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BEYOND ARTIN’S CONJECTURE FOR CUBIC FORMS

MIRIAM SOPHIE KAESBERG

Abstract. It is established that every cubic form in at least eight variables which can be realised as
a diagonal form on a hyperplane has a non-trivial p-adic solution for all primes p.

§1. Introduction. Artin [1] expected that every form of degree k with integer coefficients
in s variables has a non-trivial p-adic solution for all primes p provided s > k2. Even though
this conjecture has been proven wrong in general, there are special cases in which it is true.
Until today the only cases known are those with k = 1, k = 2 and k = 3, the last of which
was proven by Lewis [7].

Here, I follow an idea by Brüdern and Robert [2] who presented an approach which provides
a way to prove Artin’s conjecture for some cases. Their approach is based on the following
lemma, a special case of the proposition in [2, Section 2], where it is proven that solving a
form of degree k is equivalent to solving a particular system of diagonal forms.

LEMMA 1. For a form g ∈ Q[X1, . . . , Xs] of degree k, there exist r linear forms
Lj ∈ Q[Y1, . . . ,Yr+s] (1 � j � r) and r + s coefficients c j ∈ Q (1 � j � r + s) for an r
between 0 and s(s+1)...(s+k−1)

k! with the property that the equation g(x1, . . . , xs) = 0 has a
solution x ∈ Qs

p\{0} if and only if the system of equations

r+s∑
j=1

c jy
k
j = 0, L j(y) = 0 (1 � j � r)

has a solution y ∈ Qr+s
p \{0}.

Applying Lemma 1 with s = k2 + 1 shows that if for every 0 � r � (k2+1)(k2+2)...(k2+k)

k! the
system

k2+r+1∑
j=1

a jx
k
j =

k2+r+1∑
j=1

bi jx j = 0 (1 � i � r),

consisting of one diagonal form of degree k and r linear diagonal forms in k2 + r + 1 variables
with integer coefficients a j and bi j has a non-trivial p-adic solution for all primes p, then every
form of degree k with at least k2 + 1 variables has one.

For k = 3, this implies that every form of degree 3 with at least 10 variables has a non-
trivial p-adic solution for all primes p if and only if for a specific 0 � r � 220 and integer
coefficients a j and bi j the system

10+r∑
j=1

a jx
3
j =

10+r∑
j=1

bi jx j = 0 (1 � i � r) (1.1)
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has a non-trivial p-adic solution for all primes p. The case r = 0 was proven by Lewis [8].
He even showed that every equation of the form

s∑
i=1

aix
3
i = 0, ai ∈ Z,

has a non-trivial p-adic solution for all p if s � 7. This includes the case r = 0, but it is by
three variables better than required. It is the aim of this paper to prove that for r = 1 one does
not lose this advantage of three variables.

THEOREM 1. Let s � 8 and ai, bi ∈ Z for 1 � i � s. Then the system
s∑

j=1

a jx
3
j =

s∑
j=1

b jx j = 0, (1.2)

has a solution (x1, . . . , xs) ∈ Qs
p\{0} for all p prime.

It is impossible for all systems

7+r∑
j=1

a jx
3
j =

7+r∑
j=1

bi jx j = 0 (1 � i � r)

with integer coefficients a j and bi j to have a non-trivial p-adic solution for all primes p and
all 0 � r � 220. Otherwise it would follow from Lemma 1 that every form of degree 3 with
integer coefficients in at least seven variables has a non-trivial p-adic solution for all primes
p. But as it was proven by Mordell [9] that Artin’s conjecture is strict for k = 3, that is, there
exist a cubic form of degree 3 in nine variables and a prime p without a non-trivial p-adic
solution, somewhere between r = 0 and r = 220 this gap of three variables is closed.

The proof of Theorem 1 will follow a pattern by Brüdern and Robert [2]. Dividing the set
of primes into sets depending on their residue class modulo 3, those primes congruent to 2
modulo 3 will be worked on in § 2 using the contraction argument by Brüdern and Robert
[2, Section 3] and some work of Dodson [5]. For the remaining primes, the version of Hensels’s
Lemma in § 3, established by Brüdern and Robert [2, Section 4], will give a combinatorial
approach to the problem, which indicates a necessity to distinguish between primes congruent
to 1 modulo 3 and the prime three. Section 4 will introduce an equivalence relation on the
set of system, which Brüdern and Robert [2, Section 6] used to pick representative with good
properties. In § 5, I will prove with a simple combinatorial approach for primes congruent
to 1 modulo 3 that most cases have a non-trivial p-adic solution. The remaining cases will
be handled in §§ 6, 7 using a more complex approach of Brüdern and Robert [2, Sections
8 and 9] in § 6 and a result by Leep and Yeoman [6] on the number of solutions of an
absolute irreducible polynomial in both sections. The proof will be completed in § 8 where
combinatorial methods are used to show the existence of non-trivial 3-adic solutions.

§2. The case p ≡ 2 mod 3. In this section, I prove Theorem 1 for primes p congruent to
2 modulo 3. These primes are relatively easy to handle since the set of cubic residue classes
modulo p equals the set of all residue classes modulo p. Hence, the equation

c1x3
1 + · · · + ct x

3
t = 0, (2.1)

in which all coefficients are integers, has a non-trivial p-adic solution even if t is relatively
small for primes p congruent to 2 in comparison to primes p congruent to 1 modulo 3. Dodson
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[5] denoted the smallest t such that a non-trivial p-adic solution exists for all equations (2.1)
by �∗(3, p). More general, �∗(k, p) denotes the smallest number t ∈ N, such that for all
c1, . . . , ct ∈ Z the equation

c1xk
1 + · · · + ct x

k
t = 0

has a solution x ∈ Qt
p\{0}. The problem of showing that a system (1.2) has a non-trivial p-adic

solution was broken down by Brüdern and Robert [2, Section 3] into a restriction on �∗(k, p)

depending on s.

LEMMA 2. Suppose s � 2�∗(k, p). Then the system (1.2) has a non-trivial solution in Qp.

Proof. See [2, Lemma 3.1]. �

All that remains to be shown is that �∗(3, p) � 4 for all p congruent to 2 modulo 3. Dodson
[5] defined γ ∗(k, pn) as the least positive integer t with the property that if c1, . . . , ct are any
integers coprime to p, then the congruence

c1xk
1 + · · · + ct x

k
t ≡ 0 mod pn

has a primitive solution, that is an integer solution with not all variables x1, . . . , xt divisible
by p. For δ = gcd(k, p − 1), he remarked that the non-zero residues modulo p form a cyclic
group of order p − 1 and hence, the sets

{
xk : x ∈ Fp

}
and

{
xδ : x ∈ Fp

}
are equal, which

implies γ ∗(k, p) = γ ∗(δ, p). Then he established the following connection between �∗(k, p)

and γ ∗(k, pγ ), where pτ ‖ k and

γ =
{

τ + 1, for p > 2,

τ + 2, for p = 2.

LEMMA 3. It holds �∗(k, p) � k(γ ∗(k, pγ ) − 1) + 1.

Proof. See [5, Lemma 4.2.1]. �

For the cases p �= 2 and p ≡ 2 mod 3, this provides

�∗(3, p) � 3
(
γ ∗(3, p) − 1

) + 1.

Here γ ∗(3, p) = γ ∗(1, p) which is obviously 2 and hence �∗(3, p) � 4. The only remaining
prime p ≡ 2 mod 3 is 2. Lemma 3 can be applied to show

�∗(3, 2) � 3
(
γ ∗(3, 4) − 1

) + 1.

It is easy to see that γ ∗(3, 4) = 2 as well. If c1, c2 are coprime to 2, then they are congruent to
1 or 3 modulo 4. Since both 1 and −1 are cubic residues modulo 4, there is always a primitive
solution of the equation

c1x3
1 + c2x3

2 ≡ 0 mod 4.

Hence, �∗(3, 2) � 4 as well and therefore, for all primes p congruent to 2 mod 3 Theorem 1
is fulfilled.

For primes congruent to 1 modulo 3, this does not give the desired result because �∗(k, p)

is too large. For them, I use a special case of Hensel’s Lemma by Brüdern and Robert
[2, Lemmata 4.1 and 4.2] to reduce the problem to one of congruences.
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§3. A special case of Hensel’s lemma. Throughout this section, I need the parameters τ

and γ defined in the previous section which depend on the prime p and the degree of the first
equation in the system (1.2). In Theorem 1, the degree is 3 and hence τ = 0 for all p > 3 and
τ = 1 for p = 3 and γ = τ + 1. The following lemma was proven by Brüdern and Robert
[2, Lemma 4.2]. Although they excluded k = 3 before they proved it, the proof for k = 3 and
p > 2 is the same.

LEMMA 4. Let s � 2, p > 2 prime, and suppose that x ∈ Zs satisfies the congruences
s∑

j=1

a jx
3
j ≡ 0 mod pγ ,

s∑
j=1

b jx j ≡ 0 mod p (3.1)

and p � b1a2x2
2 − b2a1x2

1 . Then there are y1, y2 ∈ Zp with (y1, y2) �= (0, 0) and
s∑

j=1

a jx
3
j =

s∑
j=1

b jx j = 0.

For the remainder of this paper, a simultaneous solution of
s∑

j=1

a jx
3
j ≡ 0 mod pγ and

s∑
j=1

b jx j ≡ 0 mod p

is called non-singular if there are 1 � i, j � s such that p � bia jx2
j − b jaix2

i . The indices can
be renumbered, if necessary, such that p � b1a2x2

2 − b2a1x2
1. Then the preceding lemma can

be applied to show that a non-singular solution implies a non-trivial p-adic one. This can be
summarized to the following result.

LEMMA 5. Let s � 2, p > 2 prime, γ defined as in the previous section and suppose
s∑

j=1

a jx
3
j ≡ 0 mod pγ ,

s∑
j=1

b jx j ≡ 0 mod p (3.2)

has a non-singular solution. Then (3.2) has a non-trivial p-adic one.

§4. Conditioned systems. In this section, I present conditioned systems, introduced by
Brüdern and Robert [2] , which are a variant of the p-normalised systems of Davenport and
Lewis [4]. One says that two systems (1.2) are equivalent if one can be converted into the
other one by a finite series of the following processes.

(i) Substitute (x1, . . . , xs) �→ (c1x1, . . . , csxs) with all ci ∈ Q×.
(ii) Multiplication of one of the equations by a non-zero rational number.

(iii) Permutation of indices.
If one representative of an equivalence class has a non-trivial p-adic solution, so has the
whole class.

Brüdern and Robert [2, Section 6] showed that every system (1.2) with ai, bi ∈ Q\{0} for
1 � i � s has an equivalent system with the properties that

(i) all coefficients ai and bi are non-zero integers;
(ii) there is an i with p � bi; and

(iii) the number of coefficients ai with pj � a j is at least js
3 for 1 � j � 3.

They called such a system conditioned. By combining this with a compactness argument, they
have proven the following lemma.
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LEMMA 6. Suppose that for a fixed s there exists a non-trivial p-adic solution for
all conditioned systems. Then all systems (1.2) with rational coefficients have non-trivial
p-adic solutions.

Proof. See [2, Lemma 6.1]. �

The work with conditioned systems and systems (1.2) requires the following notation.
(i) For 1 � i � s, the parameters νi and μi are defined by pνi‖ai and pμi‖bi.

(ii) The parameter t describes the number of 1 � i � s with νi = μi = 0.
(iii) For j ∈ N0, the parameter v j is defined as the number of 1 � i � s such that νi = j.
A variable xi is called low if μi < νi and high otherwise. The level of a variable xi is defined by
min(μi, νi). It follows from the definition of a conditioned system that νi ∈ {0, 1, 2}, v0 � 3,
v0 + v1 � 5 and v0 + v1 + v2 = s.

The set of systems

s∑
j=1

a jx
3
j =

s∑
j=1

b jx j = 0 (4.1)

with non-zero integers coefficients where p3 � ai (1 � i � s) includes the set of conditioned
systems. For each of the systems (4.1), there is an equivalent system in the same set
with αi p−μi bi ≡ 1 mod p, as one can find an αi ∈ Z such that αi p−μi bi ≡ 1 mod p for all
1 � i � s, because pμi‖bi. Applying xi �→ αixi for 1 � i � n provides such a system. As this
transformation does not modify the parameters vi and t , one can assume that every system
(4.1), and hence, every conditioned system, has this property.

In the following, to prove that every conditioned system has a non-trivial solution, I will
divide them into different sets, depending on the parameter used to describe them. To make
the proofs that each of these sets has a non-trivial p-adic solution easier to follow, it is really
helpful to establish an order of the variables in a conditioned system. A permutation of indices
transforms a conditioned system into an equivalent one without changing the parameters vi

and t , while permutating the tuples (νi, μi) in the same manner as the indices. Therefore, to
prove that every conditioned system with fixed parameters vi (0 � i � 2) and t has a non-
trivial p-adic solution, it suffices to prove the existence of a non-trivial p-adic solution for
every conditioned system with the same parameters having a fixed order of variables.

Definition 1. A system (4.1) is called an ordered system (4.1) if the variables with νi = 0
are x1, . . . , xv0 , whereas those with νi = 1 are xv0+1, . . . , xv0+v1 and the remaining variables
xv0+v1+1, . . . , xv0+v1+v2 are those with νi = 2. Furthermore, the variables with νi = j for
j ∈ {0, 1, 2} are ordered, such that the ones with p � bi are followed by those with p | bi.
If an ordered system (4.1) is also conditioned, it is called an ordered conditioned system.

As every system (1.2) is equivalent to an ordered conditioned system, it would suffice to
prove the existence of a non-trivial p-adic solution for all ordered conditioned systems. In
some cases, however, the proof also holds on a larger scale, hence some of the lemma will be
slightly more general than others, which will prove to be useful.

§5. The case p ≡ 1 mod 3. As shown in § 3, one has to handle congruences modulo p, for
which the following lemmata are useful tools.
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LEMMA 7. Let p be a prime, δ = (k, p − 1), p > 2δ + 1 and α1, . . . , αn �≡ 0 mod p. Then

α1xk
1 + · · · + αnxk

n (5.1)

represent either all residues modulo p or at least 1 + ((2n − 1)(p − 1)/δ).

Proof. See [3]. �

For k = 3 and primes congruent to 1 modulo 3, this implies δ = 3, hence, for p > 7 this
can be summed up as follows:

Conclusion 1. Let p > 7 be congruent to 1 modulo 3 and α1, α2 �≡ 0 mod p. Then α1x3
1 +

α2x3
2 represent all residues modulo p. If additionally α3 �≡ 0 mod p, then

α1x3
1 + α2x3

2 + α3x3
3 ≡ 0 mod p

has a non-trivial solution with x1 �≡ 0 mod p arbitrary.

The following lemma provides a similar result for p = 7.

LEMMA 8. Let α1, α2, α3 �≡ 0 mod 7. Then

α1x3
1 + α2x3

2 + α3x3
3 ≡ 0 mod 7 (5.2)

has a non-trivial solution.

