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Abstract: Faba bean (Vicia faba) is a grain legume, which is globally grown for both human
consumption as well as feed for livestock. Despite its agro-ecological importance the usage of
Vicia faba is severely hampered by its anti-nutritive seed-compounds vicine and convicine (V+C).
The genes responsible for a low V+C content have not yet been identified. In this study, we aim to
computationally identify regulatory SNPs (rSNPs), i.e., SNPs in promoter regions of genes that are
deemed to govern the V+C content of Vicia faba. For this purpose we first trained a deep learning
model with the gene annotations of seven related species of the Leguminosae family. Applying
our model, we predicted putative promoters in a partial genome of Vicia faba that we assembled
from genotyping-by-sequencing (GBS) data. Exploiting the synteny between Medicago truncatula and
Vicia faba, we identified two rSNPs which are statistically significantly associated with V+C content.
In particular, the allele substitutions regarding these rSNPs result in dramatic changes of the binding
sites of the transcription factors (TFs) MYB4, MYB61, and SQUA. The knowledge about TFs and
their rSNPs may enhance our understanding of the regulatory programs controlling V+C content of
Vicia faba and could provide new hypotheses for future breeding programs.
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1. Introduction

New methods in the field of genome sequencing—commonly summarized as next generation
sequencing (NGS)—offer cost-effective strategies to produce massive amounts of sequencing data.
One of these methods is genotyping-by-sequencing (GBS), which is an efficient method to obtain
genome-wide genotype data for any species [1]. The characteristic feature of GBS is the reproducible
generation of short genomic fragments using known restriction enzymes. Thanks to its easy
applicability, GBS is currently the method of choice in the field of plant sciences since it makes
plants without reference genome amenable to genomic analysis. Several groups have applied GBS to
obtain high-quality genome-wide SNP markers. These markers have often been used for applications
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like GWAS, marker-assisted selection, breeding value estimation in genomic prediction, analysis
of high density genetic maps, or assessment of population dynamics in plant genomics and plant
breeding [2–10]. Another remarkable feature of GBS has been highlighted by Elshire et al. [11], namely
that it made the analysis of regulatory regions of genes such as promoters feasible. Despite the
growing interest in the analysis of GBS sequenced reads, this capacity of GBS has been poorly studied.
This sequencing approach is particularly important for crop species which still often lack a reference
genome sequence such as Vicia faba. The capacity of GBS to generate sequences of regulatory regions
could be used for the prediction of such regions, e.g., promoters, in Vicia faba.

The faba bean is an Old World grain legume, which is grown both for combine harvested feed
and as vegetable crop for human consumption. It is diploid with 2x = 12 very large chromosomes.
Due to its large size of 13 Gbp [12], there is thus far no sequenced and annotated reference genome
available for this plant. Despite its agro-ecological importance (N-symbiosis, rotation hygiene, and
pollinator support) [13] it is a crop of limited importance in many countries. This is mainly caused by
its anti-nutritive seed-compounds vicine and convicine, which are co-occurring pyrimidine glycosides
(in the following termed V+C) and have negative effects to animals such as laying hens, broilers and
piglets, but also to 400 million humans suffering from G6PD deficiency [14,15]. The V+C content is
a factor that severely limits the wider usage of Vicia faba as feed for animals and food for humans.
Breeding V+C-poor varieties and production and marketing of their fruits could have a range of
positive effects including e.g., reduction of environmentally critical soya bean imports into Europe
and Northern America, fostering of regional production methods, and avoidance of energy intensive
transports. To date, the location of the gene controlling the V+C content could only be restricted
to a region on chromosome 1 of Vicia faba that exhibits conserved synteny with chromosome 2 of
the related species Medicago truncatula between the Medicago truncatula genes Medtr2g008210 and
Medtr2g010180 [14,16].

