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Abstract
Aim: Biodiversity and ecosystem productivity vary across the globe, and consider-
able effort has been made to describe their relationships. Biodiversity and ecosystem 
functioning research has traditionally focused on how experimentally controlled spe-
cies richness affects net primary productivity (S → NPP) at small spatial grains. In con-
trast, the influence of productivity on richness (NPP → S) has been explored at many 
grains in naturally assembled communities. Mismatches in spatial scale between ap-
proaches have fuelled debate about the strength and direction of biodiversity–pro-
ductivity relationships. Here, we examine the direction and strength of the influence 
of productivity on diversity (NPP → S) and the influence of diversity on productivity 
(S → NPP) and how these vary across spatial grains.
Location: Contiguous USA.
Time period: 1999–2015.
Major taxa studied: Woody species (angiosperms and gymnosperms).
Methods: Using data from North American forests at grains from local (672 m2) to 
coarse spatial units (median area = 35,677 km2), we assess relationships between 
diversity and productivity using structural equation and random forest models, while 
accounting for variation in climate, environmental heterogeneity, management and 
forest age.
Results: We show that relationships between S and NPP strengthen with spatial 
grain. Within each grain, S → NPP and NPP → S have similar magnitudes, meaning 
that processes underlying S → NPP and NPP → S either operate simultaneously or 
that one of them is real and the other is an artefact. At all spatial grains, S was one of 
the weakest predictors of forest productivity, which was largely driven by biomass, 
temperature and forest management and age.
Main conclusions: We conclude that spatial grain mediates relationships between 
biodiversity and productivity in real-world ecosystems and that results supporting 
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1  | INTRODUC TION

One of the most prominent problems in ecology is how to describe 
relationships between biodiversity and ecosystem-level productiv-
ity (Adler et al., 2011; Balvanera et al., 2006; Cardinale et al., 2011, 
2012; Currie, 1991; Hooper et al., 2012; Mittelbach et al., 2001; 
Naeem, Duffy, & Zavaleta, 2012; Rosenzweig, 1995; Tilman, Isbell, 
& Cowles, 2014). Two fields of research with different motives 
have tried to understand causality between these variables (Loreau 
et al., 2001). The first examines how biodiversity varies across 
space as a result of different levels of productivity created by en-
vironmental variation (e.g., temperature, precipitation) and has re-
sulted in a voluminous literature on the shapes of the patterns and 
their potential underlying causality (Adler et al., 2011; Connell & 
Orias, 1964; Currie, 1991; Fraser et al., 2015; Mittelbach et al., 2001; 
Rosenzweig, 1995; Waide et al., 1999). The second aims to quantify 
changes in vital ecosystem functions, such as productivity after an-
thropogenically induced changes in diversity (Cardinale et al., 2012; 
Isbell et al., 2017; Schulze & Mooney, 1993; Tilman, 1999). As a result 
of the different perspectives on the direction of causality, there re-
mains considerable debate and confusion surrounding the relation-
ship between diversity and productivity (Grace et al., 2016), which 
is exacerbated by the differing spatial grains at which studies are 
conducted (Cardinale et al., 2011; Whittaker, 2010).

Recently, there has been growing interest in assessing biodi-
versity–ecosystem functioning (BEF) relationships in real-world, 
non-experimental ecosystems over large geographical extents, but 
probably owing to logistical constraints, relationships are typically 
measured at local spatial grains (Duffy, Godwin, & Cardinale, 2017; 
Liang et al., 2016; van der Plas, 2019). Results suggest that the posi-
tive effect of species richness on productivity and other ecosystem 
functions can be as important or more important than the effects 
of abiotic environmental drivers on productivity, suggesting that di-
versity–productivity relationships can be even stronger in real-world 

communities than in controlled experiments (Duffy et al., 2017). 
However, to understand fully the influence of diversity on produc-
tivity, and vice versa, it is crucial to recognize that traditional bivar-
iate analyses can underestimate the strength of these relationships 
by not accounting for the effects of spatial grain, in addition to those 
of biomass, shading, macroclimate and management (Cardinale, 
Hillebrand, Harpole, Gross, & Ptacnik, 2009; Grace et al., 2016; 
Loreau et al., 2001; Oberle, Grace, & Chase, 2009).

The striking mismatch between the spatial grains of BEF ex-
periments (from square centimetres to square metres; Cardinale 
et al., 2011), observational studies of BEF (from 0.04 to 1.0 ha; 
Chisholm et al., 2013; Liang et al., 2016) and macroecological di-
versity–productivity correlations (from square metres to thousands 
of square kilometres; Adler et al., 2011; Field et al., 2009; Hawkins 
et al., 2003; Mittelbach et al., 2001) further obscures comparisons 
between perspectives. However, there is a diverse array of theoreti-
cal expectations for grain dependence of the effects of productivity 
on diversity (NPP → S) and of diversity on productivity (S → NPP), 
which predict effects either to strengthen or to weaken as the spatial 
grain increases (Table 1; Gonzalez et al., 2020). For example, spatial 
turnover of species that are functionally equivalent within the re-
gional grain can offset low species richness at local grains, resulting in 
a strengthening of S → NPP with increasing spatial grain. The effects 
of NPP → S are also hypothesized to increase with spatial grain, be-
cause higher NPP is associated with greater heterogeneity at larger 
spatial grains, which enhances coexistence of more species at the 
regional grain. Moreover, other components of a community, such as 
biomass, can mediate relationships between productivity and diver-
sity via their effects on competitive dominance (Grace et al., 2016). 
These theoretical expectations have been supported by observa-
tional data for the effects of productivity on diversity (Belmaker 
& Jetz, 2011; Chase & Leibold, 2002; Mittelbach et al., 2001). In 
the case of BEF relationships (i.e., S → NPP), there is also empirical 
and theoretical support for grain dependence, which comes from a 
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predictions from each approach (NPP → S and S → NPP) serve as an impetus for 
future studies testing underlying mechanisms. Productivity–diversity relationships 
emerge at multiple spatial grains, which should widen the focus of national and global 
policy and research to larger spatial grains.
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restricted range of small spatial grains (Chalcraft, 2013; Hao, Zhang, 
Zhao, & von Gadow, 2018; Luo, Liang, Gatti, Zhao, & Zhang, 2019).