Proof. For those αi ≡ 4, 5 or 6 mod 7, one can apply xi �→ −xi to transform (5.2) to an
equation where all αi are congruent to 1, 2 or 3 modulo 7. If now all coefficients are distinct
modulo 7, it has, after a permutation of indices, if necessary, the form

x3
1 + 2x3

2 + 3x3
3 ≡ 0 mod 7.

Setting x1 = x2 = −x3 = 1, one obtains a non-trivial solution. Else there are 1 � i < j � 3
with αi ≡ α j mod 7 and a non-trivial solution can be obtained by setting xi = −x j = 1 and
the remaining variable 0. �

These lemmata can be used to provide a non-singular solution in a simple case.

LEMMA 9. Let p ≡ 1 mod 3 be a prime, a1, a2, a3, b4 ∈ F∗
p and b1, b2, b3 ∈ Fp. Then there

exists a non-singular solution in Fp of

3∑
i=1

aix
3
i =

4∑
i=1

bixi = 0.

Proof. Conclusion 1 and Lemma 8 provide a non-trivial solution of
∑3

i=1 aix3
i = 0 for all

primes congruent to 1 modulo 3. After renumbering the indices, if necessary, one can assume
that x1 is not congruent to 0 modulo p. Setting x4 such that b4x4 = − ∑3

j=1 b jx j , this becomes
a non-singular solution because b4a1x2

1 − b1a4x2
4 ≡ b4a1x2

1 �≡ 0 mod p. �

This simple case can be applied to a lot of systems (4.1).

LEMMA 10. Let p ≡ 1 mod 3 be a prime. An ordered system (4.1) with v0 � 3 and a low
variable at level 0 has a non-trivial p-adic solution.
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Proof. The variables x1, . . . , xv0 are at level 0, but they are high. Therefore, there is a j > v0

with p � b j . Set xi = 0 for i > 3 and i �= j. It remains to solve the system

3∑
i=1

aix
3
i ≡

3∑
i=1

bixi + b jx j ≡ 0 mod p,

for which Lemma 9 provides a non-singular solution. Hence, Lemma 5 can be used to lift the
non-singular solution to a non-trivial p-adic one. �

LEMMA 11. Let p ≡ 1 mod 3 be a prime. Suppose v j � 3 for j ∈ {1, 2}. Then an ordered
conditioned system has a non-trivial p-adic solution if s � 8.

Proof. An ordered conditioned system with s � 8 has by definition v0 � 3 and hence, if
it has a low variable at level 0, the existence of a non-trivial p-adic solution follows from
Lemma 10.

In an ordered conditioned system without a low variable at level 0, the coefficients bi (v0 <

i � s) are divisible by p, hence, p � b1. Writing x0 = (x1, . . . , xv0 ), x1 = (xv0+1, . . . , xv0+v1 )

and x2 = (xv0+v1+1, . . . , xs) the cubic term can be seen as
s∑

i=1

aix
3
i = f0(x0) + p f1(x1) + p2 f2(x2), (5.3)

where f j(x j ) = p− j
∑

νi= j aix3
i are polynomials in Z[x1, . . . , xs]. Apply xi �→ pxi for

1 � i � v0 or 1 � i � v0 + v1 if j = 1 or j = 2, respectively, and divide the cubic equation
by pj and the linear one by p. This provides an equivalent system (4.1) and changes (5.3) into{

p2 f0(x0) + f1(x1) + p f2(x2), for j = 1

p f0(x0) + p2 f1(x1) + f2(x2), for j = 2.

The altered cubic term has at least three variables with p � ai. Furthermore p | ai0 and p � bi0 ,
hence v0 � 3 and it exists a low variable at level 0. By applying a permutation of indices,
one obtains an ordered system (4.1), hence, all conditions of Lemma 10 are fulfilled and a
non-trivial p-adic solution exists. �

The impact of the two previous lemmata can be summarised as follows.

LEMMA 12. If an ordered conditioned system with s � 8 does not have a non-trivial p-adic
solution for all primes p congruent to 1 modulo 3, then

v0 � 4, v1 � 2, v2 � 2

and there exists no low variable at level zero.

Proof. It follows from Lemma 11 that v1 and v2 have to be at most 2. But since s � 8 it
follows that v0 � 4. Furthermore, Lemma 10 can be applied to show that no low variable at
level zero exists. �

To prove Theorem 1 for all primes congruent to 1 modulo 3, it remains to show the existence
of a non-trivial p-adic solution for those conditioned systems (4.1) described in Lemma 12,
which can be divided up into different sets, depending on the correlation between v0 and t .
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LEMMA 13. An ordered conditioned system has a non-trivial p-adic solution provided
v0 � t + 3 and p ≡ 1 mod 3 is a prime.

Proof. Set xi = 0 for all 1 � i � t and t + 4 � i � s. Hence, all xi with p � bi are 0. This
ensures that the linear equation is congruent to 0 modulo p independently of the choice of the
remaining variables. Then, Conclusion 1 and Lemma 8 provide a non-trivial solution of the
cubic equation

at+1x3
t+1 + at+2x3

t+2 + at+3x3
t+3 ≡ 0 mod p,

with xt+ j �≡ 0 mod p for some j ∈ {1, 2, 3}. A conditioned system has, by definition, an xi

with p � bi, which was set 0 at the beginning of this proof. Hence, this is a non-singular solution
of the ordered conditioned system, because biat+ jx2

t+ j − bt+ jaix2
i ≡ biat+ jx2

t+ j �≡ 0 mod p,
which can be lifted to a non-trivial p-adic solution with Lemma 5. �

LEMMA 14. Let 3 � m � n and ai �≡ 0 mod p for 1 � i � n. If there are 1 � i < j � m
such that ai ≡ a j mod p, then

a1x3
1+ · · · + amx3

m + am+1x3
m+1 + · · · + anx3

n ≡ 0 mod p,

x1+ · · · + xm ≡ 0 mod p

has a non-singular solution.

Proof. Set xi = −x j = 1 and the remaining variables 0. This solves the equations non-
singular because

a1x3
1 + · · · + anx3

n ≡ aix
3
i + a jx

3
j ≡ ai − a j ≡ 0 mod p,

x1 + · · · + xm ≡ xi + x j ≡ 1 − 1 ≡ 0 mod p,

and there is a k �= i, j with 1 � k � m, for which xk has the value 0 and akx2
k bi − aix2

i bk ≡
−ai �≡ 0 mod p. �

This allows to handle the cases v0 = t + 2 � 5 and v0 = t + 1 � 5, as will be done in the
next two lemmata.

LEMMA 15. Let p ≡ 1 mod 3 be a prime. An ordered conditioned system with
v0 = t + 2 � 5 has a non-trivial p-adic solution.

Proof. If a1 ≡ a2 mod p, then Lemma 14 provides a non-singular solution as t � 3. If
they are distinct modulo p, setting all variables 0, except x1, x2, xt+1 and xt+2, the system
transforms to

a1x2
1 + a2x3

2 + at+1x3
t+1 + at+2x3

t+2 ≡ 0 mod p,

x1+ x2 ≡ 0 mod p.

The linear equation can be solved by setting x1 = −x2 = x without giving an explicit value
to x. All that remains of the cubic equation is

(a1 − a2)x
3 + at+1x3

t+1 + at+2x3
t+2 ≡ 0 mod p.

Conclusion 1 and Lemma 8 provide a non-trivial solution because a1 − a2 �≡ 0 mod p, hence,
there is an i ∈ {1, t + 1, t + 2} with xi �≡ 0 mod p. Because aix2

i b3 − bia3x2
3 ≡ b3aix2

i �≡
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0 mod p, both cases have a non-singular solution and Lemma 5 provides the required
non-trivial p-adic solution. �

LEMMA 16. Let p ≡ 1 mod 3 be a prime. An ordered conditioned system with
v0 = t + 1 � 5 has a non-trivial p-adic solution.

Proof. Set all variables 0 except x1, . . . , x4 and xv0 . The obtained system has the form

a1x3
1 + · · · + a4x3

4 + av0 x3
v0

≡ 0 mod p,

x1 + · · · + x4 ≡ 0 mod p.

If two of the coefficients a1, . . . , a4 are equivalent modulo p, Lemma 14 provides a non-
singular solution. Else, one can assume that all ai modulo p are distinct for 1 � i � 4. Set
x1 = −x2 = y1 and x3 = −x4 = y2. It follows that

a1x3
1 + · · · + a4x3

4 + av0 x3
v0

≡ (a1 − a2)y
3
1 + (a3 − a4)y

3
2 + av0 x3

v0
mod p,

x1 + · · ·+ x4 ≡ y1 − y1 + y2 − y2 ≡ 0 mod p.

As both a1 − a2 and a3 − a4 are not congruent to 0 modulo p, Conclusion 1 and Lemma 8
provide y1, y2 and xv0 which are not all divisible by p, such that the cubic equation is fulfilled.
If not all three are divisible by p, then at least two of them are not, and hence, one of y1 and y2,
say y j , is not divisible by p. It follows that b2 ja2 j−1x2

2 j−1 − b2 j−1a2 jx2
2 j ≡ a2 j−1y2

j − a2 jy2
j ≡

(a2 j−1 − a2 j )y2
j �≡ 0 mod p and therefore Lemma 5 provides a non-trivial p-adic solution for

both cases. �

The following lemma uses that the non-zero cubics modulo p are a multiplicative group
with p−1

3 elements, hence, F∗
p is the disjunct union of

(
F∗

p

)3
and its two cosets and every

element in one of the three cosets can be transformed in one of the same coset by multiplying
it with a cube.

LEMMA 17. Let p ≡ 1 mod 3 be a prime. An ordered conditioned system with t � 5 has
a non-trivial p-adic solution.

Proof. If a1, . . . , a5 are not distinct modulo p, Lemma 14 provides a non-singular solution.
Else, if they are distinct modulo p, at least two of them have to be in the same coset of

(
F∗

p

)3
.

After a permutation of the first five indices, one can assume that these are a1 and a2. Hence,
there is a b ∈ Z not congruent to 0 or 1 modulo p such that b3a1 ≡ a2 mod p. Put x1 = by,
x2 = −y and xi = 0 for all i � 6. This transforms the cubic equation of the system into

a1x3
1 + a2x3

2 + a3x3
3 + a4x3

4 + a5x3
5 ≡ a1b3y3 − a2y3 + a3x3

3 + a4x3
4 + a5x3

5

≡ a1b3y3 − a1b3y3 + a3x3
3 + a4x3

4 + a5x3
5

≡ a3x3
3 + a4x3

4 + a5x3
5 mod p

and the linear equation into

x1 + x2 + x3 + x4 + x5 ≡ by − y + x3 + x4 + x5

≡ (b − 1)y + x3 + x4 + x5 mod p.
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Conclusion 1 and Lemma 8 provide a non-trivial solution of the cubic equation with an
i ∈ {3, 4, 5} such that xi �≡ 0 mod p. As b − 1 �≡ 0 mod p, it is possible to choose y in a way
that the linear equation is simultaneously fulfilled.

To show that the obtained solution is non-singular, one has to separate the case y ≡ 0 mod p.
If y �≡ 0 mod p, then b2a1x2

1 − b1a2x2
2 ≡ a1b2y2 − a1b3y2 ≡ a1b2y2(1 − b) �≡ 0 mod p, else,

y ≡ 0 mod p and b1aix2
i − bia1x2

1 ≡ aix2
i − a1b2y2 ≡ aix2

i �≡ 0 mod p. This has proven that
there exist a non-singular solution, which can be lifted to a non-trivial p-adic one by
Lemma 5. �

The cases not yet proven are those with (v0, t ) ∈ {(4, 2), (4, 3), (4, 4)}. These cases are
more complex than the previous one, hence, I am going to treat them in the following
two chapters.

§6. The case (v0, t ) = (4, 2). The main part of this case can be handled as the cases in the
previous section, with the prime p = 7 being treated individually.

LEMMA 18. Let p ≡ 1 mod 3 be a prime with p > 7. An ordered conditioned system with
v0 = 4, t = 2 and a1 �≡ a2 mod p has a non-trivial p-adic solution.

Proof. Setting x1 = 1, x2 = −1 and xi = 0 for i � 5 solves the linear equation. The cubic
equation transforms to a1 − a2 + a3x3

3 + a4x3
4 ≡ 0 mod p, which has, due to Conclusion 1,

a solution which is non-singular as a1x2
1b2 − a2x2

2b1 ≡ a1 − a2 �≡ 0 mod p and can be lifted
with Lemma 5. �

LEMMA 19. An ordered conditioned system with v0 = 4 and t = 2, where a1 �≡ a2 mod 7,
has a non-trivial 7-adic solution.

Proof. A multiplication of the cubic equation with α such that αa3 ≡ 1 mod 7 still leaves
a1 �≡ a2 mod 7. So does the application of x4 �→ −x4, if necessary, to ensure that a4 is
congruent to either 1, 2 or 3 modulo 7. If a4 ≡ 1 mod 7, set x3 = 1, x4 = −1 and everything
else 0. This solves the cubic and the linear equation modulo 7 and because a3x2

3b1 − a1x2
1b3 ≡

a3 ≡ 1 mod 7 this solution is non-singular. The cases with a4 ≡ 2, 3 mod 7 can be solved by
choosing x3, x4 ∈ {−1, 0, 1}, not both 0, such that a3x3

3 + a4x3
4 ≡ ±(a1 − a2) mod 7 and then

setting x1 = ∓1 and x2 = ±1, such that the cubic solution is solved as well modulo 7. Let
i ∈ {3, 4} be such that xi �≡ 0 mod 7. Then aix2

i b1 − a1x2
1bi ≡ ai �≡ 0 mod 7. Both times the

solution can be lifted with Lemma 5. �

It remains the ordered conditioned systems where a1 ≡ a2 mod p. Multiplying the cubic
equation with b3

1b3
2 and applying b1x1 �→ x1 and b2x2 �→ x2 do not change the values of ν j and

μ j because b3
1b3

2 ≡ 1 mod p and the characteristic a1 ≡ a2 mod p stays untouched as well,
because b1 ≡ b2 ≡ 1 mod p. This transforms the ordered conditioned system in an equivalent
ordered conditioned system with coefficients ai and bi with b1 = b2 = 1. By choosing an
integer α with a1α ≡ 1 mod p and multiplying the cubic equation with it, one gets a1 ≡ a2 ≡
1 mod p. Furthermore, one can assume that a1 �= a2 because else, setting x1 = 1, x2 = −1
and the remaining variables 0 solves the system. Therefore, there is a θ ∈ N such that
a1 − a2 = pθa′.

The last two lemmata gave useful information about the coefficients of the first two
variables, whereas the following lemma will give some additional information about the
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coefficients of the remaining coefficients of the cubic equation, for which further notation is
needed.

Definition 2. Two integers a and b differ by a cube, say [a] = [b], if there is a c �≡ 0 mod p
such that a ≡ c3b mod p.

