 
metrics in yellow = dissection (dis), red = standard deviation 
(msd) and black = roughness (rou). EH metrics were scaled (zero 
mean, unit variance) to facilitate comparisons among different EH 
measures [Colour figure can be viewed at wileyonlinelibrary.com]
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the log-transformation of island age in the EH ~ ATT2 formula was 
always more strongly supported than models with untransformed 
data (Table S3.1).

3.3 | Environmental heterogeneity as a predictor of 
plant diversity in the ATT2 model

The majority of EH metrics had a positive effect on insular plant di-
versity (Figure 3), and they had an even stronger effect on single-
island endemic species (compare x-axis in Figure 3). For the number 
of native species, PREC and TEMP heterogeneity had the strongest 
effect (Figure 3a), particularly precipitation and temperature range 
(i.e. whole-island metrics PRECrg and TEMPrg). It was followed by 
the positive effect of climatic complexity in terms of precipitation 
(i.e. moving-window metrics PRECmsd and PRECrou) (Figure 3a). 
The number of single-island endemics species was most strongly af-
fected by TEMP and ELEV heterogeneity (Figure 3b), specifically the 
range in temperature and elevation (TEMPrg and ELEVrg). Climatic 
(in terms of temperature) and topographic complexity (i.e. moving-
window metrics TEMProu, ELEVmsd, HLImsd) also had a positive 
effect on single-island endemic species but PREC heterogeneity did 
not affect single-island endemics (Figure 3b). Moving-window met-
rics that used dissection neither affected native nor single-island en-
demic species (Figure 3).

In all EHATT2 and ATT2 models, island area had the strongest ef-
fect (Figure 3), but its effect particularly decreased when whole-is-
land metrics that measured ranges (TEMPrg, ELEVrg and PRECrg) 
were included in the models (see models coefficients and error bars 
of the ATT2 model highlighted in black in Figure 3). Island age had a 
weak effect in all EHATT2 and ATT2 models (see Time and Time2 co-
efficients estimates and error bars in Figure 3). However, the effect 
of both terms for age changed after including whole-island metrics 
measuring ranges (again TEMPrg, ELEVrg, PRECrg), that is, the effect 
of the linear term (Time) increased and the quadratic term (Time2) 
decreased. The decrease in the effect of the quadratic term caused 
an asymptotic relationship of species richness and endemism with 
time (Figure S5.10). Furthermore, models without the quadratic term 
of age (i.e. EHAT models) had lower AIC values than the EHATT2 
models (Table S5.4) and therefore a stronger support. Also, the ma-
jority of the EHATT2 models received stronger statistical support 
than the ATT2 model (Table S3.3), namely 15 out of 20 EHATT2 mod-
els for predicting number of native species and 11 out of 20 EHATT2 
models for predicting number of single-island endemics (Table S3.3).

Finally, there was only limited support for an interaction be-
tween island area and EH (Figure S5.11). For models predicting the 
number of native species, the positive interactions for one whole-is-
land metric (PRECrg) and two moving-window metrics (PRECmsd 
and PRECrou) with island area (Figure S5.11a) received statistical 
support. For models predicting the number single-island endemic 

F I G U R E  3   Effects of environmental heterogeneity (EH) components and metrics, island area and age on species richness and endemism 
of vascular plants, in the framework of the general dynamic model (GDM). Coefficient estimates (dots) and 95% confidence intervals (bars) 
for (a) number of native species and (b) number of single-island endemic species, from models fitted with EHATT2 and ATT2 to compare the 
effect of including EH. The coloured dots and bars correspond to a particular model depending on the EH metric included. Coefficients and 
error bars of the ATT2 models are highlighted in black. Vertical dashed lines mark zero effects and covariates are not considered significant if 
the error bar intersects with the zero-line. Coefficient estimates were automatically scaled for direct comparison by two times their standard 
deviation [Colour figure can be viewed at wileyonlinelibrary.com]
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species, nearly all moving-window metrics capturing precipitation 
and temperature heterogeneity (PRECdis, PRECmsd, PRECrou, 
TEMPmsd, TEMProu) had a significant and positive interaction with 
island area (Figure S5.11b). None of the EH metrics for elevation and 
HLI significantly interacted with island area.