Here, we aim to address the dual nature by which productivity 
influences diversity (NPP → S) and diversity influences productiv-
ity (S → NPP) across spatial grains by combining structural equation 
models (SEMs) and random forest models (RFs) to account explicitly 
for the bidirectionality of NPP → S and S → NPP. Using SEMs, we 
propose and test hypothesis-based models (Supporting Information 
Figure S1) that estimate the direction and strength of NPP → S and 
S → NPP. Next, we use RFs, an assumption-free machine learning 
approach (Breiman, 2001; Hastie, Tibshirani, & Friedman, 2009), to 
quantify the relative importance of predictors of species richness 
and productivity. We examine both hypothesized directions of the 
relationship, along with a number of important covariates that influ-
ence both diversity and productivity, such as biomass, precipitation, 
temperature and forest age, using a comprehensive observational 
dataset of North American forests at fine (area = 672 m2; n = 46,211 

plots), medium (median area = 1,386 km2; n = 1,956 spatial units) and 
coarse spatial grains (median area = 35,677 km2; 98 spatial units). 
We specifically ask whether the influence of productivity on diver-
sity (NPP → S) was stronger or weaker than the influence of diver-
sity on productivity (S → NPP) and how these relationships manifest 
across grains in real-world ecosystems.

2  | METHODS

2.1 | Data

2.1.1 | Geographical extent and grain

We conducted analyses across the contiguous USA at three spatial 
grains (Figure 1): (a) fine grain (46,211 plots, 672 m2 or 0.000672 km2 
each); (b) intermediate grain (1,956 units, median 1,386 km2) created 

TA B L E  1   Overview of hypotheses predicting grain dependence of relationships between net primary productivity (NPP) and species 
richness (S)

No. Direction Mechanism of grain dependence
Weakens or strengthens towards coarse 
grain? Reference

I NPP → S and 
S → NPP

Spatially asynchronous demographic 
stochasticity impacts small 
populations (or small grains) and 
averages out over large grains

Both NPP → S and S → NPP strengthen 
towards coarse grains

Lande, Engen, and 
Saether (2003)

II NPP → S At larger grains, higher NPP 
is associated with increased 
heterogeneity and/or dissimilarity 
of local patches, allowing for 
greater regional coexistence

NPP → S strengthens towards coarse 
grains

Abrams (1988), Chase and 
Leibold (2002), Wright, 
Currie, and Maurer 
(1993)

III NPP → S A statistical interaction between 
NPP and grain in their effect on 
S emerges as a consequence of 
increasing occupancy with NPP

NPP → S weakens towards coarse grains Storch et al. (2005)

IV NPP → S At very large grains (thousands of 
square kilometres and larger), high 
productivity increases occupancy 
and population size, thus increasing 
the probability of reproductive 
isolation and speciation

NPP → S strengthens towards coarse 
grains

Jetz and Fine (2012)

V S → NPP Stochastic sampling effects 
dominate at small grains, resource 
partitioning at larger grains (“spatial 
insurance”), and their relative 
magnitude determines the grain 
dependence

Both strengthening and weakening 
possible

Cardinale, Ives, and 
Inchausti (2004), Loreau, 
Mouquet, and Gonzalez 
(2003)

VI S → NPP Functionally redundant species at 
intermediate or coarse grains can 
compensate for low richness at 
local grains

S → NPP strengthens towards coarse 
grains

Srivastava and Vellend 
(2005)

VII S → NPP With incomplete compositional 
turnover, proportional changes in 
larger-grain richness are always 
less than proportional changes in 
smaller-grain richness such that the 
explanatory power of richness on 
changes in functioning decreases 
with spatial scale

S → NPP strengthens towards coarse 
grains until species richness saturates

Thompson, Isbell, Loreau, 
O’Connor, and Gonzalez 
(2018)
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by aggregating U.S. counties to larger units based on the forested 
area within them (see “Spatial aggregation algorithm” below); and (c) 
coarse grain (95 units, median 35,677 km2) created by aggregating 
the intermediate-grain units further. We restricted our analyses to 
forested areas to make comparisons within and among spatial grains 
in similar ecosystems. For the intermediate and coarse grains, we 
defined an area as forested if it fell into a 1 km2 pixel with non-zero 
forest biomass, following Blackard et al. (2008).

2.1.2 | Species richness (S)

For all spatial grains, we estimated diversity as species richness (S) 
because it is the most commonly used and best understood metric 
of biodiversity, although other measures of diversity might be better 
predictors of net primary productivity (Cadotte, 2015; Paquette & 
Messier, 2011; Venail et al., 2015). We extracted S at the fine spa-
tial grain from the Forest Inventory and Analysis National Program 
(FIA) database v.1.7.0 (USDA Forest Service, 2017). We restricted 
our analysis to plots on forested land that were sampled using the 
national FIA design (plot design code 1; Burrill et al., 2018). All plots 
were surveyed between 1998 and 2016, each consisting of four cir-
cular 168 m2 subplots with a total area of 672 m2 in which all indi-
viduals larger than 12.7 cm diameter at 1.3 m were recorded and 

identified to species level. For each plot, we pooled data from all 
subplots to estimate S. In total, our final dataset included 344 woody 
species and 93,771 plots. We estimated S at the intermediate and 
coarse spatial grains by counting the number of unique woody spe-
cies in each spatial unit using data for the contiguous USA provided 
in The Biota of North America Program's (BONAP) North American 
Plant Atlas (Kartesz, 2015).