LEMMA 20. If an ordered conditioned system with a1 ≡ a2 ≡ 1 mod p, b1 = b2 = 1,
v0 = 4, v1 = 2, v2 = 2 and t = 2, which has no low variable at level 0, has no non-trivial
p-adic solution for a prime p ≡ 1 mod 3, then for all i ∈ {0, 1, 2} it has to hold that

[a2i+3] �= [a2i+4].

Proof. Assume that there is an i ∈ {0, 1, 2} such that a2i+3 ≡ c3a2i+4. Set all variables
0 except x1, x2i+3 and x2i+4 and apply x1 �→ px1. Dividing the cubic equation by pi and the
linear by p transforms the system into one with ν1 = 3 − i � 1, ν2i+3 = ν2i+4 = 0, μ1 = 0 and
μ2i+3, μ2i+4 � 0. Setting x2i+3 = 1 and x2i+4 = −c solves the cubic equation independent of
the values of x1 modulo p. Taking x1 such that the linear equation is solved modulo p provides
a solution, which can be lifted, because of a1x2

1b2i+3 − a2i+3x2
2i+3b1 ≡ −a2i+3 �≡ 0 mod p,

with Lemma 5. �

Definition 3. An ordered conditioned system with a1 ≡ a2 ≡ 1 mod p, b1 = b2 = 1, v0 =
4, v1 = 2, v2 = 2, t = 2 and θ ∈ N such that a1 − a2 = pθa′ which has no low variable at
level 0 is called a critical system if [a2i+3] �= [a2i+4] for all i ∈ {0, 1, 2}.

To conclude the case v0 = 4 and t = 2, I will have to prove that every critical system has a
non-trivial p-adic solution for all primes p ≡ 1 mod 3. To handle them, I am going to prove
some lemmata, starting with one, similar to Lemma 8, fitting better for critical systems and
proceeding with a tool which uses the knowledge about a1 and a2.

LEMMA 21. Let a′c1c2 �≡ 0 mod 7 and [c1] �= [c2]. Then a′ + c1y3
1 + c2y3

2 ≡ 0 mod 7 has
a non-trivial solution.

Proof. Without loss of generality, I can assume that a′ ≡ 1 mod 7. Else, multiplying the
equation with a b ∈ Z such that a′b ≡ 1 mod 7 turns it into such an equation. If there is an
i ∈ {1, 2} such that ci ≡ ±1 mod 7 set xi = ∓1 and the other variable 0. Else, ci ∈ {±2, ±3},
but [c1] �= [c2], hence there are i, j ∈ {1, 2} with ci ∈ {±2} and c j ∈ {±3}. Choose xi ∈ {±1}
such that cix3

i ≡ 2 mod 7 and x j ∈ {±1} such that c jx3
j ≡ −3 mod 7. This solves the equation

non-trivially. �

LEMMA 22. Let p ≡ 1 mod 3, a1 − a2 = pθa′ for some θ ∈ N and a1 ≡ a2 ≡ 1 mod p.

Let c and d be integers with p � cd and
(

cd
p

)
=

(
3
p

)
. Then, for each l with 1 � l < θ , there

are integers x1, x2 and c′ with c′ ≡ c mod p, a1x3
1 + a2x3

2 = plc′ and x1 + x2 = pld.

Proof. Set x1 = x + pld and x2 = −x. Choose x such that 3a1x2d ≡ c mod p. This is
possible because

(
3−1a−1

1 d−1c

p

)
=

(
3a1cd

p

)
=

(
3

p

)2

= 1.
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This gives

a1x3
1 + a2x3

2 = a1x3 + 3a1x2d pl + 3a1xd2 p2l + a1d3 p3l − a2x3

= pθa′x3 + 3a1x2d pl + 3a1xd2 p2l + a1d3 p3l

≡ 3a1x2d pl ≡ cpl mod pl+1,

and hence, a1x3
1 + a2x3

2 = c′ pl for some c′ ≡ c mod p. �

LEMMA 23. Let p ≡ 1 mod 3, a1 − a2 = pθa′, a1 ≡ a2 ≡ 1 mod p, c1, c2, d1, d2, e, f ∈ Z
such that p � c1c2 f , [c1] �= [c2] and 1 � β < θ . Then the system of equation

a1x3
1 + a2x3

2 + pβ
(
c1y3

1 + c2y3
2

) + pβ+1ez3 = 0,

x1 + x2 + pβ
(
d1y1 + d2y2

) + pβ f z = 0

has a non-trivial solution (x1, x2, y1, y2, z) ∈ Q5
p.

Proof. As [c1] �= [c2], it follows that c1 �≡ −c2 mod p. Hence, −c1 − c2 �≡ 0 mod p and
therefore, one can apply Lemma 22 with l = β and c = −c1 − c2 while choosing d ∈ {±1}
such that

(
cd
p

)
=

(
3
p

)
. This provides x1, x2 and c′ ≡ c mod p such that

a1x3
1 + a2x3

2 + pβ
(
c1y3

1 + c2y3
2

) + pβ+1ez3 = pβc′ + pβ
(
c1y3

1 + c2y3
2

) + pβ+1ez3

and

x1 + x2 + pβ
(
d1y1 + d2y2

) + pβ f z = pβd + pβ
(
d1y1 + d2y2

) + pβ f z.

Dividing both equation by pβ and setting y1 = y2 = 1 leave the system

c′ + c1 + c2 + pez3 = 0,

d + d1 + d2 + f z = 0

to be solved. As c′ solves the upper equation modulo p, choosing z so that the lower equation
is solved modulo p gives a solution of the system modulo p. Since c1y2

1 f − pez2d1 ≡ c1 f �≡
0 mod p, this solution can be lifted with Lemma 5 to a solution in Q5

p of the system. �

LEMMA 24. A critical system with a low variable at level β < θ has a non-trivial
p-adic solution.

Proof. Choose a low variable xt with level β smallest among the low variables of the
system. Critical systems have no low variables at level 0, hence, 1 � β � θ − 1. Due to the
minimality of β, the variables x2β+3 and x2β+4 are high variables at level β. Put all variables 0,
except x1, x2, x2β+3, x2β+4 and xt . This is a system as in Lemma 23, hence, it has a non-trivial
p-adic solution. �

LEMMA 25. Let p ≡ 1 mod 3, a1 − a2 = pθa′, a1 ≡ a2 ≡ 1 mod p, c1, c2, d1, d2 ∈ Z such
that p � c1c2d1, d1 ≡ 1 mod p and d2 is congruent to either 0 or 1 modulo p, c1 �≡ c2 mod p
and 1 � β � θ − 3. Then the system of equations

a1x3
1 + a2x3

2 + pβ
(
c1y3

1 + c2y3
2

) = 0,

x1 + x2 + pβ
(
d1y1 + d2y2

) = 0

has a non-trivial p-adic solution.
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Proof. Set y1 = y′
1 p, y2 = y′

2 p, x1 = 1 + d pβ+3 and x2 = −1. This provides the system of
equation

a′ pθ + 3da1 pβ+3 + 3d2a1 p2β+6 + a1d3 p3β+9 + pβ+3 (
c1y′3

1 + c2y′3
2

) = 0,

d pβ+3 + pβ+1
(
d1y′

1 + d2y′
2

) = 0,

where the upper equation can be divides by pβ+3 and the lower by pβ+1. In the case d2 ≡ 0
mod p, this transforms, modulo p, into

a′ pθ−β−3 + 3d + c1y′3
1 + c2y′3

2 ≡ 0 mod p,

y′
1 ≡ 0 mod p.

Setting y′
1 = 0, y′

2 = 1, and choosing d such that 3d ≡ −c2 − a′ pθ−β−3 mod p give a non-
singular solution, because of c1y′2

1 d2 − c2y′2
2 d1 ≡ −c2 �≡ 0 mod p. In the case d2 ≡ 1 mod p,

this transforms the system, modulo p, into

a′ pθ−β−3 + 3d + c1y′3
1 + c2y′3

2 ≡ 0 mod p,

y′
1 + y′

2 ≡ 0 mod p.

Setting y′
1 = 1, y′

2 = −1 and d such that 3d ≡ −c1 + c2 − a′ pθ−β−3 mod p gives a non-
singular solution because of c1y′2

1 d2 − c2y′2
2 d1 ≡ c1 − c2 �≡ 0 mod p. In both cases, the

solution can be lifted with Lemma 5. �

The following lemma concerning the number of zeros of an absolute irreducible polynomial
f (x, y) with coefficients in Fq will prove useful in the remaining steps.

LEMMA 26. An absolutely irreducible polynomial f (x, y) with coefficients in Fq of degree
d > 0 has

N � q + 1 − 1

2
(d − 1)(d − 2)

[
2q

1
2

]
− d

where N is the number of zeros of f (x, y).

Proof. See [6, Corollary 2.b]. �

In the following, degx(k(x, y)) and degy(k(x, y)) will denote the degree in x and y,
respectively, of a polynomial k(x, y).

LEMMA 27. The polynomial f (x, y) = a′x3 − 3yx2 + c1y3 + c2 ∈ Fp[x, y] has a zero for
all p ≡ 1 mod 3 if a′c1c2 �≡ 0 mod p.

Proof. Assuming that f (x, y) is reducible in Fp, there are polynomials g(x, y), h(x, y) ∈
Fp[x, y] such that f (x, y) = g(x, y) · h(x, y). Without loss of generality, one can assume that
degx(g(x, y)) � degx(h(x, y)), hence, degx(g(x, y)) = 2 and degx(h(x, y)) = 1. Writing

g(x, y) = g2(y)x2 + g1(y)x + g0 and h(x, y) = h1(y)x + h0(y)

with gi(y), h j(y) ∈ Fp[y] for 0 � i � 2 and 0 � j � 1, one obtains degy(g2(y)) =
degy(h1(y)) = 0, degy(g1(y)) = degy(h0(y)) = 1 and degy(g0(y)) = 2 by comparing the
degree of the polynomial in y in front of xi in f (x, y) with that in g(x, y) · h(x, y). Therefore,
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one can write the polynomials gi(y) and hi(y) as

g0(y) = g02y2 + g01y + g00, g1(y) = g11y + g10, g2(y) = g20,

h0(y) = h01y + h00, h1(y) = h10

with gi j, hi j ∈ Fp, where g02g11g20h01h10 �= 0. By dividing h(x, y) by h10 and multiplying
g(x, y) with it, one can assume that h10 = 1. A comparison of the polynomials in y in front of
x3 of both sides of f (x, y) = g(x, y) · h(x, y) shows g20 = a′. Likewise, the polynomials in y
in front of x0 leads to the equations

g02h01 = c1, (6.1)

g01h01 = −g02h00, (6.2)

g01h00 = −g00h01, (6.3)

g00h00 = c2. (6.4)

From (6.4), it follows that g00h00 �= 0 and hence, (6.1) and (6.4) provide

h01 = c1

g02
and h00 = c2

g00
,

which can be inserted into (6.2) to obtain

g01 = −c2

c1

g2
02

g00
.

Inserting all of this in (6.3) leads to

c2
2g3

02 = c2
1g3

00. (6.5)

The equation g20h00 + g10h10 = 0 can be obtained by comparing the polynomial in y in front
of x2. Using what was already obtained before, one gets

g10 = −c2a′

g00
.

The polynomial in y in front of x provides the equations

g11h01 + g02h10 = 0, g11h00 + g10h01 + g01h10 = 0, g10h00 + g00h10 = 0,

which, combined with the established equations, shows

2g3
02 = −c2

1a′, (6.6)

c2
2a′ = g3

00. (6.7)

By inserting (6.7) into (6.5), it follows g3
02 = c2

1a′ which, together with (6.6), leads to −c2
1a′ =

2g3
02 = 2c2

1a′. It would follow that −1 = 2, which is false, because p > 3, and hence, such a
factorisation cannot exist and f (x, y) is absolute irreducible. The total degree of f (x, y) is 3,
and therefore, for N being the number of zeros of f (x, y) in Fp, Lemma 26 shows

N � p − [
2
√

p
] − 2.

For p > 7, it follows that there is a zero of f (x, y). The only prime p � 7 with p ≡ 1 mod 3
is seven. It is possible to find a solution for all values of a′, c1 and c2 where a′c1c2 �≡ 0 mod 7
holds as described in the following. The equation

dx3 + c2 ≡ 0 mod p (6.8)
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is solvable, if [d] = [c2], because then, there is a b ∈ Fp such that db3 ≡ c2 mod p and hence,
x ≡ −b mod p is a solution. Setting x = 0 or y = tx with t ∈ F7 in f (x, y), one obtains an
equation of this type; with various values for d , in fact, it can be c1, a′, a′ + c1 + i and
a′ − c1 + j with i ∈ {1, 2, 4} and j ∈ {3, 5, 6}. In the following, one sees that for every value
of (a′, c1, c2), for at least one of the possible values of d it holds [d] = [c2] and hence, there
is always a solution.

In F7, it holds [1] = [6], [2] = [5] and [3] = [4]. Assume (a′, c1, c2) are such that f (x, y)

has no zero. For d = c1, it follows that [c1] �= [c2] and from d = a′ that [a′] �= [c2]. If a′ ≡
−c1 mod 7 or a′ ≡ c1 mod 7, the values d = a′ + c1 + i with i ∈ {1, 2, 4} or d = a′ − c1 + i
with i ∈ {3, 5, 6}, respectively, represents each equivalence class and it is always possible to
choose x and y such that [d] = [c2]. But then, f (x.y) would have a zero, hence [a′] �= [c1]. If
a′ is chosen, it follows that c1 can only be in one of the two remaining equivalence classes,
and if c1 is chosen as well, the equivalence class of c2 is fixed. In the following table all
possible values of (a′, c1) with [a′] �= [c1] are listed together with a value for d which is in
the remaining equivalence class, showing that there is no possible value for c2 such that there
is no zero of f (x, y), which proves the Lemma.

a′ c1 d a′ c1 d a′ c1 d a′ c1 d
1 2 a′ + c1 + 1 2 4 a′ + c1 + 2 4 1 a′ + c1 + 4 5 4 a′ + c1 + 4
1 3 a′ + c1 + 1 2 6 a′ + c1 + 2 4 2 a′ + c1 + 2 5 6 a′ − c1 + 5
1 4 a′ − c1 + 5 3 1 a′ + c1 + 1 4 5 a′ + c1 + 4 6 2 a′ + c1 + 2
1 5 a′ + c1 + 4 3 2 a′ + c1 + 1 4 6 a′ + c1 + 2 6 3 a′ − c1 + 6
2 1 a′ + c1 + 1 3 5 a′ − c1 + 3 5 1 a′ + c1 + 4 6 4 a′ − c1 + 3
2 3 a′ + c1 + 1 3 6 a′ − c1 + 5 5 3 a′ − c1 + 6 6 5 a′ − c1 + 3

�

LEMMA 28. The polynomial f (x, y) = c1x3 − 3x + c2y3 − 3y + a′ ∈ Fp[x, y] is absolute
irreducible for all primes p ≡ 1 mod 3.