4  | DISCUSSION

Our study aimed to identify ecologically meaningful measures of 
environmental heterogeneity (EH) on oceanic islands by assess-
ing climatic and topographic components of heterogeneity related 
to precipitation (PREC), temperature (TEMP), elevation (ELEV) and 
heat load (HLI), and to evaluate the performance of whole-island 
as well as of moving-window metrics (Figure 1). We then tested a 
key premise of the general dynamic model of island biogeography 
(GDM; Whittaker et al., 2008) and showed that EH indeed follows 
the expected hump-shaped relationship with island age (Figure 2). 
We found strong evidence for an important role of EH as a driver of 
plant species richness and endemism of oceanic islands (Table S3.3). 
Metrics reflecting climatic heterogeneity (i.e. PREC and TEMP het-
erogeneity) are particularly relevant for species richness and tem-
perature and topographic complexity (i.e. ELEV and TEMP and 
HLI heterogeneity) are particularly relevant for endemic species 
(Figure 3). Together, our results contribute to a better understanding 
of the role of EH for insular diversity patterns.

4.1 | Capturing the heterogeneity of insular 
environments

Our assessment of different alternative ways to quantify EH of 
oceanic islands revealed that certain environmental components 
strongly co-vary, as seen in the strong positive correlation of eleva-
tion and temperature-related heterogeneity metrics. This is due to 
the strong dependency of temperature gradients on the topography 
(Dobrowski, Abatzoglou, Greenberg, & Schladow, 2009). In contrast, 
precipitation heterogeneity was less strongly associated with met-
rics of other EH components (Figure S2.3), indicating that EH metrics 
capture different aspects of the spatial variability in island environ-
ments. This is further supported by the low to intermediate correla-
tions among different types of metrics (whole-island metrics versus 
moving-window metrics).

The Island of Hawai'i nicely illustrates the contrast between 
whole-island and moving-window metrics (see Hawaiian archipelago 
EH-map in Figure S2.5), as it had the largest observed values for cli-
matic and topographic ranges (PRECrg, TEMPrg, ELEVrg metrics), but 
comparatively low climatic and topographic complexity (PRECrou, 
TEMProu, ELEVrou metrics). The large values for range metrics 
are explained by the fact that the Island of Hawai'i is the highest 
oceanic island worldwide. This produces steep and long gradients 
in temperature, as well as dramatic precipitation gradients created 
by the high elevation of the island and trade winds (Giambelluca 

et al., 2013). Likewise, the Island of Hawai'i is characterized by a 
comparatively low climatic and topographic complexity because the 
surface of this young island is relatively smooth compared to older, 
more eroded islands. These results indicate that whole-island met-
rics successfully describe total energy (TEMPrg, HLIrg), water supply 
(PRECrg) and available space for species (ELEVrg), all major elements 
of island carrying capacity (Hui, 2006). Moving-window metrics, in 
contrast, are more suitable for describing the climatic and topo-
graphic complexity of islands (Cramer & Verboom, 2017), when using 
roughness or standard deviation because they capture local changes 
in temperature and precipitation regimes and terrain complexity, 
for example, ridges and valleys (Bonetti, Hooshyar, Camporeale, & 
Porporato, 2020), found in landscapes such as the Anaga mountains 
on Tenerife (Figure 1), Moka in Mauritius and Koke'e in Kauai (see 
island maps in Figure S2.4).

Moving-window metrics of dissection computed here as the 
mean value of the heterogeneity rasters of dissection per island 
did not always reliably inform about how dissected an island land-
scape is. Our results showed that (mean) dissection values varied 
independently of island age (Figure S3.7). For instance, Christmas 
Island (20 Ma) and Genovesa Island (0.3 Ma) had the highest (mean) 
dissection values for elevation among all islands studied. The first 
is an old, highly eroded island with steep escarpments around its 
boundaries, the second is a young volcano. Both island landscapes 
are mostly smooth with little topographic complexity (i.e. no valleys 
and ridges), but rather have a continuously descending landform (e.g. 
cone-shape). In both cases, the dissection formula led to high val-
ues for landscape incisions (i.e. descending areas within the 9 km2 
window size) or its analogue for climate (see Tenerife heterogeneity 
rasters in Figure 1). Thus, islands with a relatively flat or cone-shaped 
landscapes can have high average dissection values despite having 
limited EH.