The promoter of a gene is the region immediately around its transcription start site (TSS) as well
as further upstream of it. The promoter contains multiple elements that allow the binding of the
RNA polymerase II (Pol II) along with transcription factors (TFs), thus controlling the transcription
of the associated gene. Due to their impact on the gene regulation the SNPs located in the promoter
regions that affect the transcription factor binding sites (TFBSs) are commonly called regulatory
SNPs (rSNPs). Today it is well known that these rSNPs may be causal for the phenotype and
could therefore possibly provide prime candidates useful for breeding programs or marker-assisted
selection [17–22]. Despite the rich literature on the analysis of promoters, their prediction remains
a challenging task due to their complex and diverse structure. Until now, different machine learning
approaches have been developed, which form the core of most computational prediction methods
for promoter regions. Whereas in early works the emphasis was on the identification of specific
promoter elements (such as TATA boxes, initiator elements (Inrs), downstream promoter elements
(DPE) and others) or extraction of k-mer distributions [23–30], nowadays a more holistic approach
is given preference in that whole genomic regions are examined in Convolutional Neural Networks
(CNNs), which have been successfully applied in many species [31–36].

A large scale genome-wide key study has been conducted by Kumari et al. for the prediction and
analysis of core promoter elements (CPEs) across plant monocots and dicots [37]. For this purpose,
CPEs of four monocots and four dicots were comprehensively analyzed and compared to establish the
common as well as the specific properties of CPEs in promoter sequences. The results obtained in [37]
are, on the one hand, promising to enhance the limited knowledge available about the differences
between dicots and monocots with respect to their CPEs. On the other hand, they contributed to
gain novel insight into the plant promoter sequence architectures and showed that some promoter
signatures are strongly conserved within larger groups of plants like monocots or dicots. Based on
these findings, Shahmuradov et al. developed a model, namely TSSPlant, for the prediction of plant
Pol II promoters across species boundaries [38].
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In line with the studies of Kumari et al. [37] and Shahmuradov et al. [38] we designed an analysis
workflow for the prediction of promoter sequences as well as rSNPs of Vicia faba in this study. For this
purpose, we first trained a CNN model using the known promoter sequences of seven plants of the
Leguminosae family. Second, using GBS sequence reads of 20 Vicia faba lines with known V+C content,
we assembled a de novo draft partial genome. Thereafter, we called the genomic variants by aligning
the GBS reads to the partial genome to obtain high quality SNPs for candidate gene association studies.
Next, applying our CNN model to the partial genome sequences, we have predicted the potential
promoter sequences of Vicia faba. Finally, we analyzed the SNPs in these promoter sequences that
were associated with the V+C content of Vicia faba regarding their effect on the binding affinity of TFs.
Our results show that 2.46% of the assembled sequences were predicted to be promoters. We found
14 regulatory SNPs that could be mapped to the syntenic Medicago truncatula region harbouring the
major gene for low V+C content [14,16]. These findings could be of use to increase our understanding
of the regulation of the V+C content and could provide novel genomic targets for future breeding
strategies of V+C poor Vicia faba varieties.

2. Materials and Methods

2.1. Plant Material and Sequencing

In total, 20 inbred lines of Vicia faba were selected of which six had low V+C content and 14 had
high V+C content (see Supplementary Table S5). The lines were inbred via single-seed descent from
cultivars, from a gene-bank accession, from biparental crosses or from a landrace and include winter
and spring types. DNA was extracted from the grains of the plants. Two pooled grains were used
per line. DNA extraction was done with LGC’s sbeadex livestock kit following the lysis protocol L
for plant tissue. Genotyping-by-sequencing was carried out on the Illumina NextSeq 500 V2 platform.
The DNA was digested with the restriction enzyme MslI (recognition sequence: CAYNN^NNRTG).
Per sample ∼3 million 150 bp paired end reads were obtained. Then sequencing adapter remnants
were clipped and reads whose 5′ ends did not match the restriction enzyme site were discarded.
The sequencing and filtering was performed by LGC Genomics GmbH (Berlin, Germany).