Proof. Assuming that f (x, y) is reducible in Fp[x, y], there exists polynomials
g(x, y), h(x, y) ∈ Fp[x, y] such that f (x, y) = g(x, y) · h(x, y). One can assume with-
out loss of generality that degx(g(x, y)) � degx(h(x, y)), hence, degx(g(x, y)) = 2 and
degx(h(x, y)) = 1. One can write g(x, y) = g2(y)x2 + g1(y)x + g0 and h(x, y) = h1(y)x +
h0(y) with gi(y), h j(y) ∈ Fp[y] for 0 � i � 2 and 0 � j � 1. By comparing the degree of the
polynomial in y in front of xi in f (x, y) with that in g(x, y) · h(x, y), one obtains degy(g2(y)) =
degy(h1(y)) = 0, degy(g1(y)) = degy(h0(y)) = 1 and degy(g0(y)) = 2. Therefore, one can
write the polynomials gi(y) and hi(y) as

g0(y) = g02y2 + g01y + g00, g1(y) = g11y + g10, g2(y) = g20,

h0(y) = h01y + h00, h1(y) = h10

with gi j, hi j ∈ Fp, where g02g11g20h01h10 �= 0. By dividing h(x, y) by h10 and multiplying
g(x, y) with it, one can assume that h10 = 1. A comparison of the polynomials in y in front
of x3 shows g20 = c1. Likewise, the polynomial in front of x0 leads to the equations

g02h01 = c2, (6.9)

g00h00 = a′, (6.10)

g02h00 + g01h01 = 0. (6.11)
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From (6.10), it follows that g00h00 �= 0, and hence, one obtains

h01 = c2

g02
, h00 = a′

g00
and g01 = − a′g2

02

c2g00
.

Comparing the polynomial in front of x2 provides the equations

g20h01 + g11h10 = 0 and g20h00 + g10h10 = 0,

which can be combined with the previous equations to obtain

g11 = −c1c2

g02
and g10 = −a′c1

g00
.

The polynomial in front of x1 leads to

g11h01 + g02h10 = 0 and g11h00 + g10h01 + g01h10 = 0,

and combines with the previous equations to

g3
02 = c2

2c1 and g3
02 = −2c2

2c1,

which would lead to 3 = 0. This is a contradiction to p ≡ 1 mod 3, which only holds for
primes p > 3, hence the polynomial is absolute irreducible. �

LEMMA 29. Let p ≡ 1 mod 3, a1 − a2 = pθa′, a1 ≡ a2 ≡ 1 mod p, c1, c2, d1, d2 ∈ Z such
that p � c1c2d1, d1 ≡ 1 mod p, d2 is congruent either to zero or one modulo p and c1 �≡
b3c2 mod p for some b ∈ F∗

p. Then the system of equations

a1x3
1 + a2x3

2 + pθ
(
c1y3

1 + c2y3
2

) = 0,

x1 + x2 + pθ
(
d1y1 + d2y2

) = 0

has a non-trivial p-adic solution.

Proof. In the case that d2 ≡ 0 mod p, set x1 = x + d pθ and x2 = −x. This transforms the
system of equation into

a′x3 pθ + 3a1x2d pθ + 3a1xd2 p2θ + a1d3 p3θ + pθ
(
c1y3

1 + c2y3
2

) = 0,

d pθ + pθ
(
d1y1 + d2y2

) = 0.

Dividing both by pθ , they have, modulo p, the form

a′x3 + 3dx2 + c1y3
1 + c3

2y3
2 ≡ 0 mod p,

d + y1 ≡ 0 mod p.

Now setting d ≡ −y1 mod p and y2 = 1 solves the lower equation modulo p and transforms
the upper equation into

x3a′ − 3y1x2 + c1y3
1 + c2 ≡ 0 mod p.

It follows from Lemma 27 that this always has a solution. This solution is non-singular, as it
holds c1y2

1d2 − c2y2
2d1 ≡ −c2d1 �≡ 0 mod p.

In the case d2 ≡ 1 mod p, setting x1 = 1 + d pθ and x2 = −1 and dividing both the cubic
and the linear equation by pθ transform the system, modulo p, into

a′ + 3d + c1y3
1 + c2y3

2 ≡ 0 mod p,

d + y1 + y2 ≡ 0 mod p.
(6.12)
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Setting d ≡ −y1 − y2 solves the lower equation modulo p and transforms the upper one into

a′ − 3y1 − 3y2 + c1y3
1 + c2y3

2 ≡ 0 mod p. (6.13)

If N is the number of solution of this equation, it follows, because the equation is absolute
irreducible, due to Lemma 28, with Lemma 26 that

N � p − [
2
√

p
] − 2.

Every solution of this equation solves the system of equations above. If c1y2
1 − c2y2

2 �≡
0 mod p, this solution can be lifted to a non-trivial p-adic solution. Else c1y2

1 ≡ c2y2
2 mod p

has to be fulfilled. The number of pairs (y1, y2) which fulfils this and solves the system is at
most six because the equivalence is fulfilled if

y2
1 ≡ c2

c1
y2

2,

which has no solution; if
(

c1c2
p

)
= −1, and if

(
c1c2

p

)
= 1, it follows that there is a b such that

y1 ≡ ±by2 mod p. Putting this in (6.13), one obtains

a′ ∓ 3by2 − 3y2 ± c1b3y3
2 + c2y3

2 ≡ 0 mod p,

which has at most three solution in both cases. Hence, if N > 6, there is at least one non-trivial
p-adic solution. Solving p − [

2
√

p
] − 2 > 6, one obtains that there are at least seven solutions

if p � 17. The remaining primes for which a non-singular solution of (6.13) has to be found
are 7 and 13. It follows from the assumption of this lemma that [c1] �= [c2]. Every solution of
this equation with 0 �≡ y1 ≡ ±y2 mod p is a non-singular solution of the system of equation,
because in that case c1y2

1 − c2y2
2 ≡ (c1 − c2)y2

1 �≡ 0 mod p. Setting y2 = −y1 �≡ 0 mod p, one
obtains a solution if [c1 − c2] = [a′]. Furthermore, if (6.13) has a solution, which is non-
singular as a solution of the system (6.12), for fixed values of c1, c2, and a′, the same holds
if the values of c1 and c2 are swapped or if a′ is replaced by −a′. Hence, it suffices to show
that there is a non-singular solution for all triples (c1, c2, a′) with c1, c2 ∈ {1, . . . , p − 1} with

c1 < c2, [c1] �= [c2], [c1 − c2] �= [a′] and a′ ∈
{

1, . . . ,
p−1

2

}
.

p = 7: By setting either y1 = 0 or y2 = 0, one obtains that if one, c1 or c2, is equivalent
to x ± a′ for x ∈ {3, 5, 6}, there is a non-singular solution. Furthermore, by setting
y1 ≡ y2 �≡ 0 mod p, one obtains a non-singular solution also if c1 + c2 ≡ x ± a′ for
x as before. For all values of (c1, c2, a′) not excluded above, one of this possibilities
provides a non-singular solution.

p = 13: Again, by setting either y1 or y2 = 0, one obtains that if one, c1 or c2, is equivalent
to x ± a′ for x ∈ {1, 3, 9} or x ± 5a′ for x ∈ {4, 10, 12}, there is a non-singular
solution. Setting y1 = y2 �≡ 0 mod p provides a non-singular solution if c1 + c2 ≡
x ± a′ for x ∈ {2, 5, 6} and if c1 + c2 ≡ x ± 8a′ for x ∈ {7, 8, 11}. Here, for each
value of a′, there is one pair (c1, c2), which gets not excluded in this way. The
following table provides these problematic triples, together with values for y1 and
y2 which provide a non-singular solution.

a′ c1 c2 y1 y2 a′ c1 c2 y1 y2

1 3 6 5 1 4 1 2 7 1
2 4 8 1 5 5 7 10 7 1
3 5 9 9 1 6 11 12 1 2

Hence, all the remaining primes do have a non-singular solution as well, which can be lifted
with Lemma 5 to a non-trivial p-adic solution. �
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LEMMA 30. A critical system with θ = 3v + r where 0 � r � 2, for which μi > θ − v

for 2r + 3 � i � 2r + 4 holds has a non-trivial p-adic solution.

Proof. Set all variables 0 except x1, x2, x2r+3 and x2r+4. This transforms the system into

a1x3
1 + a2x3

2 + pr
(
c1x3

2r+3 + c2x3
2r+4

) = 0,

x1+ x2 + pθ−v+1
(
d1x2r+3 + d2x2r+4

) = 0,

where prci = a2r+2+i and pθ−v+1di = b2r+2+i for 1 � i � 2, hence, p � ci. Setting x2r+2+i =
pvzi for 1 � i � 2, one obtains

a1x3
1 + a2x3

2 + pθ
(
c1z3

1 + c2z3
2

) = 0,

x1+ x2 + pθ+1
(
d1z1 + d2z2

) = 0.

Due to Conclusion 1 and Lemma 8, one can choose (x, z1, z2) �≡ (0, 0, 0) mod p such that
a′x3 + c1z3

1 + c2z3
2 ≡ 0 mod p. As at least one of x, z1 and z2 is not equivalent to 0, and

they fulfil the equation, it follows that at least two of them are not equivalent to 0. After
swapping z1 and z2 if necessary, one can assume that z1 �≡ 0 mod p. Set x1 = x and x2 =
−x + (−d1z1 − d2z2)pθ+1. The equation

ϕ(t ) := p−θ
(

a1x3 + a2
(−x + (−d1t − d2z2)pθ+1

)3
)

+ c1t3 + c2z3
2

has, modulo p, a zero at z1, whereas ϕ′(z1) ≡ 3c1z2
1 �≡ 0 mod p. Hensel’s Lemma provides z̃1

with ϕ(z̃1) = 0 in Qp. This is equivalent to

a1x3 + a2
(−x + (−d1z1 − d2z2)pθ+1

)3 + pθ
(
c1z̃3

1 + c2z3
2

) = 0,

x + (−x + (−d1z1 − d2z2)pθ+1
) + pθ+1

(
d1z̃1 + d2z2

) = 0,

which proves the claim. �

LEMMA 31. A critical system with θ < 3 has a non-trivial p-adic solution.

Proof. By the definition of a critical system, it follows that θ � 1, hence, x2θ+3 and x2θ+4

are all variables with νi = θ . Suppose that for all i ∈ {2θ + 3, 2θ + 4} it holds μi > θ . Then
Lemma 30 yields the desired non-trivial p-adic solution. If there is an i ∈ {2θ + 3, 2θ + 4}
with μi < θ , then xi is a low variable at level less than θ . Therefore, Lemma 24 gives a non-
trivial p-adic solution. It remains the cases with μi � θ for i ∈ {2θ + 3, 2θ + 4} and μi = θ

for at least one of them. This case is solved with Lemma 29. �

For the remainder of this chapter, some new notation is needed. Denote for τ ∈ N0 with
τ = 3u + ρ, where 0 � ρ � 2 and u ∈ N0

A(x) =
8∑

i=1

aix
3
i , Aτ (x)= A(x1, x2, pu+1y0, . . . , pu+1yρ, puyρ+1, . . . , puy2),

B(x) =
8∑

i=1

bixi, Bτ (x) = B(x1, x2, pu+1y0, . . . , pu+1yρ, puyρ+1, . . . , puy2),

where yi = (x2i+3, x2i+4). The system Aτ (x) = Bτ (x) = 0 is equivalent to A(x) = B(x) = 0,
hence, it suffices to find a non-trivial p-adic solution for Aτ (x) = Bτ (x) = 0 for some τ .
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Denote by a(τ )
i and b(τ )

i the coefficients of the system Aτ (x) = Bτ (x) = 0, and let pν
(τ )
i ‖a(τ )

i

and pμ
(τ )
i ‖b(τ )

i .

LEMMA 32. A critical system with μi > νi for all i � 3 has a non-trivial p-adic solution.

Proof. Let θ = 3v + r with 0 � r � 2. It follows from the definition of ν
(τ )
i and μ

(τ )
i that

for τ big enough ν
(τ )
i > μ

(τ )
i for all i � 3. Let t be the smallest integer possible such that

there exists an i � 3 such that ν
(t )
i � μ

(t )
i . In the case that t > θ − 3, it follows from the

definition of t that ν
(θ−3)
i < μ

(θ−3)
i for all i � 3. Furthermore, for all i ∈ {2r + 3, 2r + 4},

one has ν
(θ−3)
i = νi + 3(v − 1 + 1) = r + 2v = θ , μ

(θ−3)
i = μi + v − 1 + 1 = μi + v and

therefore, μi > θ − v. Hence, Lemma 30 provides a non-trivial p-adic solution. It remains the
case with t � θ − 3. Write t = 3u′ + ρ ′ with 0 � ρ ′ � 2. As t was chosen smallest possible,
it follows that i ∈ {2ρ ′ + 3, 2ρ ′ + 4} for those i with μ

(t )
i � ν

(t )
i . Define

β := min
{
μ

(t )
i : μ

(t )
i � ν

(t )
i

}
= min

{
μ

(t )
i : 2ρ ′ + 3 � i � 2ρ ′ + 4

}
.

For the i ∈ {2ρ ′ + 3, 2ρ ′ + 4}, it holds ν
(t )
i = ρ ′ + 3(u′ + 1) = t + 3, hence, β � t + 3 � θ .

Writing β = 3u′′ + ρ ′′ with 0 � ρ ′′ � 2, one can choose an i′ ∈ {2ρ ′ + 3, 2ρ ′ + 4} with
μ

(t )
i′ = β. Suppose μ

(t )
i′ < ν

(t )
i′ , and hence, β < t + 3 � θ . By the minimality of t , it follows

that ν
(t−1)
i′ < μ

(t−1)
i′ . However, ν

(t )
i′ = ν

(t−1)
i′ + 3 and μ

(t )
i′ = μ

(t−1)
i′ + 1, such that ν

(t )
i′ − 3 <

μ
(t )
i′ − 1 and hence, t < β − 1 < t + 2 and therefore, β = t + 2 and ρ ′′ ≡ ρ ′ + 2 mod 3. In

both cases, if ρ ′′ = ρ ′ + 2 and u′′ = u′ and if ρ ′′ = ρ ′ − 1 and u′′ = u′ + 1, it follows for
i ∈ {2ρ ′′ + 3, 2ρ ′′ + 4} that ν

(t )
i = β and, due to the definition of t , μ

(t )
i > ν

(t )
i = β can be

deduced. Setting all variables in At (x) and Bt (x) to 0, except x1, x2, xi′ and yρ ′′ , provides a
system as in Lemma 23, and hence, a non-trivial p-adic solution exists.

The remaining case, μ
(t )
i′ = ν

(t )
i′ , and hence, β = t + 3, can be divided into different cases

again. If β = t + 3 = θ or β = t + 3 < θ − 2, one sets all variables in At (x) and Bt (x) to
0 except x1, x2 and yρ ′ . For all i ∈ {2ρ ′ + 3, 2ρ ′ + 4}, it holds ν

(t )
i � μ

(t )
i with at least one

equality and hence, the system turns into

a1x3
1 + a2x3

2 + pt+3
(
c1x3

2ρ ′+3 + c2x3
2ρ ′+4

) = 0,

x1+ x2 + pt+3
(
d1x2ρ ′+3 + d2x2ρ ′+4

) = 0.