2.1.3 | Taxonomic harmonization of species names

We cleaned scientific names from the FIA and BONAP datasets and 
harmonized them to accepted species based on The Plant List (2013) 
and the Taxonomic Name Resolution Service (2018), following the 
protocol described by Meyer, Weigelt, and Kreft (2016). We included 
hybrid forms but excluded any names that could not be resolved to 
the species level.

2.1.4 | Filtering of species occurrences

We restricted our analyses to tree species that are likely to occur 
in forests. At the fine spatial grain, we included native and alien 
species. At the intermediate and coarse spatial grains, however, we 

F I G U R E  1   Maps of species richness (S), MODIS-derived net primary productivity (NPP; in grams of carbon per square metre per year) 
and biomass (in megagrams per hectare) of forests at three spatial grains across the contiguous USA. The values in all plots are on a log10 
scale [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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excluded alien species because we could not be certain whether 
they occurred in forests because many are cultivated, particularly 
in urban ecosystems (Kowarik, 2008; Pearse et al., 2018). We there-
fore filtered the BONAP data to native species classified as “trees” in 
the BONAP taxonomic query database (Kartesz, 2015). We further 
filtered out 70 county-level occurrences of five non-woody species 
from the BONAP dataset. Species woodiness was inferred from 
woodiness data (Zanne et al., 2014) and species lists of trees, shrubs 
and subshrubs (USDA NRCS, 2018), except for 37 species without 
such data, for which we inferred woodiness from online searches 
or assumed resemblance among congeneric species. We also fil-
tered out eight FIA plot-level species occurrences and 1,595 BONAP 
county-level species occurrences that we deemed unlikely to be for-
est occurrences, as inferred from independent species occurrences 
within forested pixels recorded in FIA plots and Global Biodiversity 
Information Facility (GBIF) point-occurrence records (downloaded 
via https://www.gbif.org/ on 26 September 2016; https://doi.
org/10.15468/ dl.mka2y5; Supporting Information Supplementary 
Note 1). To make species richness data internally consistent across 
the different spatial grains, we added a further 6,593 quality-vetted 
county-level forest occurrences of woody species from FIA plot re-
cords to the 282,991 occurrences in the taxonomically harmonized 
BONAP dataset.

2.1.5 | Net primary productivity (NPP)

At all spatial grains, we calculated NPP using MODIS-derived esti-
mates, which we supplemented further with plot-derived estimates 
at the fine spatial grain. Briefly, we calculated NPP using the MODIS-
derived MOD17 A3 product (Zhao, Heinsch, Nemani, & Running, 
2005; Zhao & Running, 2010), which gives annual values of NPP as 
grams of carbon per square metre per year in 30 arc-s pixels (c. 1 km2 
around the equator). Here, NPP is defined as the annual sum of daily 
net photosynthesis minus the cost of growth and maintenance of liv-
ing cells in permanent woody tissue. We averaged the annual values 
from 2000 to 2015 for each pixel, then averaged these across the 
intermediate and coarse grains. We use MODIS-derived NPP in the 
analyses presented in the main text to ensure comparability across 
spatial grains.

At the fine spatial grain, we also estimated NPP using plot-de-
rived data. For a large subset of plots in the FIA database that 
have been measured at least twice between 1999 and 2015 
(n = 46,211, on average plots re-measured every 5.8 years), we 
calculated net annual net aboveground carbon change (in grams of 
carbon per square metre per year). This was measured as the net 
change in aboveground tree carbon between two measurements 
as the sum of aboveground carbon growth of living trees, ingrowth 
by recruitment and loss from tree mortality (NPPmort; Chen & 
Luo, 2015). Tree-level carbon was estimated by multiplying tree-
level biomass (see next subsection) by .48, but we recognize that 

gymnosperms might have higher carbon content than angiosperms 
(Thomas & Martin, 2012). For plots with more than two inven-
tories, tree productivity was calculated for each period and then 
averaged. NPPmort was weakly correlated with MODIS-derived 
NPP at the fine spatial grain (r = .19), suggesting that it might cap-
ture different processes. Therefore, we provide the analyses using 
the plot-derived NPP at the fine spatial grain in the Supporting 
Information. Results concerning the strength of the S–NPP rela-
tionship were qualitatively similar for both NPP measures.

2.1.6 | Biomass (BIOMASS)

At all spatial grains, we derived biomass values using a map of above-
ground forest biomass of the USA, which is derived by modelling FIA 
plot biomass as a function of geospatial predictor variables (Blackard 
et al., 2008). This data layer had a grain of 250 m × 250 m; therefore, 
the average within each of the intermediate- and coarse-grain spatial 
units was taken.

For analyses using plot-derived NPP, we estimated tree-level bio-
mass at the fine spatial grain using generalized biomass equations 
developed for North American tree species (Chojnacky, Heath, & 
Jenkins, 2013). For each FIA plot, we calculated aboveground bio-
mass (in megagrams per hectare) as the sum of the individual bio-
mass of living trees per hectare.

2.1.7 | Number of trees (N)

At the fine scale, we estimated the number of trees directly from 
each FIA plot. For the intermediate and coarse spatial grains, we 
estimated the number of trees using a global map of tree density 
(Crowther et al., 2015). Given that the grain of the data layer was 1 
km × 1 km, average tree density was calculated within each spatial 
unit at the intermediate and coarse spatial grains.

2.1.8 | Forest age (AGE) and management 
(MANAGED)

For each plot in the fine-scale dataset, we extracted forest age and 
management history from the FIA dataset. Forest age was estimated 
using dendrochronological records (Burrill et al., 2018). Management 
regimen was a binary variable that indicated whether any forest 
management activity (e.g., harvest, thinning, tree planting) had been 
observed in any inventory or not.