2.2. Assembly of a Partial Vicia faba Genome

Following the de novo assembly strategies used in [39,40], we applied the de novo assembler
Trinity [41] to the GBS sequence reads for the construction of a partial genome for Vicia faba. In total,
694,605 contigs with an average length of 236 bp were constructed. To filter out redundant contigs,
we clustered the contigs with CD-HIT [42] using a threshold of 95.0% for sequence identity.

2.3. Variant Calling and Association Testing

Following the variant calling pipeline outlined in [43], we mapped the sequence reads onto
the partial genome using Bowtie2 [44]. The variant calling was done with SAMtools mpileup [45].
We excluded structural variants such as insertions and deletions as well as non-biallelic SNPs yielding
1,880,592 SNPs. Low quality SNPs with a quality score of lower than 400 were excluded using PLINK
1.9 [46]. The association between candidate SNPs and the V+C content was tested with PLINK using
a 1df chi-squared allelic test. To control the type I error rate we set the false discovery rate (FDR) to 0.1.

2.4. Data Sets for Training the Neural Network

Mainly considering the members of the Leguminosae family, we used in our analysis seven
species (Glycine max, Lupinus angustifolius, Medicago truncatula, Phaseolus vulgaris, Trifolium pratense,
Vigna angularis, and Vigna radiata) that have a complete and annotated reference genome sequence
available. To further establish the cross-species promoter prediction performance of our CNN model
with a more distant plant, we also chose to include in our analysis the model species Arabidopsis
thaliana. Following [31,33], we extracted for each species their core promoter sequences covering
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the −200 bp to +50 bp regions relative to the transcription start sites (TSSs) of protein coding genes
from the Ensembl Plants database (release 45) [47] using BioMart [48]. Simultaneously, the sequences
covering [TSS+751,TSS+1000] from the core gene region of the genes were extracted, as non-promoter
sequences. Sequences that were not assigned to a chromosome or which contained ambiguous bases
were not considered.

Currently, due to the absence of an annotated reference genome, there is only scarce knowledge
about the promoter sequence architecture in Vicia faba. Hence, it is still challenging to determine
characteristic signatures of Vicia faba promoters that distinguish them from non-promoter regions.
To eliminate this lack of knowledge to some extent and to enhance the distinction of promoters
vs. non-promoters in Vicia faba, the consideration of additional non-promoter sets is important.
Consequently, we included two further sets of sequences of length 250 bp as non-promoters in
our analysis. While the first set was randomly extracted from the Medicago truncatula reference genome
by excluding the region [TSS-1000,TSS+500], the second set was sampled from the Vicia faba reference
transcriptome V2 which was downloaded from the Pulse Crop Database [49]. The final number of
sequences for each data set can be found in Table 1.

Table 1. Number of promoter and non-promoter sequences in the sets that were used as training sets.

Species # Promoter Sequences # Non-Promoter Sequences

Arabidopsis thaliana 23,315 23,315
Glycine max 46,199 46,199

Lupinus angustifolius 23,463 23,463
Medicago truncatula 32,158 32,158
Phaseolus vulgaris 22,750 22,750
Trifolium pratense 14,749 14,749
Vigna angularis 19,584 19,584

Vigna radiata 15,495 15,495
Medicago truncatula (Genome-wide) - ∼12,000

Vicia faba (Transcriptome) - ∼60,000

2.5. Sequence Features Used to Predict Promoters

In line with previous studies [33,38], we used a variety of additional features to characterize
promoter sequences as precisely as possible. We have determined the distribution of the following
features for the sequence sets listed in Table 1:
Feature 1: Frequency of the dinucleotides CA and CG
Feature 2: Frequency of the TATA motif
Feature 3: CG-skew of sequences (CGskew = #C−#G

#C+#G where #C and #G refer to the counts of nucleotides
C and G in the sequences)
Feature 4: Frequency of k-mers using different values for k
Information theory based features: we included in our analysis two additional features, namely the
Horizontal Mutual Information (HMI) and the Generalized Topological Entropy (GTE).