This system has a non-trivial p-adic solution, which follows either by Lemma 29 or Lemma 25.
Now, let β = t + 3 = θ − k for k ∈ {1, 2}. Set everything 0 except x1, x2, yρ ′ and yr . As
before, μ

(t )
i � ν

(t )
i for all i ∈ {2ρ ′ + 3, 2ρ ′ + 4}. It is easy to verify that ν

(t )
i = θ − k for

i ∈ {2ρ ′ + 3, 2ρ ′ + 4} and ν
(t )
j = θ − 3 for all j ∈ {2r + 3, 2r + 4} by differencing between

the different values of k and ρ ′. Let, without loss of generality, be μ2r+3 � μ2r+4, hence,
μ

(τ )
2r+3 � μ

(τ )
2r+4 for all τ ∈ N0. It follows from Lemma 30 that, if no non-trivial p-adic

solution exists, θ − v � μ2r+3. Assuming k = 1, it follows that μ
(t )
2r+3 = μ2r+3 + u′ for

r ∈ {1, 2}, where u′ = v − 1, and μ
(t )
2r+3 = μ2r+3 + u′ + 1 for r = 0, where u′ = v − 2. If

μ2r+3 < θ − v, by transforming yr �→ pθ−v−μ2r+3 yr , one obtains

ν̃
(t )
2r+3 = ν

(t )
2r+3 + 3

(
θ − v − μ2r+3

)
� ν

(t )
2r+3 + 3 = θ ,

μ̃
(t )
2r+3 = μ

(t )
2r+3 + θ − v − μ2r+3 = θ − 1.
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Therefore, in setting x2r+4 = 0, the system At (x) = Bt (x) = 0 becomes

a1x3
1 + a2x3

2 + pθ−1
(
c1x3

2ρ ′+3 + c2x3
2ρ ′+4

) + pθ+2dx2r+3 = 0,

x1+ x2 + pθ−1
(
d1x2ρ ′+3 + d2x2ρ ′+4

) + pθ−1ex2r+3 = 0,

which can be solved with Lemma 23. For μ2r+3 = θ − v, applying yr �→ pyr gives μ̃
(t )
2r+3 =

μ
(t )
2r+3 + 1 = θ and ν̃

(t )
2r+4 = ν̃

(t )
2r+3 = ν

(t )
2r+3 + 3 = θ . Setting yρ ′ = 0, one obtains

a1x3
1 + a2x3

2 + pθ
(
c1x3

2r+3 + c2x3
2r+4

) = 0,

x1 + x2 + pθ
(
d1x2r+3 + d2x2r+4

) = 0,

which can be solved with Lemma 29. It remains the case k = 2. Here, for r ∈ {0, 1}, it follows
that μ(t )

2r+3 = μ2r+3 + u′ + 1, where u′ = v − 2 and for r = 2 that μ(t )
2r+3 = μ2r+3 + u′, where

u′ = v − 1, which can be combined to obtain μ
(t )
2r+3 = μ2r+3 + v − 1. Due to the minimality

of t , because of θ − 3 = ν
(t )
2r+3 and μ2r+3 � θ − v, it follows that

θ − 3 < μ
(t )
2r+3 = μ2r+3 + v − 1 � θ − 1,

hence, it suffices to regard the cases μ
(t )
2r+3 = θ − 1 and μ

(t )
2r+3 = θ − 2. For μ

(t )
2r+3 = θ − 1,

setting yρ ′ = 0 and applying yr �→ pyr transform the system into

a1x3
1 + a2x3

2 + pθ
(
c1x3

2r+3 + c2x3
2r+4

) = 0,

x1 + x2 + pθ
(
d1x2r+3 + d2x2r+4

) = 0,

which, again, can be solved via Lemma 29. For μ
(t )
2r+3 = θ − 2, applying yr �→ pyr and yρ ′ �→

pyρ ′ provides a system with ν̃
(t )
2r+i = θ , μ̃(t )

2r+3 = θ − 1, ν̃ (t )
2ρ ′+i = θ + 1 and μ̃

(t )
2ρ ′+i � θ − 1 for

i ∈ {3, 4}, where μ̃
(t )
2ρ ′+l = θ − 1 holds for 2ρ ′ + l = i′ with some l ∈ {3, 4}. Setting x1 =

1 = −x2, one obtains a system of the form

a′ pθ + pθ+1
(
c1x3

2ρ ′+3 + c2x3
2ρ ′+4

) + pθ
(
e1x3

2r+3 + e2x3
2r+4

) = 0,

pθ−1
(
d1x2ρ ′+3 + d2x2ρ ′+4

) + pθ−1
(

f1x2r+3 + f2x2r+4
) = 0.

Multiplying the cubic equation with p−θ and the linear one with p−θ+1, one obtains, modulo
p, the system

a′ + e1x3
2r+3 + e2x3

2r+4 ≡ 0 mod p,

d1x2ρ ′+3 + d2x2ρ ′+4 + f1x2r+3 + f2x2r+4 ≡ 0 mod p.

It is always possible to solve the cubic equation modulo p with x2r+i �≡ 0 mod p for at least one
i ∈ {3, 4}, say j, due to Conclusion 1 and Lemma 8. The linear equation can be solved by setting
the remaining variable, which is not x2ρ ′+l to 0 and choosing x2ρ ′+l accordingly. This solution
is non-singular, because e j−2x2

2r+ jdl−2 − cl−2x2
2ρ ′+l f j−2 ≡ e j−2x2r+ jdl−2 �≡ 0 mod p. Hence,

it can be lifted to a non-trivial p-adic solution with Lemma 5. �

LEMMA 33. A critical system with θ � 5 has a non-trivial p-adic solution.

Proof. If μi > νi for all i � 3, a non-trivial p-adic solution is provided by Lemma 32. If
μi < νi for some i � 3, this is a low variable at a level smaller than θ and hence, Lemma 24
provides a non-trivial p-adic solution. In the remaining cases, it holds μi � νi for all i � 3
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and μ j = ν j for at least one j � 3, but it follows from the definition of a critical system that
μ3 > ν3 = 1 and μ4 > ν4 and hence, μ j = ν j for at least some j � 5. For this j, it holds
1 � μ j = ν j � 2 = 5 − 3 � θ − 3, hence, Lemma 25 provides a solution. �

It remains the two cases θ = 3 and θ = 4 which will be handled in the next two lemmata.

LEMMA 34. A critical system with θ = 4 has a non-trivial p-adic solution.

Proof. If μi > νi for all i � 3, the system can be solved with Lemma 32 and if there is an
i � 3 with μi < νi, a non-trivial p-adic solution is provided by Lemma 24. As before, one
already knows μi > νi for 3 � i � 4. If μi = νi for some 5 � i � 6, a solution exists due to
Lemma 25. To sum it up, the remaining cases have got μi > νi for 3 � i � 6 and at least
one of i ∈ {7, 8} with μi = νi. Without loss of generality, one can assume that μ7 = ν7 = 2,
μ8 � ν8 = 2 and μ5 � μ6. If μ5 > θ − v = 4 − 1 = 3, then Lemma 30 provides a non-trivial
p-adic solution, hence, one can assume 2 � μ5 � 3. In the case μ5 = 3, applying y1 �→ py1

transforms the system into one with μ5 = 3 + 1 = θ and ν5 = ν6 = 1 + 3 = θ and hence,
Lemma 29 provides a non-trivial p-adic solution. The remaining case with μ5 = 2 can be
changed by applying y1 �→ py1 and y2 �→ py2 into one with μ5 = 3, ν5 = ν6 = 4, μ7 = 3 and
ν7 = ν8 = 5. Setting x1 = 1, x2 = −1, x3 = x4 = x8 = 0 and multiplying the cubic equation
with p−4 and the linear one with p−3, one obtains

a′ + ã5x3
5 + ã6x3

6 ≡ 0 mod p,

b̃5x5 + b̃6x6 + b̃7x7 ≡ 0 mod p.

Solving the cubic equation modulo p such that xi �≡ 0 mod p for some i ∈ {5, 6} and using x7

to solve the linear equation modulo p give a solution which can be lifted to a non-trivial p-adic
solution with Lemma 5 because ãix2

i b̃7 − pã7x2
7 b̃i ≡ ãix2

i b̃7 �≡ 0 mod p. This solves the case
θ = 4. �

LEMMA 35. A critical system with θ = 3 has a non-trivial p-adic solution.

Proof. If μi > νi for all i � 3, Lemma 32 provides a non-trivial p-adic solution. Likewise,
Lemma 24 provides one if μi < νi for some i � 3. Without loss of generality, one can assume
that μ3 � μ4, μ5 � μ6 and μ7 � μ8. If μ3 > θ − v = 2, a non-trivial p-adic solution exists
due to Lemma 30, hence one can assume that 1 � μ3 � 2. Assume μ5 > ν5 = 1. Then
μ6 > ν6 = 1 as well and it follows μ7 = ν7 = 2 because for at least one i � 3 it has to
hold that μi = νi. If furthermore, μ3 = 2, by applying y0 �→ py0 one obtains a system with
μ3 = ν3 = ν4 = θ , which can be solved with Lemma 29. Hence, μ3 = 1. Such a system can
be transformed with y0 �→ py0 into one with μ3 = 2 and ν3 = 3. As μ7 = ν7 = ν8 = 2, this
is solvable with Lemma 23.

It remains the case with 1 = μ5 = ν5. Here, for μ3 = 2, applying y0 �→ py0 transforms
the system into one with μ3 = ν3 = θ , and hence, the system can be solved with Lemma 29.
For μ3 = 1, applying y0 �→ py0 and y1 �→ py1 transforms it into a system with μ3 = ν3 = θ

μ5 = 2 and ν5 = 4. Setting x1 = 1, x2 = −1, x6 = x7 = x8 = 0 and multiplying the cubic
equation with p−3 and the linear one with p−2, the systems has, modulo p, the form

a′ + ã3x3
3 + ã4x3

4 ≡ 0 mod p,

b̃3x3 + b̃4x4 + b̃5x5 ≡ 0 mod p.
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One can solve the cubic equation modulo p such that xi �≡ 0 mod p for some i ∈ {3, 4} and
use x5 to solve the linear one modulo p. This solution modulo p can be lifted with Lemma 5
to a non-trivial p-adic solution because ãix2

i b̃5 − ã5x2
5 b̃i ≡ ãixib̃5 �≡ 0 mod p. �

Hence, every system with (v0, t ) = (4, 2) has a non-trivial p-adic solution.

§7. The cases (v0, t ) = (4, 3) and (v0, t ) = (4, 4). One has to find a non-singular solution
of the system

a1x3
1 + a2x3

2 + a3x3
3 + a4x3

4 ≡ 0 mod p,

b1x1 + b2x2 + b3x3 + b4x4 ≡ 0 mod p,

with a1a2a3a4b1b2b3 �≡ 0 mod p, where, dependent on the value of (v0, t ), either p | b4 or
p � b4. If such a solution exists, it can be lifted to a non-trivial p-adic solution with Lemma 5.
Applying xi �→ b−1

i xi for those bi with 1 � i � 4 where p � bi, one can assume that bi is
equivalent to 1 or 0 for 1 � i � 4. Starting with the case (v0, t ) = (4, 3), one has to solve the
system

a1x3
1 + a2x3

2 + a3x3
3 + a4x3

4 ≡ 0 mod p,

x1 + x2 + x3 ≡ 0 mod p.
(7.1)

Due to Lemma 14, one can assume that a1, a2 and a3 are distinct modulo p, else a non-singular
solution exists. If the system can be solved with x4 �≡ 0 mod p, then a4x2

4b1 − a1x2
1b4 ≡

a4x2
4 �≡ 0 mod p, and hence, the solution is non-singular. Setting x2 = 1 and x3 = −1 − x1

solves the linear equation modulo p and transforms the cubic one into

(a1 − a3)x
3
1 − 3a3x2

1 − 3a3x1 + a2 − a3 + a4x3
4 ≡ 0 mod p. (7.2)

There can be at most three solution of (7.2) with x4 = 0 because this is a polynomial of degree
3 over a field. Hence, if there are at least four solutions of (7.2), at least one of them has to be
non-singular. To estimate the number of solution, one can use Lemma 26 again. For that, one
needs to show that (7.2) is absolute irreducible. The following lemma will be very useful in
doing just that.

LEMMA 36. Suppose the polynomial yd − f (x) has coefficients in a field k. Then the
following three conditions are equivalent.

(i) yd − f (x) is absolutely irreducible.
(ii) yd − c f (x) is absolutely irreducible for every c �= 0, c ∈ k.

(iii) If f (x) = a(x − α1)
d1 · · · (x − αm)dm is the factorisation of f in k, with αi �= α j for

i �= j, then (d, d1, . . . , dm) = 1.

Proof. See [10, Lemma 2C]. �

LEMMA 37. The function f (x, y) = (a1 − a3)x3 − 3a3x2 − 3a3x + a2 − a3 + a4y3 is
absolute irreducible.

Proof. Define g(x) via

a−1
4 f (x, y) = y3 − (

a−1
4 (a3 − a1)x

3 + 3a−1
4 a3x2 + 3a−1

4 a3x + a−1
4 (a3 − a2)

) =: y3 − g(x).

Let g(x) = a3−a1
a4

(x − α1)(x − α2)(x − α3) be the factorisation of g in Fp. Either all αi with
1 � i � 3 are equal, or at least one of the zeros is simple. If all three are equal, a comparison of
the coefficients shows αi = −a3(a3 − a1)

−1 and α2
i = a3(a3 − a1)

−1 which can be combined
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to conclude a1 = 0, which is a contradiction, hence, at least one of the zeros is simple.
Therefore, the third equivalence of Lemma 36 is fulfilled and hence, a−1

4 f (x, y) is irreducible
as well as f (x, y). �

Applying Lemma 26 to the function f (x, y), one obtains N � p − [
2
√

p
] − 2, and

therefore, N > 3 for all p > 11. It remains to show that a solution of the system (7.1)
with x4 �≡ 0 mod 7 exists. Showing that it is possible to choose x1, x2 and x3 such that
[a1x3

1 + a2x3
2 + a3x3

3] = [a4] while x1 + x2 + x3 ≡ 0 mod 7 is equivalent to show that the
system (7.1) has a solution, because it enables one to choose x4 �≡ 0 mod 7 such that the
system is solved. Multiplying the cubic equation with a−1

4 , one can assume that a4 ≡ 1 mod 7.
Denoting by ãi the representant of ai modulo 7 with 1 � ãi � 6, there have to be i, j ∈ {1, 2, 3}
with i �= j such that ãi and ã j are either both in {1, 2, 3} or both in {4, 5, 6}. One can apply
xl �→ −xl for 1 � i � 3 and multiply the linear equation by −1 to obtain a system as before,
where the sign of a1, a2 and a3 has changed. This changes the set in which ãi and ã j are in. By
applying this transformation, if necessary, one can assume that they are both in {1, 2, 3}. By
permutating the first three variables, if necessary, one obtains a system with 1 � ã1 < ã2 � 3
and ã2 < ã3 � 6.