At the intermediate and coarse grain, forest age was calculated 
as the average forest age from NASA NACP 1 km2 resolution layer 
(Pan et al., 2012). Management regimen at the intermediate and 
coarse grains was calculated as the proportion of managed FIA plots 
within all FIA plots that were within each spatial unit.

https://www.gbif.org/
https://doi.org/10.15468/dl.mka2y5
https://doi.org/10.15468/dl.mka2y5
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2.1.9 | Climatic variables

For all grains, we used WorldClim (Hijmans, Cameron, Parra, Jones, 
& Jarvis, 2005) bioclimatic variables at 30 s resolution. Many of the 
WorldClim variables are strongly collinear with one another or with 
other variables in the analysis (Supporting Information Table S1; 
Figure S1). Thus, only three variables that captured different aspects 
of the climate were selected: mean annual temperature (BIO1; ANN.
TEMP), mean precipitation (BIO12; ANN.PREC) and temperature sea-
sonality (BIO4; TEMP.SEAS). At the fine scale, for each FIA plot we 
extracted the values of the 30 s pixel in which the plot was found. For 
the intermediate and coarse grains, we averaged the values across all 
pixels within each spatial unit.

2.1.10 | Elevation range (ELEV.RANGE)

We used elevation range as a proxy for topographic and habitat het-
erogeneity, a variable that has been shown to be a good predictor of 
species richness (Stein, Gerstner, & Kreft, 2014). The USGS SRTM1 
dataset (USGS, 2009) with 1 s (c. 30 m × 30 m) resolution was used 
for all spatial grains. At the fine scale, we calculated a 250 m di-
ameter buffer around each FIA plot and calculated the elevation 
range using all 1 s SRTM pixels within the buffer. At the intermedi-
ate and coarse scales, elevation range was calculated as the differ-
ence between the minimum and maximum elevation points within 
each spatial unit.

2.1.11 | Species pools (S.POOL)

We calculated regional species pools for each spatial grain as proba-
bilistic dispersal pools (Karger et al., 2016). For each intermediate-
grain spatial unit and each species in our dataset, we first estimated 
the probability of the species being part of the species pool in the 
unit as the joint probabilities that dispersal might happen between 
that unit and any of the intermediate-grain occurrences of the spe-
cies within the contiguous USA. Owing to insufficient data on the 
dispersal abilities of species, we assumed that dispersal probabil-
ity between focal units and occurrences of species would decay 
with great-circle distance between the centroids of the respective 
regions. We explored five alternative exponential distance-decay 
functions, with scaling coefficients that determined the probability 
that a species occurring in neighbouring units would disperse to the 
focal unit of .975, .95, .90, .80 and .60. We chose the function with 
p = .8, which exhibited the strongest correlation between species 
pool and species richness at all spatial grains (Supporting Information 
Figure S2). Finally, we calculated species pools for each spatial unit 
as the sum of the individual probabilities for all species of disper-
sal from any of their respective occurrences. For each coarse-grain 
unit, we summed the joint probabilities of the species of dispersal 
between any of their intermediate-grain occurrences and any of the 
intermediate-grain units nested within the coarse unit. For fine-grain 

units, we assumed that their species pools would equal those of the 
intermediate-grain spatial units in which they were nested.

All of the variables used in our analyses are listed and summa-
rized in the Supporting Information (Table S1) and visualized in the 
Supporting Information (Figure S1).

2.1.12 | Spatial aggregation algorithm

Given that U.S. counties vary dramatically in their area (Supporting 
Information Figure S3), from Falls Church (VA) at 5.1 km2 to San 
Bernardino (CA) at 52,109 km2, it is difficult to assign one categorical 
grain size to county-level data. Thus, we aggregated county data for 
species richness to create new spatial units, with the goal of minimiz-
ing variation in forested area (A) between spatial units. We achieved 
this using a greedy algorithm that worked as follows:

1. Calculate variance (V1) of forested area (A) across all counties.
2. Randomly select a focal county with a probability proportional to 

1/√(A + 1), which will most probably select counties with small A.
3. Randomly choose a county adjacent to the focal county and 

merge it with the focal county.
4. Update the variance (V2) of forested area across all spatial units in 

the USA and compare it with the original variance V1.

If the V2 < V1, the algorithm accepts the merged unit and returns 
to step one. If the variance does not decrease, the algorithm repeats 
step 3 until V2 < V1, with a maximum number of attempts of 1,000. 
If the variance still does not decrease even after 1,000 attempts, the 
algorithm rejects the merge and returns to step one. The algorithm 
started with 3,107 counties, and we first terminated it when 1,956 
merged spatial units were created. We classified these spatial units 
as the intermediate spatial grain (Figure 1). We then allowed the al-
gorithm to continue until it reached 98 merged spatial units, which 
we classified as the coarse spatial grain (Figure 1). Although the al-
gorithm substantially reduced variation in area within both spatial 
grains (Supporting Information Figure S3), it did not eliminate the 
variation entirely. For this reason, we used area as a covariate in the 
statistical analyses at the intermediate and coarse spatial grains.

2.1.13 | Stratified random sampling

Large areas of the contiguous USA are environmentally homogene-
ous, whereas other parts are environmentally unique and small. We 
used stratified random sampling (Cochran, 1977) for the fine and 
intermediate spatial grains in order to (a) enhance environmental 
representativeness of the data, (b) prevent excessive statistical lev-
erage of the large number of data points from homogeneous areas, 
and (c) reduce spatial pseudoreplication (autocorrelation) by increas-
ing the geographical distance between data points. We first identi-
fied 11 strata at the fine and intermediate grains, respectively, using 
multivariate regression trees with S, NPP and biomass as response 
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variables and all covariates as predictors (Figure 1). We then took a 
random and proportionally sized sample of spatial units from each 
of the strata (fine grain, n = 1,000; intermediate grain, n = 500). We 
did not use stratified random sampling at the coarse spatial grain 
because of the small number of spatial units (n = 98). The spatial 
locations of the stratified samples are in the Supporting Information 
(Figure S4). All the analyses presented here, in addition to our main 
conclusions, are based on these stratified subsamples of the data.