The HMI is calculated based on a predefined distance d between two positions in a sequence and
provides a measure of auto-covariation between the nucleotides of interest [50].

HMI(d) = ∑m={A,C,G,T}∑n={A,C,G,T} pmn(d) · log
pmn(d)

pm(d)pn(d)
, (1)

where pm(d), pn(d) and pmn(d) refer to the marginal and joint probabilities of the nucleotides being d
bp apart. A high value of HMI(d) indicates a strong correlation between the nucleotides regarding
their distance d.

Entropy is a measure to reflect the complexity of sequences. It has been used to characterize
the randomness of DNA sequences [51]. More specific varieties of entropies such as the GTE have
been successfully applied in [52,53] to explore and to compare the complexity of introns, exons,
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and promoter regions. Based on the findings of these studies, we included GTE as an additional feature
in our analysis which could provide an important information.

Let ω be a DNA sequence of length |ω| and let nω be the unique integer such that 4n + n− 1 ≤
|ω| < 4n+1 + (n + 1) + 1. Then the GTE is defined as

Hk
nω
(ω) =

1
k

nω

∑
i=nω−k+1

log4(pω(i))
i

(2)

where pω(i) refers to the number of unique sub-sequences of length i that appear in ω. We set k = nω

to consider sub-sequences of all possible lengths.

2.6. Convolutional Neural Networks

Our proposed model follows a CNN architecture, which is nowadays one of the most popular
neural network architectures [54]. Using convolutional layers as its core elements, a CNN is able to
automatically learn local as well as global features from the data layer-wise by applying a convolution
operation and by encoding specific aspects of the data [55–57]. Within a layer, an array of stacked
weight matrices of dimension W × H × D, where W, H, and D correspond to the width, height,
and depth of the array, respectively, is moved spatially across the input data [31,34]. At every possible
position, the summed element-wise product between the weight matrices and a subset of the input is
calculated and a corresponding feature map is computed.

The structure of the network that was used is illustrated in Figure 1. The input of the network
is formed by a sequence of nucleotides of length 250 bp where each nucleotide is encoded into
a one-hot representation and expressed by a four-dimensional vector, with A encoded as (1, 0, 0, 0),
C as (0, 1, 0, 0), G as (0, 0, 1, 0), and T as (0, 0, 0, 1). As can be seen in Figure 1, the network is composed
of four 1D-convolutional layers followed by a flattening layer, two fully-connected layers and an
output layer. All convolutional layers are implemented using a ReLU activation, a stride parameter
of 2, zero-padding and a filter size of 21. The first layer uses 64 filters, whereas the second, third and
fourth layers use 128, 256, and 512 filters, respectively. To avoid overfitting the training data, a dropout
layer with rate = 0.2 is used after each convolution [58]. After processing of the sequences by the
convolutional layers, a flattening layer transforms the output to a one-dimensional vector and passes
its values to two consecutive fully-connected layers with 128 and 64 neurons, respectively. Finally,
an output layer with a sigmoid activation classifies the input sequence as promoter or non-promoter.
Additional features were included one-by-one by concatenating their values to the flattening layer in
order to explore their effect on the improvement of the classification performance.

Figure 1. The network architecture of the CNN promoter prediction consists of four 1D-convolutional
layers followed by a flattening layer and two fully-connected layers. At the end, an output layer with
one neuron and a sigmoid activation function computes the probability that the analyzed sequence is
classified as a promoter sequence.

Before training the final model, a separate network for each species was trained individually
using the Adam optimizer [59], L2-regularization and binary cross-entropy loss [60]. For each network,
90% of the sequences were used for model training and 10% for testing. The CNN was implemented
in R using Keras [61] with TensorFlow [62] as a backend.