If ã2 − ã1 = 1, setting x1 = −1, x2 = 1 and x3 = 0 provides the desired solution, hence,
one can assume that ã1 = 1, ã2 = 3 and ã3 ∈ {4, 5, 6}. For each of these cases, one can
choose (x1, x2, x3) ∈ {(0, −1, 1), (1, 1, 5), (3, 2, 2)} such that [a1x3

1 + a2x3
2 + a3x3

3] = [a4]
while x1 + x2 + x3 ≡ 0 mod 7, which proves the case p = 7.

For (v0, t ) = (4, 4), one has to solve the system of equations

a1x3
1 + a2x3

2 + a3x3
3 + a4x3

4 ≡ 0 mod p,

x1 + x2 + x3 + x4 ≡ 0 mod p.
(7.3)

If ai ≡ a j mod p for some 1 � i < j � 4, the system can be solved due to Lemma 14.
Hence, from now on, one can assume that a1, a2, a3 and a4 are distinct modulo p. Setting
x4 = −x1 − x2 − x3 solves the linear system. For Ai := ai − a4 for i ∈ {1, 2, 3} and a := a4,
by setting either x1 = 1 or x3 = 1, the cubic equation transforms in either

A2x3
2 − 3a(1 + x3)x

2
2 − 3a

(
1 + 2x3 + x2

3

)
x2 + A3x3

3 − 3ax2
3 − 3ax3 + A1 ≡ 0 mod p

(7.4)

or

A2x3
2 − 3a(1 + x1)x

2
2 − 3a

(
1 + 2x1 + x2

1

)
x2 + A1x3

1 − 3ax2
1 − 3ax1 + A3 ≡ 0 mod p.

(7.5)

The conditions on the ai transform into Ai �= Aj for i �= j, a �= 0, a + Ai �= 0 and Ai �= 0 for
1 � i � 3 and the following lemma shows that at least one of them is absolute irreducible
over Fp.

LEMMA 38. If Ai �= Aj, for i �= j, a �= 0, a + Ai �= 0 and Ai �= 0 for 1 � i, j � 3, at least
one of the polynomials

f1(x, y) = A2x3 − 3a(1 + y)x2 − 3a
(
1 + 2y + y2)x + A3y3 − 3ay2 − 3ay + A1

and

f2(x, y) = A2x3 − 3a(1 + y)x2 − 3a
(
1 + 2y + y2

)
x + A1y3 − 3ay2 − 3ay + A3,

is absolute irreducible in Fp
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Proof. Let f (x, y) = Ax3 − 3a(1 + y)x2 − 3a
(
1 + 2y + y2

)
x + By3 − 3ay2 − 3ay + C. If

f (x, y) is not absolute irreducible, there are g(x, y), h(x, y) ∈ Fp[x, y] such that f (x, y) =
g(x, y) · h(x, y). Then degx(g(x, y)) + degx(h(x, y)) = 3. Without loss of generality, one can
assume that degx(g(x, y)) � degx(h(x, y)), hence, degx(g(x, y)) = 2 and degx(h(x, y)) = 1.
One can write g(x, y) = g2(y)x2 + g1(y)x + g0(y) and h(x, y) = h1(y)x + h0(y) with
gi(y), h j(y) ∈ Fp[y] for 0 � i � 2 and 0 � j � 1, which provides the equations

g2(y)h0(y) + g1(y)h1(y) = −3a(1 + y), g2(y)h1(y) = A,

g1(y)h0(y) + g0(y)h1(y) = −3a
(
1 + 2y + y2

)
, g0(y)h0(y) = By3 − 3ay2 − 3ay + C,

(7.6)

where one can compare the degree in y to obtain

deg(g0(y)) = 2, deg(g1(y)) ∈ {0, 1}, deg(g2(y)) = 0, deg(h0(y)) = 1,

deg(h1(y)) = 0,

and hence,

g0(y) = g02y2 + g01y + g00, g1(y) ∈ {g10, g11y + g10}, g2(y) = g20,

h0(y) = h01y + h00, h1(y) = h10,

with g02g10g20h01h10 �= 0 or g02g11g20h01h10 �= 0, depending on the degree of g1(y). By
multiplying g(x, y) with g−1

20 and h(x, y) with g20, one can, without loss of generality, assume
that g20 = 1. If deg(g1(y)) = 0, expanding the left-hand side of (7.6) and comparing the
coefficients in front of the powers of y, one obtains

h10 = A, h01 = −3a, h00 = −3a − Ag10, g02 = −3a

A
,

which can be combined with the fourth equation of (7.6), to obtain 9a2 = AB. If both functions,
f1(x, y) and f2(x, y), can be written as a product of functions gi(x, y)hi(x, y) = fi(x, y), the
corresponding functions g(i)

1 (y) have to have degree 0 or 1. If they are 0 in both cases, it
follows that A2A1 = 9a2 = A2A3 and hence, A1 = A3, which contradicts the assumption. It
follows that at most one of the functions fi(x, y) can have a corresponding function g(i)

1 (y)

with degree 0. Hence, one can choose f (x, y) as one of the equation fi(x, y) with 9a2 �= AB.
If this equation is not absolute irreducible, it follows that deg(g1(y)) = 1. Here, expanding
the left-hand side of the first three of equations (7.6) and comparing the coefficients in front
of the powers of y gives

h10 = A, h01 = −3a − Ag11, h00 = −3a − Ag10,

g00 = −3a

A
+ 3a

A
g10 + g2

10, g01 = −6a

A
+ 3a

A
g10 + 3a

A
g11 + 2g10g11, g02 = −3a

A
+ 3a

A
g11 + g2

11.

By combing them with the fourth one, one obtains

9a2 − 9a2g11 + 3aAg11 − 6aAg2
11 − A2g3

11 = AB, (7.7)

9a2 − 9a2g10 + 3aAg10 − 6aAg2
10 − A2g3

10 = AC, (7.8)

g10
(−aA + 3a2 + 4aAg11 + A2g2

11

) = 9a2 + aA + 2aAg11 − 6a2g11 − 2aAg2
11, (7.9)

g11
(−aA + 3a2 + 4aAg10 + A2g2

10

) = 9a2 + aA + 2aAg10 − 6a2g10 − 2aAg2
10. (7.10)

Assuming g10 = 0, the equation (7.10) transforms to g11(−A + 3a) = 9a + A. As g11 �= 0,
either 3a − A = 9a + A = 0 or both are not 0. If both are 0, it follows that 3a = A = −9a
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and hence a = 0, which contradicts the assumption. Hence, 3a − A �= 0 and 9a + A �= 0.
Plugging g11 = 9a+A

3a−A and g10 = 0 into (7.9), one obtains

−3a(a + A)(3a + A)(9a + A) = 0.

As 3, a, 9a + A and a + A are not 0, it follows that −3a = A. Plugging in g10 = 0 in (7.8)
provides 9a2 = AC, hence, 9a2 = −3aC and therefore C = −3a = A, which contradicts the
assumption. From that one can conclude that g10 �= 0. Assume that the equation

9a + A + 2Ag − 6ag − 2Ag2 = 0 (7.11)

for g ∈ {g10, g11} holds. As both g10 and g11 are not 0, one can conclude from (7.9) and (7.10)
that

−aA + 3a2 + 4aAg + A2g2 = 0. (7.12)

Combining both equations, one obtains g = −6a−A
2A , which plugged into (7.12) provides A =

0 contradicting the assumption. Hence, 9a + A + 2Ag − 6ag − 2Ag2 �= 0 for g ∈ {g10, g11}.
Therefore, solving (7.9) and (7.10) for g10 and g11, respectively, one obtains

g10 = 9a2 + aA + 2aAg11 − 6a2g11 − 2aAg2
11

−aA + 3a2 + 4aAg11 + A2g2
11

,

g11 = 9a2 + aA + 2aAg10 − 6a2g10 − 2aAg2
10

−aA + 3a2 + 4aAg10 + A2g2
10

,

hence, it is possible to write each g10 and g11 as a function of the other one. Inserting one
function into the other, one obtains for g ∈ {g10, g11} the equation

− a(a + A)
( − 81a4 − 36a3A − 3a2A2 + 81a4g − 54a3Ag − 24a2A2g − aA3g

+ 108a3Ag2 − 4aA3g2 + 54a2A2g3 + 6aA3g3 + 12aA3g4 + A4g4 + A4g5) = 0,

which is, as a �= 0 and a + A �= 0, equivalent to

− 81a4 − 36a3A − 3a2A2 + 81a4g − 54a3Ag − 24a2A2g − aA3g

+ 108a3Ag2 − 4aA3g2 + 54a2A2g3 + 6aA3g3 + 12aA3g4 + A4g4 + A4g5 = 0.
(7.13)

By bringing g3 to one side of (7.7) and (7.8) and putting this into (7.13), one obtains for
(g, D) ∈ {(g10,C), (g11, B)}

−A(a + D)
(
9a2 + A2g + A2g2 + 3aA + 6aAg2

) = 0,

and because A �= 0 and a + D �= 0 that

g2 = −9a2 + 3aA + A2g + 6aAg

A2
,

which, inserting into (7.7) and (7.8), provides

g = −3a + D

A
.

If one puts this into the (7.7) and (7.8), one obtains, again for (g, D) ∈ {(g10,C), (g11, B)},
the equation

(−A + D)D(3a + A + D) = 0,
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but as A �= D and D �= 0, it follows that

C = −3a − A = B,

which contradicts the assumption. Hence, neither f1(x, y) nor f2(x, y) can be the product of
g(x, y)h(x, y) with deg(g1(y)) = 1 and at most one of them can have deg(g1(y)) = 0, hence,
at least one of them is absolute irreducible. �

It follows from the previous Lemma that one can set either x1 = 1 or x3 = 1 such that
the cubic equation transforms into an absolute irreducible polynomial. Due to Lemma 26,
the number of solution N of this polynomial can be estimated through N � p − [

2
√

p
] − 2.

Let i, j ∈ {1, 3}, i �= j, such that xi = 1 provides an absolute irreducible polynomial. Then
aix2

i b2 − a2x2
2bi ≡ ai − a2x2

2. If this is not equivalent to 0 modulo p for a solution of the
absolute irreducible polynomial, then the solution is a non-singular solution of the system,
which can be lifted to a non-trivial p-adic solution. For ai − a2x2

2 ≡ 0 mod p, there exists at
most two values of x2 which can solve this equation, and for each of them there can be at
most three values of x j , which solves the absolute irreducible polynomial. Hence, if there are
at least seven solutions of the absolute irreducible polynomial, at least one does not solve the
equation ai − a2x2

2 ≡ 0 mod p and hence, there is at least one non-singular solution, which
can be lifted to a non-trivial p-adic solution, as needed. Therefore, if p − [

2
√

p
] − 2 > 6,

which holds for p � 17, the case is solved. It remains the cases p = 7 and p = 13, which will
be handled using the following lemmata.

LEMMA 39. Let 1 � i, j, k, l � 4 be all distinct with [ai − a j] = [ak − al ]. Then the system
(7.3) has a non-trivial p-adic solution.

Proof. Setting xi = 1, x j = −1, xk = x and xl = −x solves the linear equation and
transforms the cubic one into

(ai − a j ) + (ak − al )x
3 ≡ 0 mod p,

which can be solved non-trivially due to [ai − a j] = [ak − al ]. Furthermore, aix2
i b j −

a jx2
j bi ≡ ai − a j �≡ 0 mod p because a1, a2, a3 and a4 are distinct modulo p, hence, the

solution is non-singular and can be lifted due to Lemma 5. �

LEMMA 40. Let 1 � i, j, k, l � 4 all distinct with [ai] = [a j] and [ak] = [al ]. Then the
system (7.3) has a non-trivial p-adic solution.

Proof. As the ai for 1 � i � 4 are all distinct and all non-zero modulo p, it follows that there
are b and c not equivalent to 0 or 1 modulo p such that ai ≡ b3a j mod p and ak ≡ c3al mod p.
Setting x j = b, xi = −1, xl = cx and xk = −x solves the cubic equation and reduces the linear
one to

(b − 1) + (c − 1)x ≡ 0 mod p,

which can be solved by choosing x appropriate as c − 1 is not zero. This solution is non-
singular, because a jx2

j − aix2
i ≡ a jb2(1 − b) which is not equivalent to 0 modulo p because

a j , b and 1 − b are not equivalent to 0 modulo p. Hence, due to Lemma 5, the system has a
non-trivial p-adic solution. �

There are only three classes for [ai], hence, it follows that at least two of them are in the same
class. Furthermore, due to Lemma 40, one can assume that the other two are not in the same
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class, therefore, after renumbering if necessary, either [a1] = [a2] = [a3] �= [a4] or [a1] = [a2]
while a3 and a4 are in the two remaining classes. Multiplying the cubic equation with a−1

1
does not change this relation. For p = 7, only the second case can occur, because there are
only two elements in every equivalence class. Hence, one can assume that a1 ≡ 1 mod 7 and
a2 ≡ 6 mod 7 while a3 is congruent to 2 or 5 modulo 7 and a4 to 3 or 4. If [a2 − a1] = [a3 − a4],
there is also a solution due to Lemma 39, hence it remains the cases (a3, a4) ∈ {(2, 3), (5, 4)}
which can be solved non-trivial with (x1, x2, x3, x4) ∈ {(5, 1, 1, 0), (1, 5, 1, 0)}.

For p = 13, if [a1] = [a2] = [a3], it follows that a2 and a3 are congruent to 5, 8, or 12 and
a4 is congruent to one element of the set {2, 3, 4, 6, 7, 9, 10, 11}. As before, one can assume
without loss of generality that a2 � a3. Those cases which cannot be solved with Lemma 39
are solved in the following table.

a2 a3 a4 x1 x2 x3 x4 a2 a3 a4 x1 x2 x3 x4 a2 a3 a4 x1 x2 x3 x4

5 8 6 10 1 0 2 5 12 4 1 1 0 11 8 12 2 5 1 0 7
5 8 7 3 1 0 9 5 12 9 5 0 1 7 8 12 4 3 1 0 9
5 8 10 8 1 0 4 5 12 11 0 1 5 7 8 12 9 4 1 0 8

If [a1] = [a2] but a3 and a4 are in the two remaining equivalence classes with [a3] �= [a4],
one can assume that a3 is equivalent to an element in the set {2, 3, 10, 11} and a4 to one in
{4, 6, 7, 9}. Most of these cases can be solved with Lemma 39 and the remaining ones with
their solution modulo 13 can be seen in the following table.

a2 a3 a4 x1 x2 x3 a4 a2 a3 a4 x1 x2 x3 a4 a2 a3 a4 x1 x2 x3 a4

5 2 7 7 1 5 0 8 3 4 2 1 10 0 12 3 4 4 1 8 0
5 3 6 11 1 1 0 8 10 7 4 0 3 6 12 10 9 10 1 2 0
5 10 7 8 1 4 0 8 10 9 0 3 8 2 12 11 4 6 1 0 6
5 11 6 10 1 0 2 8 11 9 6 1 6 0 12 11 7 2 1 0 10
5 11 9 12 0 2 12 12 2 6 11 0 1 1
8 2 4 5 1 7 0 12 2 9 5 1 0 7

Hence, for p = 7 and p = 13, all cases have a non-trivial solution modulo p. Those solution
are even non-singular, because every solution has at least one of the xi = 0 for some 1 � i � 4,
and one x j �≡ 0 mod p for 1 � j � 4. Hence, a jx2

j bi − aix2
i b j ≡ a jx2

j �≡ 0 mod p shows that
these solutions can be lifted to a non-trivial p-adic one. This completes the case (v0, t ) = (4, 4)

and with that the case p ≡ 1 mod 3. Finally, some more attention has to be paid to the case
p = 3.