2.1.14 | Data transformation and standardization

Before analysis, species richness, biomass, N, NPP and area were 
natural log-transformed to meet normality assumptions of the 
standardized major-axis regressions and SEMs.

2.2 | Data analyses

We quantified simple bivariate relationships between diversity 
and productivity for each spatial grain using standardized major-
axis regression with the “sma” function in the R package “smatr” 
(Warton, Duursma, Falster, & Taskinen, 2012). We then used two 

complementary statistical approaches to assess the impacts of di-
versity and productivity and vice versa while simultaneously ac-
counting for covariates that influence both.

First, we fitted SEMs, which allow the assessment of indirect 
effects, including feedback loops, address causality and take into 
account potential collinearity among covariates (Grace, Anderson, 
Olff, & Scheiner, 2010; Shipley, 2016). The paths in our candidate 
SEMs were based on previous evidence of causal links between S, 
biomass and NPP (Figure 2; Grace et al., 2016). Second, to gain a 
better understanding of the relative importance of each variable in 
explaining variation in the response variables within models, we fit-
ted random forest models (RFs) (Hastie et al., 2009). The results from 
SEMs provide insight into differences among models (i.e., between 
the two causal pathways per spatial grain, and among spatial grains), 
whereas results from RFs provide additional insights into the relative 
importance of different predictor variables within models.

2.2.1 | Structural equation modelling

To test the relative importance of S → NPP and NPP → S, we fit-
ted two SEMs per spatial grain. For each SEM, we started with a 
“saturated” model, which included the relationships between S, NPP 

F I G U R E  2   Hypothetical causal models for structural equation models (SEMs) testing the relative importance of species richness (S) on 
net primary productivity (NPP; S → NPP; a) and NPP on S (NPP → S; b) in forests across the contiguous USA at three spatial grains. Paths 
in colour represent possible ecological mechanisms influencing the direction of the relationship; red paths represent complementarity 
effects (c), dark blue paths represent “species–energy” relationships (e), light blue paths represent sampling (or niche) effects (Sa) and 
orange paths represent biomass accumulation (B). Black paths are relationships of additional covariates with S, NPP and BIOMASS and are 
not hypothesized to occur in a particular direction. AGE is forest age, ANN.PREC is mean annual precipitation, ANN.TEMP is mean annual 
temperature, ELEV.RANGE is elevation range, MANAGED is forest management, N is the number of individuals, S.POOL is the regional 
species pool, and TEMP.SEAS is temperature seasonality. At the intermediate and coarse spatial grains, we added AREA to the SEMs to 
account for differences in the area of spatial units. S, BIOMASS, NPP and AREA were natural logarithmically transformed before analysis 
[Colour figure can be viewed at wileyonlinelibrary.com]
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and biomass, and relationships of all additional covariates on S, NPP 
and biomass (except for area at the fine spatial grain) (Figure 2). The 
S → NPP model evaluated how S directly affects NPP and how NPP 
indirectly affects S via biomass and, therefore, included a feedback 
loop. The NPP → S model tested the direct effect of NPP on richness 
and, unlike the S → NPP model, did not include a feedback loop. This 
way, we tested the direct effect of S on NPP (S → NPP model), the 
direct effect of NPP on S (NPP → S) and the indirect effect of NPP 
on S (included in both models).

Model fit can be tested only on unsaturated models (i.e., those 
that have at least one missing path). Therefore, we removed the path 
with the lowest standardized path coefficient from the model. Given 
that SEMs had an equal number of paths, we could compare model 
fit across all models within each spatial grain using their unadjusted 
R2 values. After excluding the additional paths, path coefficients of S, 
NPP and biomass remained qualitatively the same, and model fits to 
the data were still accepted (chi-square test; p > .05). This indicates 
that the models are identifiable and their results robust. Therefore, we 
did not reduce the model further, and models maintained the same 
number of paths within each scale. Given that models at the fine spa-
tial grain including the number of individuals (N) did not fit the data 
well (p < .05), we excluded this variable. Models at the intermediate 
and coarse spatial grains including N fitted the data well (p > .05), but 
we present models without N for consistency with the fine spatial 
grain and because the sampling effects captured by N are also cap-
tured by area.

To assess the differences among scales in the relationships 
between S, NPP and biomass for each model, we compared the 
standardized regression coefficients using their 95% confidence in-
tervals. All SEMs were fitted using the “sem” function of the “lavaan” 
package in R (Rosseel, 2012).

2.2.2 | Random forest models

To assess the relative importance of each variable in predicting the 
response variables within models, we used RFs (Breiman, 2001; 
Hastie et al., 2009; Liaw & Wiener, 2002). We used the “random-
Forest” function in the R package “randomForest”, with all RFs pro-
duced using the default settings: 500 trees, one-third of predictors 
sampled in each tree, sampling with replacement of the entire data-
set, and terminal node size of five.

At each of the three spatial grains we fitted two RFs, one with 
S as a response variable and the other with NPP as a response vari-
able. All predictors that were used in the SEMs were used in the 
RFs (including biomass). To quantify the relative importance of each 
predictor, we calculated the mean decrease of squared error across 
all 500 trees using the “importance” function. The importance val-
ues were then scaled between zero and one, with one being the 
most important predictor. Using the function “partialPlot”, we ex-
tracted the partial responses of S and NPP to visualize the rela-
tionship between the two variables after accounting for all other 
covariates.