To assess the prediction performance we identified the number of correctly predicted promoter
and non-promoter sequences as True Positives (TP) and True Negatives (TN), as well as the number of
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true promoter sequences predicted as non-promoter sequences, False Negatives (FN), and the number
of true non-promoter sequences predicted as promoter sequences, False Positives (FP). From these
measures, we calculated Accuracy (ACC), Sensitivity (true positive rate), Specificity (true negative
rate), and the Matthews Correlation Coefficient (MCC) as below [33,34,63]:

ACC =
TP + TN

TP + TN + FP + FN
(3)

Sensitivity =
TP

TP + FN
(4)

Specificity =
TN

TN + FP
(5)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(6)

2.7. Identification of Putative Regulatory SNPs

In order to identify regulatory SNPs (rSNPs), we analyzed the predicted promoter sequences
of Vicia faba. For this purpose, we first selected all SNPs that are located in promoters and that we
could successfully map against the Medicago truncatula genome from the initial 685,215 SNPs (see
Section 2.3). Second, we extracted for each SNP its flanking sequence covering ±25 bp relative to
the position of the SNP. Third, two copies of the extracted sequences were created: while the first
sequence contained at the SNP position the reference allele, the second contained the alternate allele.
Thereafter, we identified putative transcription factor binding sites (TFBSs) by applying the MATCHTM

program [64] together with a non-redundant plant position weight matrix (PWM) library obtained
from the TRANSFAC database [65] to the flanking sequences of each SNP. The MATCHTM program
provides for each putative TFBS a matrix similarity score (MSS) ranging from zero to one, which
reflects the potential binding affinity of the related TF to it. Finally, we predicted the consequence of
each SNP on the TFBS by comparing their MSSs in the two sequences. As a result we observed in our
analysis four different types of consequences: (i) no effect, (ii) change in binding affinity, (iii) loss of
TFBS (a TFBS appears only for the reference allele) and (iv) gain of TFBS (a TFBS appears only for the
alternate allele). Two TFBSs are considered as identical if their PWMs, positions and their strands are
equal for both alleles. If the scores computed by MATCHTM are identical in both alleles, the SNP is
assumed to have no effect on the TFBS. In our further analysis, we define a SNP as a rSNP, if it has an
effect on the binding affinity of at least one TF, i.e., if its type of consequence is (ii), (iii), or (iv).

3. Results and Discussion

Classical application of GBS includes the identification and genotyping of large numbers of
genomic variants. This provides several possibilities in plant breeding like the discovery of important
markers by GWAS even in the absence of the reference genome. In this study, however, we focused
on another important property of the GBS approach, namely its capacity to access regulatory regions
(especially promoters) which serves as a basis for the identification of rSNPs in Vicia faba.

3.1. Processing the GBS Data

Sequencing of the 20 Vicia faba samples yielded 51 GB of GBS data. The de novo assembly and
filtering resulted in a partial genome consisting of 419,390 contigs with a total length of 100,037,292 bp.
Considering that the proposed size of the Vicia faba genome is about 13 Gbp [12] our partial genome
covered 0.77% of the total genome. Through remapping of the reads to the partial genome with
Bowtie2 and subsequent variant calling with SAMtools 1,880,592 SNPs could be derived. The quality
scores of these SNPs as given in the vcf file showed a clear bimodal distribution with a minimum
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at a quality score of 400. 1,195,377 SNPs having a quality score of lower than 400 were discarded,
such that 685,215 high quality SNPs remained.

3.2. Prediction of Promoter Sequences

3.2.1. Intra- and Inter-Species Promoter Prediction

In order to gain first insights into the predictability of promoters of the seven Leguminosae
family members and Arabidopsis thaliana, we trained our CNN model for each species individually.
The prediction reliability of the CNN model has been examined for each species by classifying the
intra- and inter-species promoters that were not used in the training process. To assess the performance
of the classification, the ACC, Sensitivity, Specificity and MCC values were calculated. The details
based on the ACC values are presented in Table 2 and the results based on the remaining measures are
given in the Supplementary Tables S1–S3.