§8. The case p = 3. As three divides every partial differential of the cubic equation, to
prove the existence of a non-trivial p-adic solution, one has to solve the cubic equation modulo
9, while for the linear one three suffices, as stated in Lemma 5. To show that a non-singular
solution for a system (4.1) exists, the parameters used in the previous section are not precise
enough. Hence, the following notation is required.

For 0 � i � 2, define

Xi0 := {
xk | k ∈ {1, . . . , s} , 3i ‖ ak, 3 � bk

}
, Xi1 := {

xk | k ∈ {1, . . . , s} , 3i ‖ ak, 3 | bk
}

,

and the partial unions Xi := Xi0 ∪ Xi1. The cardinality of these sets ti j := #Xi j and the partial
sums vi := ti0 + ti1 = #Xi are adequate to describe a system (4.1) for this proof.

In the proof of Lemma 11, the basics of this idea were already used. By mapping a system
(4.1) to an equivalent one with a non-trivial 3-adic solution, one proves that it has one as well.
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The following three transformations are a finite series of the processes introduced in § 4. They
map subsets of the set of systems (4.1) to the set of systems (4.1).

(i) Apply xi �→ 3xi for all xi ∈ X0 and multiply the cubic equation by 1
3 .

(ii) If t20 = 0, multiply the cubic equation by 3 and apply xi �→ 1
3 xi for all xi ∈ X2.

(iii) If t10 + t20 = 0, multiply the cubic equation by 9 and apply xi �→ 1
3 xi for all xi ∈ X1 ∪ X2.

The second and the third transformation cannot be applied to every system (4.1), as if the
condition is not fulfilled, then the systems turns into one with non-integer coefficients. A
system (4.1) which gets mapped by one of these transformations to a system with a non-
trivial 3-adic solution has one as well, because they are equivalent to each other. By applying
one of the transformations, one can therefore extend the set of systems (4.1) having a confirmed
non-trivial 3-adic solution.

The following lemmata will proof that systems (4.1) with specific parameters have a non-
trivial 3-adic solution, which will be combined to show that all ordered conditioned systems
(4.1) are covered by these systems.

LEMMA 41. If c1, c2, c3 ∈ (Z/9Z)∗ are pairwise distinct, it is possible to choose two of
them such that the difference is congruent to 3 modulo 9 and, by swapping the minuend and
the subtrahend, to 6 modulo 9.

Proof. In (Z/9Z)∗, only two residue classes modulo 3 are contained. Therefore, at least
two ci have to be in the same residue class. Those two are not equal, hence, they differ by 3
or 6. �

LEMMA 42. A system (4.1) with t00 + t10 + t20 � 3 and 1 � i < j � t00 such that ai ≡
a j mod 9 has a non-trivial 3-adic solution.

Proof. Set xi = 1, x j = −1 and the remaining variables 0. Hence, the system (4.1) turns
into

aix
3
i + a jx

3
j ≡ ai − a j ≡ 0 mod 9,

xi + x j ≡ 1 − 1 ≡ 0 mod 3.

There is a variable xk ∈ X00 ∪ X10 ∪ X20\{xi, x j} which has the value 0. It follows that bkaix2
i −

biakx2
k ≡ ai �≡ 0 mod 3 and hence, Lemma 5 provides the wanted solution. �

LEMMA 43. A system (4.1) with t00 + t10 + t20 � 1 and ai ≡ a j mod 9 for some t00 + 1 �
i < j � v0 has a non-trivial 3-adic solution.

Proof. Set xi = 1, x j = −1 and the remaining variables 0. This solves the cubic equation
modulo 9 and the linear one modulo 3. There is a variable xk ∈ X00 ∪ X10 ∪ X20 with xk = 0.
It follows that bkaix2

i − biakx2
k ≡ ai �≡ 0 mod 3 and hence, Lemma 5 can be applied to obtain

a non-trivial 3-adic solution. �

LEMMA 44. A system (4.1) with t00 � 5 has a non-trivial 3-adic solution.

Proof. One can assume that the ai corresponding to those xi ∈ X00 are all distinct modulo
9, because else, Lemma 42 provides a non-trivial 3-adic solution.

Since t00 � 5, it follows from Lemma 41 that it is possible to choose xi, x j ∈ X00 such
that ai − a j ≡ 3 mod 9. The remaining elements in X00 are still at least 3. Lemma 41 can be
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applied again to provide xk, xl ∈ X00\{xi, x j} such that ak − al ≡ 6 mod 9. Taking xi = xk = 1,
x j = xl = −1 and setting the remaining variables 0 provides a solution for both the cubic and
linear equation. Since there is at least one variable, say xm, in X00 which was set 0, one gets
bmaix2

i − biamx2
m ≡ ai �≡ 0 mod 3 and therefore a non-trivial 3-adic solution can be obtained

by Lemma 5. �

By applying transformation (i) to a system (4.1) with t10 � 5, it becomes an equivalent
system (4.1) with t00 � 5.

Conclusion 2. A system (4.1) with t10 � 5 has a non-trivial 3-adic solution.

LEMMA 45. An ordered system (4.1) with v0 � 4 and t20 � 1 has a non-trivial
3-adic solution.

Proof. Choose xi ∈ X20 and set every variable 0 except x1, . . . , x4 and xi. One can choose
x1, . . . , x4 in a way that the cubic equation is congruent to 0 modulo 9. If either two of
the corresponding coefficients are equivalent modulo 9, then one can set one of them 1, the
other one −1 and the remaining 0. Otherwise, at least one of the sets {1, 8}, {2, 7} and {4, 5}
is completely represented by x1, . . . , x4 modulo 9. Choose these two, set both 1 and the
remaining 0. In either case, there is a variable, say x j , among x1, . . . , x4 which is 1. Now set xi

such that the linear equation is congruent to 0 modulo 3. This does not change the value of the
cubic equation modulo 9. Since bia jx2

j − b jaix2
i ≡ a j �≡ 0 mod 3, it follows from Lemma 5

that there is a non-trivial 3-adic solution. �

Setting xi = 0 for all xi ∈ X10 ∪ X20 turns a system (4.1) with t11 � 4 and t00 � 1 into one
with t10 + t20 = 0. Then transformation (iii) can be applied to change it into an system (4.1)
with v0 � 4 and t20 � 1. After renumbering to obtain an ordered system, Lemma 45 provides
a non-trivial p-adic solution.

Conclusion 3. A system (4.1) with t11 � 4 and t00 � 1 has a non-trivial 3-adic solution.

LEMMA 46. An ordered system (4.1) with v0 � 2, v1 � 1 and t20 � 1 has a non-trivial
3-adic solution.

Proof. Let xi ∈ X1 and x j ∈ X20. Set all variables 0 except x1, x2, xi and x j . Now set x1 = 1
and choose x2 ∈ {−1, 1} such that a1x3

1 + a2x3
2 ≡ 0 mod 3. This is always possible since both

a1 and a2 are congruent to either 1 or 2 modulo 3. Now one can choose xi ∈ {0, 1, −1} in a
way that the cubic equation is congruent to 0 modulo 9 because ai ∈ {3, 6} modulo 9. To make
the linear equation congruent to 0 modulo 3, one can choose x j suitably, without changing the
value of the cubic equation modulo 9. Furthermore, b ja1x2

1 − b1a jx2
j ≡ a1 �≡ 0 mod 3 ensures

that one can lift the solution with Lemma 5 to a non-trivial 3-adic one. �

To apply transformation (ii) or (iii) to a system (4.1) with v0 � 1, t10 � 1 and t21 � 2 or
t11 � 2, t21 � 1 and t00 � 1, one has to set xi = 0 for all xi ∈ X20 or xi ∈ X10 ∪ X20, respectively.
It then becomes an equivalent system (4.1) with v0 � 2, v1 � 1 and t20 � 1, which can be
renumbered to obtain an ordered system (4.1) with the same parameters.

Conclusion 4. A system (4.1) with v0 � 1, t10 � 1 and t21 � 2 has a non-trivial
3-adic solution.
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Conclusion 5. A system (4.1) with t11 � 2, t21 � 1 and t00 � 1 has a non-trivial
3-adic solution.

LEMMA 47. A system (4.1) with t00 � 3 and t11 � 1 has a non-trivial 3-adic solution.

Proof. If there are xi, x j ∈ X00 such that ai ≡ a j mod 9, it follows from Lemma 42 that
a non-trivial 3-adic solution exists, else all the corresponding coefficients of xi ∈ X00 are
distinct. There is an xk ∈ X11, hence, from the definition of X11 it follows that ak is congruent
to 3 or 6 modulo 9. With that in mind one can choose, due to Lemma 41, ai, a j ∈ X00 such that
ai − a j ≡ −ak mod 9. Now setting xi = xk = 1 and x j = −1 and the remaining variables 0
solves the cubic equation modulo 9 and the linear one modulo 3. There is an xl ∈ X00 which was
set 0. The lift of the solution follows by Lemma 5 because bl aix2

i − bialx2
l ≡ ai �≡ 0 mod 3. �

By applying transformation (i) to a system (4.1) with t10 � 3 and t21 � 1, it becomes an
equivalent system (4.1) with t00 � 3 and t11 � 1.

Conclusion 6. A system (4.1) with t10 � 3 and t21 � 1 has a non-trivial 3-adic solution.

LEMMA 48. A system (4.1) with t01 � 2, t11 � 1 and t00 + t10 + t20 � 1 has a non-trivial
3-adic solution.

Proof. Let xi, x j ∈ X01, xk ∈ X11 and set every variable except these three 0. Then the
linear equation is solved modulo 3 independent of the value of these variables. It is possible
to choose xi, x j ∈ {1, −1} in a way that aix3

i + a jx3
j ≡ 0 mod 3 and xk ∈ {0, 1, −1} that the

cubic equation is solved modulo 9, because ak is congruent to 3 or 6 modulo 9 per definition of
X11. There is also an xl ∈ X00 ∪ X10 ∪ X20 with xl = 0. One sees that blaix2

i − bialx2
l ≡ ai �≡

0 mod 3 and hence, the solution is liftable to a non-trivial 3-adic one by Lemma 5. �

By applying transformation (i) to a system (4.1) with t11 � 2, t21 � 1 and t10 + t20 � 1, it
becomes an equivalent system (4.1) with t01 � 2, t11 � 1 and t00 + t10 + t20 � 1.

Conclusion 7. A system (4.1) with t11 � 2, t21 � 1 and t10 + t20 � 1 has a non-trivial
3-adic solution.

LEMMA 49. A system (4.1) with t00 � 3 and t01 � 2 has a non-trivial 3-adic solution.

Proof. If there are xi, x j ∈ X00 such that ai ≡ a j mod 9, Lemma 42 provides a non-trivial
3-adic solution. Let xi, x j ∈ X01. If one of ai + a j and ai − a j is congruent to 0 modulo 9 set
xi = 1 and choose x j ∈ {1, −1} such that the cubic congruence is fulfilled. Else ai + a j or
ai − a j is congruent to 3 or 6 modulo 9 because ai and a j are congruent to 1 or 2 modulo 3. Set
xi = 1 and choose x j ∈ {1, −1} such that aix3

i + a jx3
j ≡ 0 mod 3. Then Lemma 41 provides

xk, xl ∈ X00 with ak − al ≡ −aix3
i − a jx3

j mod 9. Therefore, one can set xk = 1 and xl = −1.
In both cases, setting all the remaining variables 0 fulfils the cubic congruence modulo 9 and
the linear modulo 3. There is an xm in X00 which was set 0. Since bmaix2

i − biamx2
m ≡ ai �≡

0 mod 3, this solution can be lifted to a non-trivial 3-adic one by Lemma 5. �

Apply transformation (i) to a system (4.1) with t10 � 3 and t11 � 2. It then becomes an
equivalent system (4.1) with t00 � 3 and t01 � 2.
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Conclusion 8. A system (4.1) with t10 � 3 and t11 � 2 has a non-trivial 3-adic solution.

LEMMA 50. An ordered system (4.1) with t00 � 4 and t10 � 1 has a non-trivial
3-adic solution.

Proof. One can assume that all ai with 1 � i � t00 are distinct modulo 9 because otherwise
Lemma 42 can be applied to show that there is a non-trivial 3-adic solution.

Permute the first four variables such that a1 ≡ . . . ≡ ai0 mod 3 and a1 �≡ ai0+1 ≡ . . . ≡
a4 mod 3. Modulo 9, there are three residue classes which are in the same residue class modulo
3, hence, i0 ∈ {1, 2, 3}. If i0 = 2, set x1 = −x2 = 1 and x3 = −x4 = 1 or x3 = −x4 = −1
such that the cubic equation is fulfilled and every other variable 0. This solves the cubic
equation modulo 9 and the linear one modulo 3. This solution can be lifted by Lemma 5, since
b3a1x2

1 − b1a3x2
3 ≡ a1 − a3 �≡ 0 mod 3.

Therefore, one can assume i0 ∈ {1, 3}. In this case, modulo 9, one of the sets {1, 4, 7}
and {2, 5, 8} is completely represented by a1, . . . , a4 and the remaining coefficient lies in
the other set. Hence, one can choose i, j ∈ {1, . . . , 4} such that ai + a j is congruent to 3
modulo 9. Likewise one can choose them such that ai + a j is congruent to 6 modulo 9.
Therefore, choosing them such that ai + a j is congruent to −al , where xl ∈ X10, one can set
xi = x j = xl = 1 and the remaining variables zero to solve the cubic equation modulo 9 and
the linear one modulo 3. This solution can be lifted by Lemma 5, because aix2

i bl − alx2
l bi ≡

ai �≡ 0 mod 3. �

LEMMA 51. An ordered system (4.1) with t00 � 1, t01 � 3 and t10 � 2 has a non-trivial
3-adic solution.