2.2.3 | Nonlinear responses and spatial 
autocorrelation

Structural equation models offer the advantage of modelling com-
plex, causal relationships (Grace et al., 2010; Shipley, 2016), but 
they can be difficult to fit to data with nonlinear responses or spa-
tial pseudoreplication. Although it is possible to model nonlinearity 
in SEMs (e.g., using polynomials; Grace et al., 2010; Shipley, 2016), 
this often comes at the cost of interpretability. A similar problem ap-
plies when it comes to another prevalent problem of observational 
geographical data: spatial autocorrelation, which statistical models 
have so far addressed by modelling it either in residuals or in the 
response (Dormann et al., 2007). However, because of the causal 
loop in the SEMs (Figure 2), the key response variables are also pre-
dictors, which prevented us from estimating spatial autocorrelation. 
In our analyses, we account for these issues in the following manner:

1. In the SEM analyses, we keep the relationships linear, given 
the approximately linear pairwise relationships between the raw 
NPP, S and biomass data (Supporting Information Figures S5–S7).

2. In the SEM analyses, we do not model spatial autocorrelation 
directly.

3. We address spatial autocorrelation in the random forest analysis 
by allowing the algorithm to model smooth geographical trends in 
the response (by including the X and Y spatial coordinates as pre-
dictors), and we measure spatial autocorrelation in the response 
and in residuals.

4. We allow the random forest analysis to detect nonlinear 
responses.

2.2.4 | Reproducibility

All data on species richness, biomass, NPP, covariates, and R code 
used for the data processing and analyses are available on Figshare 
(https://doi.org/10.6084/m9.figsh are.5948155) under a CC-BY 
license.

3  | RESULTS

Spatial patterns in productivity (NPP) and richness (S) emerged at 
coarser spatial grains, with higher S and NPP usually observed in the 
eastern USA than in the western USA (Figure 1). Biomass, a time-
integrated measure of NPP that also influences diversity, also ex-
hibited similar patterns (Figure 1). Bivariate relationships between 
S and NPP exhibited scale dependence (Figure 3). Although not sig-
nificantly correlated at the fine spatial grain (standardized major-axis 
regression: R2 = .00, p = .73), S and NPP were significantly correlated 
at the intermediate (standardized major-axis regression: R2 = .15, 
p < .001) and coarse (standardized major axis-regression: R2 = .35, 
p < .001) spatial grains. The slope of S–NPP increased from 0.86 
(95% confidence intervals: 0.80, 0.94) at the intermediate spatial 

https://doi.org/10.6084/m9.figshare.5948155
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grain to 1.23 (95% confidence intervals: 1.05, 1.45) at the coarse spa-
tial grain. Similar patterns were observed when using plot-derived 
estimates of NPP at the fine spatial grain (Supporting Information 
Figure S8).

3.1 | Structural equation models

We examined relationships between species richness and NPP 
across spatial grains using two SEMs for each spatial grain: the 
first (S → NPP) testing the direct effect of S on NPP and the indi-
rect effect of NPP on S (via biomass), and the second (NPP → S) 
testing both the direct and indirect effects of NPP on S (Figure 4). 
In both SEMs, environmental variables (e.g., mean annual precipi-
tation, mean annual temperature, temperature seasonality and 
elevation range), size of the species pool, forest age and manage-
ment were used to explain variation in S, biomass and NPP. At the 
intermediate and coarse grains, we also included the area (of each 
spatial unit) to account for variation in species richness attribut-
able to sampling effects.

Both models fitted the data well for all spatial grains (p-value 
of the chi-square test > .1; Supporting Information Table S2). At 
each spatial grain, both SEMs had similar R2 values averaged over 
S, biomass and NPP, indicating a similar fit of the model to the data. 
The R2 values for both SEMs increased with spatial grain, from .21 
at the fine grain to .56 at the intermediate grain and 0.85 at the 

coarse grain. Generally, the strengths of effects of S → NPP and 
NPP → S were similar within each spatial grain, but both increased 
in strength with increasing spatial grain (Figures 4 and 5). At the 
fine spatial grain, we did not find a detectable direct effect of 
S → NPP (Figure 4a) or NPP → S (Figure 4d), and found effectively 
a null indirect effect of NPP on S via biomass (standardized path 
coefficient of indirect effect = −0.002; Figure 4a). At the inter-
mediate spatial grain, we found a direct effect of S on NPP (stan-
dardized path coefficient of direct effect = 0.11, Figures 4b and 5) 
of similar strength to NPP on S (standardized path coefficient of 
direct effect = 0.24; Figures 4e and 5) and weak indirect effects 
of NPP on S via biomass (standardized path coefficient of indirect 
effect = 0.04; Figure 4b). Likewise, at the coarse spatial grain we 
found strong direct effects of S on NPP (0.42; Figures 4c and 5) 
and of NPP on S (0.47; Figures 4f and 5) and weak indirect effects 
of NPP on S via biomass (standardized path coefficient of indirect 
effect = 0.08; Figure 4c).

Overall, the SEMs suggest that the productivity–diversity rela-
tionship increases in strength with spatial grain, and both relation-
ships (S → NPP and NPP → S) explain similar amounts of variation. 
At all spatial grains, our SEMs do not conclusively show stronger 
support for one direction of causality over the other. Similar pat-
terns were observed when using plot-derived estimates of NPP 
(Supporting Information Figure S9; Table S2), except for the di-
rection of direct effects of S on NPP and NPP on S, which was 
negative.

F I G U R E  3   Bivariate relationships 
between observed species richness (S) 
and net primary productivity (NPP) of 
forests at three spatial grains across 
the contiguous USA. Continuous lines 
are standardized major-axis regressions 
fitted at each spatial grain with 
statistically significant slopes (p < .05), 
and dashed lines are standardized major-
axis regressions with non-significant 
slopes (p > .05). Shaded areas are 95% 
confidence intervals. NPP is MODIS 
derived at all spatial grains. Note that 
axes are on the natural logarithmic scale. 
Analyses were performed using stratified 
random samples of 1,000, 500 and 98 
spatial units at the fine, intermediate and 
coarse spatial grains, respectively [Colour 
figure can be viewed at wileyonlinelibrary.
com]
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3.2 | Random forest models

To assess the relative importance of each predictor of species rich-
ness and NPP and to provide an assumption-free alternative to the 
SEMs that also accounts for spatial autocorrelation, we fitted two 
RFs for each of the three spatial grains: one with NPP and the other 
with S as the response variable. We found that species richness was 
one of the weakest predictors of NPP relative to other predictors at 
all spatial grains (Figure 6a), with management, forest age, MAP and 
biomass being the most important predictors (Figure 6a). The over-
all explained variation of NPP also increased from the fine to the 
two coarser spatial grains, from .64 at the fine spatial grain to .89 
at the intermediate spatial grain and .88 at the coarse spatial grain.