Table 2. ACC values of the intra- and inter-species promoter classification using the species-specific
trained CNNs. Off-diagonal numbers are ACC values for inter-species classification, diagonal numbers
are ACC values for intra-species classification. For instance, a CNN trained on Lupinus angustifolius
and used for classification of Vigna angularis promoters has an accuracy of 0.974.

Trained
Evaluated Arabidopsis

thaliana
Glycine

max
Lupinus

angustifolius
Medicago
truncatula

Phaseolus
vulgaris

Trifolium
pratense

Vigna
angularis

Vigna
radiata

Arabidopsis
thaliana 0.901 0.767 0.690 0.746 0.797 0.765 0.633 0.733

Glycine
max 0.837 0.864 0.915 0.847 0.863 0.724 0.914 0.856

Lupinus
angustifolius 0.545 0.611 0.981 0.720 0.586 0.493 0.974 0.709

Medicago
truncatula 0.755 0.797 0.959 0.876 0.789 0.715 0.951 0.841

Phaseolus
vulgaris 0.845 0.842 0.888 0.834 0.898 0.748 0.880 0.853

Trifolium
pratense 0.822 0.764 0.696 0.751 0.794 0.840 0.689 0.736

Vigna
angularis 0.510 0.607 0.971 0.715 0.583 0.494 0.977 0.712

Vigna
radiata 0.741 0.812 0.937 0.827 0.825 0.675 0.928 0.904

The results presented in Table 2 show that although the CNN models have been trained only
using one-hot representation of sequences for each species individually, the network architecture is
able to recognize certain patterns in the sequences which leads to the predictability of promoters across
different species to a certain degree. These findings support the results presented in [37] and indicate
that some of the promoter signatures seem to be conserved between the Leguminosae family members.

Further, Table 2 demonstrates that the classification performance of some CNN models remarkably
results in higher ACC values for inter-species prediction than for intra-species prediction. In particular,
this is the case for the species Lupinus angustifolius and Vigna angularis whose promoters have been
predicted with very high accuracy by the CNN models of the other species except for the Arabidopsis
thaliana and Trifolium pratense models. This could be attributed to the underlying genome annotations
of these species since their annotations seem to be created based on the genome information of
well-studied family members. Especially, this assumption is true regarding the inclusion of the
Leguminosae family specific promoter patterns in the promoters of these species. This hypothesis has
been supported by the prediction performance of the Lupinus angustifolius model on the other species,
which reached very high degrees of specificity while only achieving low degrees of sensitivity. To this
end, we compared the inter-species prediction ACC values of the species regarding their performance
on Lupinus angustifolius and Vigna angularis. This comparison revealed that the promoters of Lupinus



Genes 2020, 11, 614 8 of 16

angustifolius were predicted with a slightly higher mean accuracy value than the promoters of Vigna
angularis (0.880 compared to 0.868).

So far, we trained our CNN model only using the order of the nucleotides in DNA sequences
(one-hot encoding). However, previous studies pointed out that the combination of one-hot encoding
with additional widely used features could lead to a substantially improved performance in promoter
identification [33,34]. For this purpose, we followed a similar procedure as suggested by Triska et al.
in [33] and systematically evaluated the combination of sequence features (see Section 2.5) in the CNN
model training of each species. The results are presented only for Medicago truncatula as an example
in Table 3.

Table 3. Contribution of additional features in the CNN model of Medicago truncatula.