The spatial grains used here (250 m for ELEV and HLI and 1 km 
for TEMP and PREC) produced comparable estimates of EH. Our 
test using different window sizes confirmed that within-island EH, 
caused by island ravines, ridges and valleys, is captured well at an 
intermediate scale (i.e. 9 km2) (Figure S2.4). At a larger scale (i.e. 
49 km2), such landscape features were averaged out and disap-
peared, potentially leading to an underestimation of EH (see 9 km2 
versus 49 km2 window sizes in Figure S2.6). This is relevant for plant 
diversity because at intermediate scales geology and soil conditions, 
in addition to topography and climate, create a matrix of habitats 
that can host distinct plant communities (Crawley, 2001; Miguet, 
Jackson, Jackson, Martin, & Fahrig, 2016).

4.2 | The trajectory of environmental heterogeneity 
over oceanic island ontogeny

With few exceptions, the EH metrics investigated here showed a 
hump-shaped relationship with island age (Figure 2), with peaks early 
in the island ontogeny (higher model support with log-transformed 
island age, see Table S3.1). This result lends strong support to one of 
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the fundamental premises of the GDM (Whittaker et al., 2008), that 
is, island elevational range and topographic complexity have a hump-
shaped pattern over time. In contrast to the graphical model repre-
sentation in Whittaker et al. (2008), we found that EH peaks before 
the ‘middle-age’ of an island because most of the volume and eleva-
tion of volcanic hotspot islands usually forms within the first million 
years (Troll & Carracedo, 2016). Shortly after island emergence, the 
onset of erosion, occurrence of mega-landslides and collapses of cal-
deras contribute to a complex island topography (Carracedo, 1994). 
With the peak in elevation, maximum climatic ranges are also reached 
and within-island climatic complexity increases. Two young islands 
from our analysis exemplify this: La Palma (2,380 m a. s. l. and ca. 
1.7 Ma) and Tahiti (1,670 m a. s. l. and ca. 1.3 Ma) have large climatic 
and elevational gradients and a complex climate and topography (e.g. 
both received high values for moving-window metrics of roughness), 
as they had already undergone geomorphological processes that 
considerably modified their surface configuration (Ferrier, Huppert, 
& Perron, 2013).

The slow decline of EH over time (Figure 2) indicates that it may 
take several million years for an island to be eroded. For instance, 
the island of Lanzarote is 16 Ma old, its highest point is 650 m a.s.l., 
and it still holds considerable EH. The main factors responsible for 
the decline of island's EH are long-term erosion through rainfall 
(Ferrier et al., 2011), subsidence in certain archipelagos, for exam-
ple, Galapagos Islands (Ali & Aitchison, 2014) and coastal erosion 
(Ramalho et al., 2013). Also, the trade-off between losing elevational 
range (Price & Clague, 2002) and increasing topographic complex-
ity slows the decline of island EH. The slow decline in EH has rele-
vant biogeographical implications. Extinction rates should rise only 
slowly while speciation rates might be maintained at higher levels, 
which would lead to a slower decline in species richness than pre-
viously thought (Whittaker et al., 2008). This has been shown for 
birds, insects and plants in the Hawaiian islands, where evolutionary 
decline is much slower compared to evolutionary radiation at the 
beginning of island building (Lim & Marshall, 2017).

The few exceptional cases where EH metrics (i.e. dissection 
metrics in Figure 2) did not show a humped-shaped trend over time, 
were caused by the unclear relationship between the metrics and 
island age (i.e. both young and old islands had intermediate to high 
dissection values, see Figure S3.7). Lastly, we note that although is-
land EH is generally related to island area and certain EH metrics are 
more affected by area per se (Figure S3.8), the EH trends we find 
here are not due to the variation of island area, as area entered the 
analysis as a covariate.

4.3 | Environmental heterogeneity as a 
determinant of insular species richness and endemism

Insular vascular plant diversity was strongly affected by EH, and 
most notably, native and endemic species richness were differen-
tially affected by EH. Specifically, we found that climatic hetero-
geneity (PREC and TEMP heterogeneity) was the most important 

predictor of native species richness (Figure 3a), whereas tempera-
ture and elevational heterogeneity were most important for the 
number of single-island endemic species (Figure 3b). Climatic heter-
ogeneity influences species richness on oceanic islands by increasing 
the number of climatic niches, where plant colonizers can establish 
and a large number of species can coexist (Stein et al., 2014) and 
persist if climatic fluctuations occur (Keppel et al., 2018). Elevational 
heterogeneity, on the other hand, is known for its key role in pro-
moting species diversification (Rahbek et al., 2019). Steep elevation 
gradients, which directly relate to changes in temperature, create se-
lection pressures that can lead to new species adaptations (Badgley 
et al., 2017). Furthermore, a complex topography implies geographi-
cal barriers that isolate species populations (Irl et al., 2015), disrupt 
their gene flow and eventually lead to within-island diversification 
(Kisel & Barraclough, 2010). Overall, this result is consistent with pre-
vious (meta-)studies (e.g. Kreft, Jetz, Mutke, Kier, & Barthlott, 2008; 
Stein et al., 2014) and emphasizes how EH, which is characteristically 
high on oceanic islands (Fernández-Palacios, 1992; Mueller-Dombois 
& Fosberg, 1998), is a key determinant of insular plant diversity.