We found that NPP was an important predictor of S (with a 
positive effect) only at the intermediate spatial grain (Figure 6b) 
but was less important relative to other predictors at fine and 
coarse spatial grains. For S, we found that species pool, mean 

annual temperature and precipitation, and forest age were the 
best predictors, and their importance increased towards coarse 
spatial grains (Figure 6). In line with the SEM analyses, the overall 
explained variation of S increased towards coarse spatial grains, 
from .39 at the fine grain to .55 at the intermediate grain and .87 
at the coarse grain (for predicted versus observed values, see 
Supporting Information Figure S10).

In all RF analyses, there is a clear east–west spatial component in 
both S and NPP (represented by the X coordinate in Figure 6), which 
was not explained by any of the other predictors. This spatial com-
ponent was stronger for NPP than for S. Residual autocorrelation 
in all of the RFs was negligible (Supporting Information Figure S11). 
Finally, we also fitted all the RFs with local plot-derived measures 
of productivity (as an alternative to the MODIS-derived productiv-
ity used in the main analyses), showing that the strengths of the S–
NPP relationships were similar across all NPP measures (Supporting 
Information Figure S12).

F I G U R E  4   Structural equation models (SEMs) testing the influence of diversity (S) on net primary productivity (NPP; S → NPP; a–c) and 
that of NPP on S (NPP → S; d–f), after controlling for environmental variables (e.g., mean annual precipitation, mean annual temperature, 
temperature seasonality and elevation range), size of the species pool, forest age and management, in forests across the contiguous USA at 
three spatial grains. All models fitted the data well at all spatial grains (p-value of the chi-square test >.1; Supporting Information Table S1). 
Boxes represent measured variables and arrows represent relationships among variables. Continuous blue and red arrows represent 
significant (p < .05) positive and negative standardized path coefficients, respectively, and their width is scaled by the corresponding 
standardized path coefficient. Continuous and dashed grey arrows represent non-significant (p > .05) positive and negative standardized 
path coefficients, respectively. R2 is the average of R2 values for S, BIOMASS and NPP. NPP is MODIS derived at all spatial grains. AGE is 
forest age, ANN.PREC is mean annual precipitation, ANN.TEMP is mean annual temperature, AREA is area, ELEV.RANGE is elevation range, 
MANAGED is forest management, S.POOL is the regional species pool, and TEMP.SEAS is temperature seasonality. S, BIOMASS, NPP and 
AREA were natural logarithmically transformed before analysis [Colour figure can be viewed at wileyonlinelibrary.com]
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4  | DISCUSSION

The first important result is the similar magnitude of the S → NPP 
(Grace et al., 2016) and NPP → S (Hawkins et al., 2003; Mittelbach 
et al., 2001; Šímová et al., 2011) relationships at all grains. This re-
flects, in part, that both productivity and species richness have 
many environmental and geographical drivers in common (Lavers 
& Field, 2006), which complicates distinguishing correlation from 
causation, even when using SEMs (Grace et al., 2010; Shipley, 2016). 
There are two possible interpretations of this result. It might indicate 
that the causal effects of diversity on productivity and the causal 
effects of productivity on diversity operate simultaneously, which 
was suggested by Grace et al. (2016) but never demonstrated on ob-
servational data from large spatial grains. Alternatively, if only one 
direction of the diversity–productivity relationship is real and causal, 
it might be possible to fit another model assuming the opposite di-
rection because of multicollinearity in the data or non-identifiability 
of the causal direction (Petersen & van der Laan, 2014). Without 
large-grain experiments that manipulate diversity in ways that mimic 
biodiversity change (i.e., species gains and losses) in real-world 
ecosystems (Gonzalez et al., 2020; Hillebrand et al., 2018; Loreau 
et al., 2001; Manning et al., 2019; Wardle, 2016), we see little hope 
for resolving this with contemporary data and approaches.

Our second important result is that both S → NPP and NPP → S 
strengthen from the fine to the intermediate grain, and in the case 
of the SEM both relationships continue strengthening towards 
the coarsest grain. Although grain-dependent shifts are often 
expected (Table 1), this had not been shown previously with em-
pirical data for S → NPP using spatial grains coarser than several 

hectares (Chisholm et al., 2013; Hao et al., 2018; Luo et al., 2019). 
If the S → NPP direction is the causal direction, then our results 
from SEM and RF analyses support several theoretical expecta-
tions (Table 1) and give further impetus to efforts quantifying 
biodiversity effects in naturally assembled ecosystems at broad 
spatial scales (Isbell et al., 2018). If the NPP → S direction is the 
causal direction, then our results are in line with Lavers and Field 
(2006) and Field et al. (2009) but contrast with Storch, Evans, and 
Gaston (2005) and Belmaker and Jetz (2011), particularly when 
scaling up from the fine grain to intermediate grain, where both 
the SEM and RF analyses give congruent results. Intriguingly, a 
third possibility is that both NPP → S and S → NPP are real and that 
they operate simultaneously. In this case, we are unaware of any 
theory that considers how this reciprocal relationship would be 
expected to change with increasing spatial grain. The one caveat 
applicable to interpreting any direction of diversity–productivity 
relationships is that of demographic stochasticity (mechanism I in 
Table 1), which might weaken both NPP → S and S → NPP, or their 
synergistic interplay, at fine spatial grains. In our study, the strong 
local effect of demographic stochasticity appears plausible given 
the small area of the forest plots (672 m2) and small population 
sizes (12.24 ± 0.02 trees per plot; range = 1–157 trees per plot) 
therein. This would suggest that temporal changes in local-scale 
biodiversity (Dornelas et al., 2014; Magurran et al., 2018) might 
have under-appreciated effects on ecosystem function (Bannar-
Martin et al., 2018).