Proof. It follows from Lemma 43 that if there are xn, xm ∈ X01 with n �= m and an ≡
am mod 9, the system has a non-trivial 3-adic solution. Let xi, x j ∈ X10. If ai �≡ a j mod 9,
set xi = −x j = 1. Lemma 41 can be applied to show that it is possible to choose m, n ∈ X01

such that am − an ≡ a j − ai mod 9. Setting xm = −xn = 1 and the remaining variables zero
provides a non-singular solution, because b1anx2

n − bna1x2
1 ≡ an �≡ 0 mod 3, which can be

lifted by Lemma 5 to a non-trivial 3-adic one.
Else ai ≡ a j mod 9. If there is an an for t00 + 1 � n � v0 such that a1 + ai + a j ≡ ±an

set x1 = xi = x j = 1, xn = ∓1 and the remaining variables 0. This solves the cubic equation
modulo 9 and the linear modulo 3, and can be lifted by Lemma 5, because bia1x2

1 − b1aix2
i ≡

a1 �≡ 0 mod 3. Else, all an for t00 + 1 � n � v0 are neither congruent to a1 + ai + a j nor to
−a1 − ai − a j modulo 9. But they have to be in the set {1, 2, 4, 5, 7, 8}, and since a1 + ai + a j

is modulo 9 in one of the sets {1, 8}, {2, 7} and {4, 5}, the an with t00 + 1 � n � v0 have to be in
the two remaining sets. They are distinct modulo 9, hence one of the sets is entirely represented.
Therefore, there are t00 + 1 � n < m � v0 with an + am ≡ 0 mod 9. Set xn = xm = 1 and
the remaining variables 0. This is a non-singular solution because b1anx2

n − bna1x2
1 ≡ an �≡

0 mod 3 and can be lifted to a non-trivial 3-adic solution by Lemma 5, which proves the
lemma. �

LEMMA 52. A system (4.1) with t01 � 4 and t00 + t10 + t20 � 1 has a non-trivial
3-adic solution.

Proof. If there are xi, x j ∈ X01 with ai ≡ a j mod 9, Lemma 43 provides a non-trivial 3-
adic solution. Else, at least one of the sets {1, 8}, {2, 7} and {4, 5} is by the ai with xi ∈ X01
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modulo 9 completely represented. It is therefore possible to choose xi, x j ∈ X01 such that
ai + a j ≡ 0 mod 9. Setting xi = x j = 1 and the remaining variables 0 provides a non-singular
solution, which can be lifted by Lemma 5, because for xl ∈ X00 ∪ X10 ∪ X20 it follows that
blaix2

i − bialx2
l ≡ ai �≡ 0 mod 3. �

By applying transformation (i) to a system (4.1) with t11 � 4 and t10 + t20 � 1, it becomes
a system (4.1) with t01 � 4 and t00 + t10 + t20 � 1.

Conclusion 9. A system (4.1) with t11 � 4 and t10 + t20 � 1 has a non-trivial 3-adic solution.

LEMMA 53. An ordered system (4.1) with t00 � 2, t10 � 1 and t11 � 1 has a non-trivial
3-adic solution.

Proof. Setting x1 = 1, one can choose x2 ∈ {±1}, depending on whether a1 and a2 are
in the same or in different equivalence classes modulo 3, such that a1x3

1 + a2x3
2 ≡ 0 mod 3.

To solve the linear equation modulo 3, one chooses xv0+1 ∈ {0, ±1} and choosing xv0+t00+1 ∈
{0, ±1} one can solve the cubic equation modulo 9 without changing the value of the linear
equation. Setting all remaining variables 0, one obtains a non-singular solution, because
a1x2

1bv0+1 − av0+1x2
v0+1b1 ≡ a1 �≡ 0 mod 3, which can be lifted to a non-trivial 3-adic solution

with Lemma 5. �

LEMMA 54. An ordered system (4.1) with t00 � 3, t01 � 1 and t10 � 2 has a non-trivial
3-adic solution.

Proof. One can assume that alle ai with 1 � i � t00 are distinct modulo 9, because otherwise
Lemma 42 provides a non-trivial 3-adic solution.

Set all variables 0 except x1, x2, x3, xt00+1, xv0+1 and xv0+2. In the case av0+1 �≡ av0+2 mod 9,
the coefficients a1, a2 and a3 are either in the same equivalence class modulo 3, or one of
them is in another class than the other two. If they are in the same class, it follows that
a1 + a2 + a3 ≡ 0 mod 3 but not equivalent to 0 modulo 9. Hence, setting x1 = x2 = x3 = 1
and xv0+1 = ±1 and xv0+2 = ∓1, dependent on whether a1 + a2 + a3 is equivalent to 3 or to
6, solves the cubic equation modulo 9 and the linear one modulo 3. This is a non-singular
solution because a1x2

1bv0+1 − av0+1x2
v0+1b1 ≡ a1 mod 3. Else, without loss of generality, a1

and a2 are in the same equivalence class modulo 3 and a3 in the other one. Therefore, it
holds that a1 + a3 ≡ a2 + a3 ≡ 0 mod 3, but as a1 �≡ a2 mod 9, one can choose i, j ∈ {1, 2}
such that ai + a3 �≡ 0 mod 9, and ai + a3 + av0+ j ≡ 0 mod 9. Setting xi = x3 = xv0+ j = 1
and everything else zero solves the cubic equation modulo 9 and the linear one modulo 3.
This is non-singular, because a1x2

1bv0+ j − av0+ jx2
v0+ jb1 ≡ a1 �≡ 0 mod 3.

Assume that av0+1 ≡ av0+2 mod 9 and define

Ax := A(x1, x2, x3, xt00+1) = a1x3
1 + a2x3

2 + a3x3
3 + at00+1x3

t00+1 ∈ Z/9Z,

Bx := B(x1, x2, x3, xt00+1) = x1 + x2 + x3 ∈ Z/3Z.

If it is possible to choose two vectors x = (x1, x2, x3, xt00+1) ∈ {0, 1, −1}4, such that Ax ∈
{3, 6} and Bx ∈ {1, 2} where one of Ax and Bx has the same value for both vectors and the
other one has two different values, one can set either both xv0+1 = xv0+2 = 1 or just xv0+1 = 1
and xv0+2 = 0. One of the settings of xv0+1 and xv0+2 together with one of the settings of x
solves the cubic equation modulo 9 and the linear one modulo 3. As x1 + x2 + x3 is in all
cases equivalent to one or two, there is an i ∈ {1, 2, 3} with xi �≡ 0 mod 3. These solutions are
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non-singular, because aix2
i bv0+1 − av0+1x2

v0+1bi ≡ ai �≡ 0 mod 3 and hence can be lifted to a
non-trivial 3-adic one.

If a1, a2 and a3 are in the same equivalent class modulo 3 and at00+1 in the other, ai + at00+1

is congruent to 0, 3 and 6 modulo 9, depending on i ∈ {1, 2, 3}, hence setting xi = xt00+1 = 1
for those i which belongs to 3 or 6 and the other variables 0 provides

(
Ax, Bx

) = (3, 1) or(
Ax, Bx

) = (6, 1), respectively, as needed. If at00+1 is in the same equivalence class as a1, a2

and a3, one can obtain (3,1) and (6,1) as well, because ai − at00+1 is equivalent to 0, 3 and 6,
depending on i ∈ {1, 2, 3} and hence setting xi = 1 = −xt00+1 as above and the other variables
0 gives the desired result. From now on, one can assume without loss of generality a1 and
a2 are in the same equivalence class modulo 3 and a3 in the other. If a3 is not equivalent to
−a1 and −a2 modulo 9, setting x1 = x3 = 1 or x2 = x3 = 1 and the other variables 0 provides
(3,2) and (6,2). Hence, one can assume without loss of generality that a3 ≡ −a1 mod 9. By
multiplying the cubic equation with a−1

1 , one obtains a1 ≡ 1 mod 9, a3 ≡ 8 mod 9 and a2

equivalent to either 4 or 7 modulo 9, while at00+1 ∈ (Z/9Z)∗. The following table will prove
the existence of the required vectors for the remaining cases.

a2 at00+1 x1 x2 x3 xt00+1 Ax Bx a2 at00+1 x1 x2 x3 xt00+1 Ax Bx

4 1 0 1 0 −1 3 1 7 1 0 1 1 0 6 2
1 1 −1 0 6 1 0 1 0 −1 6 1

4 2 1 0 0 1 3 1 7 2 0 1 1 0 6 2
0 1 0 1 6 1 0 0 1 −1 6 1

4 4 0 0 1 1 3 1 7 4 0 1 1 0 6 2
−1 1 1 1 6 1 1 0 0 −1 6 1

4 5 1 0 0 1 6 1 7 5 0 1 1 0 6 2
0 0 1 −1 3 1 1 0 0 1 6 1

4 7 1 0 0 −1 3 1 7 7 0 1 1 0 6 2
0 0 1 1 6 1 0 0 1 1 6 1

4 8 0 1 1 0 3 2 7 8 0 1 1 0 6 2
0 1 0 1 3 1 0 1 0 1 6 1

�

LEMMA 55. An ordered system (4.1) with t00 � 2, t01 � 2 and t10 � 2 has a non-trivial
3-adic solution.

Proof. Assume at00+1 ≡ ±at00+2 mod 9. Then one can set xt00+1 = 1 and choose xt00+2 ∈
{±1} such that at00+1x3

t00+1 + at00+2x3
t00+2 ≡ 0 mod 9. Setting the remaining variables 0, one

obtains a solution of the cubic equation modulo 9 and the linear one modulo 3. The solution is
also non-singular because at00+1x2

t00+1b1 − a1x2
1bt00+1 ≡ at00+1 �≡ 0 mod 3 and therefore it can

be lifted to a non-trivial 3-adic solution.
Hence, one may assume that at00+1 �≡ ±at00+2 mod 9. Depending on them being in the same

or in different equivalent classes modulo 3, either the difference or the sum of both is congruent
to 0 modulo 3, but not to 0 modulo 9. It follows that for n ∈ {3, 6} fixed, it is possible to
choose xt00+1, xt00+2 ∈ {±1} such that at00+1x3

t00+2 + at00+2x3
t00+2 ≡ n mod 9. Setting x1 = 1 and

choosing x2 ∈ {±1} such that a1x3
1 + a2x3

2 ≡ 0 mod 3, one can choose xv0+1, xv0+2 ∈ {0, 1}
such that the linear equation is equivalent to 0 modulo 3. Doing this does not change that the
cubic equation is equivalent to 0 modulo 3. If it is also congruent to 0 modulo 9, this solves the
system, else one can choose xt00+1 and xt00+2 as described above, to solve the cubic equation
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modulo 9, without changing the value of the linear equation modulo 3. This solution is non-
singular, because a1x2

1bv0+1 − av0+1x2
v0+1b1 ≡ a1 �≡ 0 mod 3 and can be lifted to a non-trivial

3-adic solution with Lemma 5. �

The preceding lemmata and conclusions can be applied to prove Theorem 1 for p = 3.

LEMMA 56. Every ordered conditioned system with s � 8 has a non-trivial 3-adic solution.

Proof. From the definition of a conditioned system follows that one with s � 8 must fulfil
the following four equations:

v0 � 3, (8.1)

v0 + v1 � 6, (8.2)

s = v0 + v1 + v2 � 8, (8.3)

t00 + t10 + t20 � 1. (8.4)

Assume there is a conditioned system (4.1) with s � 8 without a non-trivial 3-adic solution.
If this system has t20 � 1, Lemma 45 can be applied to show that v0 � 3. From (8.1) and

(8.2), it follows that v0 = 3 and v1 � 3, which contradicts with Lemma 46. Hence, t20 has to
be 0.

Lemma 44 can be applied to show that 0 � t00 � 4. This leaves four cases to consider.
t00 = 0: If t00 = 0, it is forced by (8.1) that t01 is at least 3. Then it follows from Lemma 52

and (8.4) that t01 = 3. Lemma 48 and (8.4) can be applied to show that t11 = 0 and
because of (8.2) it follows that t10 � 3. At the same time, Conclusion 2 forces t10

to be at most 4. Hence, t21 � 1, because of (8.3), which contradicts Conclusion 6.
Therefore, this case cannot occur.

t00 = 1: One can apply (8.1) to show that t01 � 2. This, together with Lemma 52, reveals
that 2 � t01 � 3. Again, Lemma 48 forces t11 to be zero. Because of (8.2) it follows
that t10 is at least 2 and, by Conclusion 2, at most 4. Lemma 51 coerces t01 to
be 2 and hence (8.3) makes it necessary for t21 to be at least 1. Conclusion 6
can be applied to obtain t10 = 2, which leads together with (8.3) to t21 � 3. This
contradicts Conclusion 4 and therefore t00 cannot be smaller than 2.

t00 = 2: For t00 = 2, it follows that 1 � t01 � 3 because of (8.1) and Lemma 52. Hence,
(8.2) can be applied to show that v1 � 1. At this point, further restrictions do not
follow from the lemmata above, hence another case analysis is necessary.
t01 = 3: Lemmata 48 and 51 restrict t11 to be 0 and t10 to be at most 1. But then

one has t10 = v1 which has to be at least 1, as proven above. Hence,
t10 = 1 follows. Then t21 needs to be at least 2 because of (8.3), which
contradicts Conclusion 4.

t01 = 2: Again, Lemma 48 shows that t11 = 0. But here, (8.2) displays that 2 �
v1 = t10, which contradicts Lemma 55.

t01 = 1: Here, (8.2) can be applied to show that v1 is at least 3 and Conclusion 2
to obtain t10 � 4. Unfortunately, this is not enough to conclude anything
else and another case analysis is in order.
t10 � 3: It follows from Conclusion 6 that t21 = 0 and hence from (8.3)

that v1 � 5. Hence, t11 � 1 which contradicts Lemma 53.
t10 = 2: By (8.2) it follows that t11 is at least 1, which contradicts

Lemma 53.
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t10 = 1: It follows from (8.2) and Conclusion 9 that t11 has to be at
least 2 and at most 3. This leads, with (8.3) which shows that
t21 � 1, to a contradiction with Conclusion 7.

t10 = 0: Here, t11 is greater than 3 because of (8.2). Conclusion 5 can
be applied to show that t21 = 0 and hence t11 � 5 follows by
(8.3) which contradicts with Conclusion 3.

Every case with t00 = 2 and t01 = 1 leads to a contradiction, hence a
conditioned system (4.1) with s � 8 and these two parameters has a
non-trivial 3-adic solution.

This proves for the last possible value of t01 if t00 = 2 that there exist a non-trivial
3-adic solution, hence t00 = 2 cannot occur if such a solution does not exist.

t00 = 3: It follows from Lemmata 47 and 49 that t11 = 0 and t01 � 1. Hence, Conclusion 2
and (8.2) forces t10 to be at least 2 and at most 4. By Conclusion 4, it follows that
t21 � 1 and hence, due to (8.3) one obtains 3 � t10 � 4. Conclusion 6 shows that
t21 = 0 and hence, again due to (8.3), t01 = 1, which contradicts Lemma 54.

t00 = 4: Again one sees with Lemmata 47 and 49 that t11 = 0 and t01 � 1. Hence, by (8.2),
the parameter t10 is at least 1 which contradicts Lemma 50.

As shown above, a conditioned system (4.1) with s � 8 which has no non-trivial 3-adic
solution cannot have t00 � 4. But as proven before the case analysis those cases with t00 � 5
do have a non-trivial 3-adic solution, hence the lemma is proven. �

As discussed at the beginning of this section, this suffices to prove Theorem 1 for p = 3.
For every other prime the theorem was proven in the previous section, hence Theorem 1 holds.
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