4.4 | Effect of including environmental 
heterogeneity in the ATT2 model

Including EH in the ATT2 model improved the statistical power and 
also modified the effect of island area and age on species richness 
and endemism of vascular plants. The decreased effect of island 
area after including EH, particularly with whole-island metrics (i.e. 
PRECrg, TEMPrg and ELEVsd), provides evidence that both, island 
area per se and EH, need to be considered in models of species 
richness and endemism (Triantis, Guilhaumon, & Whittaker, 2012). 
Including EH had opposite effects on the two terms for island age. 
It increased the effect of the linear term (Time in Figure 3) and de-
creased the effect of the quadratic term (Time2 in Figure 3), leading 
to an overall asymptotically increasing relationship between spe-
cies richness and endemism with time (Figure S5.10) and not to 
the hump-shaped relationship predicted by the GDM (Whittaker 
et al., 2008). This change highlights three key phenomena occur-
ring during island ontogeny. First, more and more species colonize 
and eventually diversify with time (Heaney, 2000). Second, colo-
nization and speciation slow down when many species are already 
present (Borregaard et al., 2017). Third, and importantly, the nega-
tive effect of time on island carrying capacity, and hence island di-
versity, can be captured directly by the effects of decreasing island 
area and EH.

The lack of significant interactions for most models suggests 
that overall island area and EH affect species richness and ende-
mism largely additively. However, the positive and significant in-
teractions (Figure S5.11) we found between island area and EH 
(only for climatic heterogeneity) indicate that the effect of EH de-
pends on island size and lend limited support to the area-hetero-
geneity trade-off hypothesis (Allouche et al., 2012). Our finding 
shows that on large islands climatic heterogeneity has a positive 



2256  |     BARAJAS-BARBOSA et Al.

and strong effect on species diversity, while on small islands cli-
matic heterogeneity has a weaker to even negative effect on spe-
cies diversity. Therefore, small islands even if exhibiting high levels 
of climatic heterogeneity, will not have large numbers of species, 
particularly not endemic ones (compare x-axis Figure S5.11) be-
cause the effective area per habitat required for species to persist 
or even speciate is limited.

There are several limitations of our study. First, using a space-
for-time substitution for understanding biodiversity patterns that 
change over time only allows for limited inference (Pickett, 1989). 
Second, the challenges imposed by the complexity and often idio-
syncratic development of volcanic island ontogenies hamper the 
search for generality (Ali, 2017; Borregaard et al., 2017). Finally, 
there are further potential EH components crucial for plant diver-
sity, such as heterogeneity in soil conditions (Crews et al., 1995) or 
heterogeneity in biological interactions, which currently are not pos-
sible to evaluate at the geographical extent of our study.

We conclude that our EH quantification across a large number 
of oceanic islands worldwide underlines that investigating a suite 
of alternative environmental heterogeneity metrics, calculated with 
different methods (i.e. whole-island and moving-window metrics) 
and using an intermediate spatial scale (9 km2) contributes to an 
improved understanding of the importance of island environmen-
tal heterogeneity as a driver of diversity patterns. Our results lend 
strong support to one of the central premises of the GDM, namely 
that EH follows a hump-shaped relationship with island age. One 
important finding in this context was that EH peaked early in is-
land ontogeny and declined more slowly over time than reflected in 
most models. This suggests that island maximum carrying capacity 
can be reached relatively fast and that it is maintained for a com-
paratively long time during island geological progression. This has 
strong implications for understanding insular species richness and 
endemism, as ecological opportunities and vacant niche space may 
remain available for several millions of years. Hence, EH plays an 
important role in determining the diversity of vascular plants on 
oceanic islands and including EH in the ATT2 model strongly affects 
its characteristics. Together, these results increase our understand-
ing of how area, EH and time shape plant diversity and endemism 
on oceanic islands.
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