The third key result is that other predictors, such as temperature 
and biomass, were particularly influential in all our analyses. That is, 
the grain dependence of the relationship between S and NPP was 

F I G U R E  5   Direct effects of diversity 
on net primary productivity (S → NPP) 
and productivity on diversity (NPP → S) 
estimated with structural equation models 
(SEMs) in forests across the contiguous 
USA at three spatial grains. Points are 
standardized path coefficients and 
continuous lines are 95% confidence 
intervals [Colour figure can be viewed at 
wileyonlinelibrary.com]
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coupled with a clear increase in the combined effect of annual tem-
perature and precipitation on both S and NPP towards coarse grains, 
which supports the notion that temperature-dependent diversifica-
tion (Allen, Brown, & Gillooly, 2002; Rohde, 1992), niche conserva-
tism (Qian & Ricklefs, 2016) or ecological limits (Šímová et al., 2011) 
shape diversity at these spatial grains. The weaker (relatively to 
temperature) effect of precipitation is expected because we focus 
on forests, which only grow above certain precipitation thresholds 
(Whittaker, 1975). The clear importance of temperature, biomass, 
longitude and other predictors, such as forest age, temperature 
seasonality or species pool (Figures 4 and 6), highlights that even 
when the NPP → S relationship holds across grains, other drivers 
are considerably more important in predicting both (e.g., Ratcliffe 
et al., 2017). Hence, integration of the environmental context 

surrounding ecological communities into modelling diversity–pro-
ductivity relationships is a necessary step towards making robust 
predictions of either biodiversity or ecosystem functioning at any 
spatial grain.

Our results reveal that mechanisms associated with one direc-
tion of diversity–productivity relationships might provide insight 
into observed patterns of either direction, despite initially being 
formulated at a different spatial grain. For example, the strong ef-
fect of the east–west spatial coordinate on both S and NPP at the 
fine spatial grain (Figure 6) suggests that biogeographical history 
might play a role in shaping the diversity and ecosystem function-
ing of plant communities, which was initially tested at larger spa-
tial grains (e.g., Conradi, Meerbeek, Ordonez, & Svenning, 2020; 
Hawkins, Rodríguez, & Weller, 2011). Increasingly, macroecological 

F I G U R E  6   Relative variable importance from random forest models explaining (a) MODIS-derived net primary productivity (NPP) and 
(b) species richness (S) at three spatial grains. Relative variable importance is the mean decrease in squared error caused by each of the 
variables, rescaled such that it sums up to the total pseudo-R2 of the whole random forest model. The curves in the insets show shapes of 
the marginal responses of ln NPP or ln S after accounting for all the covariates. AGE is forest age, ANN.PREC is mean annual precipitation, 
ANN.TEMP is mean annual temperature, ELEV.RANGE is elevation range, lnAREA is area of the spatial unit, lnBIOMASS is biomass, 
lnN is the number of individuals, lnNPP is MODIS-derived NPP, MANAGED is forest management, S.POOL is the regional species pool, 
TEMP.SEAS is temperature seasonality, and Y and X are latitudinal and longitudinal coordinates of the U.S. National Atlas projection. For 
explanation of variables, see the Supporting Information (Table S1) [Colour figure can be viewed at wileyonlinelibrary.com]

(a)

(b)
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mechanisms, such as speciation gradients (Schluter & Pennell, 2017) 
and water–energy variables, are being examined in small-grain ex-
perimental grasslands to explore their role in mediating niche-based 
processes (Zuppinger-Dingley et al., 2014) and biodiversity effects 
(Wagg et al., 2017), respectively. Likewise, efforts to scale up the 
effects if biodiversity on productivity, developed initially to iden-
tify local-scale mechanisms (Loreau & Hector, 2001; Turnbull, Isbell, 
Purves, Loreau, & Hector, 2016), might identify new mechanisms 
that underpin spatial variation in ecosystem functioning at large spa-
tial scales (Gonzalez et al., 2020). An emerging challenge to these ef-
forts is the creation of data products that capture similar processes 
across spatial scales and are independent (Supporting Information 
Supplemental Note 2; Table S3); many of the variables used in the 
present study share similar data sources (e.g. MODIS and LANDSAT 
sensors) but are ultimately derived from different types of interme-
diate products. Rather than focusing uniquely on the direction and 
strength of S–NPP after accounting for other factors, our results 
show that mechanisms associated with S → NPP and NPP → S are 
likely to underpin the context dependence of diversity–productivity 
relationships across spatial grains (Table 1). These recent develop-
ments in BEF research and macroecology suggest that conceptual 
integration between these two disciplines is only beginning (Craven 
et al., 2019). Nevertheless, further efforts to bridge disciplinary gaps 
are essential to deepen current understanding of mechanisms that 
underpin the shifts in diversity–productivity relationships across 
spatial scales.

To conclude, we show that the relationship between diversity 
and productivity strengthens toward coarse grains. This result is in 
line with expectations from BEF theory and some (but not all) ex-
pectations from macroecological studies on NPP → S and highlights 
the potential of demographic stochasticity and sampling effects to 
distort or mask diversity–productivity relationships at fine grains. 
Moreover, we found similar support for both directions of diver-
sity–productivity relationships across spatial grains, but could not 
distinguish between causation and correlation because productivity 
and species richness share many environmental and geographical 
drivers. Future research on this relationship needs to move from 
fine-grain experiments and observational studies to coarse grains in 
order to understand fully and predict the impacts of anthropogenic 
biodiversity change on ecosystem function.
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