Features Accuracy Sensitivity Specificity MCC

DNA sequence 0.876 0.897 0.855 0.750

DNA sequence + 2-mer 0.874 0.880 0.867 0.747

DNA sequence + 2-mer + frequency of CA motif 0.862 0.828 0.897 0.726

DNA sequence + 2-mer + frequency of CG motif 0.875 0.875 0.876 0.751

DNA sequence + 2-mer + HMI 0.874 0.882 0.865 0.747

DNA sequence + 2-mer + frequency of TATAA motif 0.876 0.875 0.878 0.752

DNA sequence + 2-mer + CG skew 0.876 0.889 0.863 0.753

DNA sequence + topological entropy 0.874 0.886 0.861 0.747

DNA sequence + 2-mer + topological entropy 0.871 0.852 0.890 0.743

DNA sequence + 2-mer + HMI +
frequency of TATAA motif 0.871 0.869 0.874 0.743

DNA sequence + 2-mer + HMI +
frequency of CA motif + frequency of CG motif +
frequency of TATAA motif + CC skew

0.873 0.859 0.888 0.747

DNA sequence + HMI +
frequency of CA motif + frequency of CG motif +
frequency of TATAA motif + CG skew

0.875 0.889 0.860 0.749

In contrast to previous studies [33,34], Table 3 shows that regardless of the usage of any
additional feature, the performance of the CNN model could in general not be significantly improved.
However, these results are in agreement with findings presented in [31,32,35,36] and indicate that
the CNN architecture is able to learn specific patterns inherent in the sequences automatically.
Hence, these patterns carry information which is obviously redundant to these widely used features.
Consequently, it turns out that the consideration of additional features does not lead to an improvement
of the CNN model performance and may, on the contrary, increase the noise during training.

3.2.2. Prediction of Vicia faba Promoters

The knowledge about the promoter signatures which are conserved between the Leguminosae
family members provides an important clue for the precise prediction of Vicia faba promoters, which still
remains a challenge. However, the consideration of the sequences of only one Leguminosae family
member in the CNN model could be insufficient to capture the variety of different promoter signatures
for the accurate computational identification of the Vicia faba promoters. To mitigate the drawback
of single species models we systematically examined different CNN models seeking to determine
the preferential combination of Leguminosae family members by intensifying the signal of promoter
sequences and thus to improve the performance of the CNN model. Consequently, we trained a CNN
model based on the species Lupinus angustifolius and Medicago truncatula since the combined usage
of their manually selected sequences perfectly complement each other. In the last step, we included
in the CNN model training two additional non-promoter sets (defined in Section 2.4) to enhance the
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distinction signals between promoter and non-promoter regions. The training sequences are given in
the Supplementary Files S6 and S7. The evaluation of this CNN model yields to clearly better ACC and
MCC values of 0.98 and 0.95, respectively. A further analysis reveals that the usage of other sequence
features together with one-hot encoding in our final CNN model does not affect the performance of
the classifier.

Finally, by applying the CNN model to the Vicia faba sequences of length 250 bp, we classified
in total 2.46% of them as potential promoter sequences. It is important to note that, due to the
random fragment orientation regarding the direction of the reads from GBS, the correct direction of
the sequences in the de novo assembly draft partial genome of Vicia faba is unknown. To address this
limitation, we considered in our predictions four different types of the sequences as: (i) the original
obtained assembly; (ii) the complement of the obtained assembly that is gained by keeping the reading
direction; (iii) the reverse of the obtained assembly that is gained by changing the reading direction;
and (iv) the reverse complement of the obtained assembly.

Checking the positions of the SNPs in the contigs disclosed that in total 132,399 out of 685,215 SNPs
were located in the predicted Vicia faba promoters. A flanking sequence of ±25 bp could only be
obtained for 118,492 SNPs. These SNPs with a complete flanking sequence were mapped against
the Medicago truncatula genome using the BLASTN algorithm with a threshold of 0.01 for the e-value
and of 0.9 for the percent identity [66]. Overall, we found 33,846 hits for 1976 SNPs showcasing the
repetitiveness of the Medicago truncatula genome. We identified 14 SNPs that map to the predefined
target region of Medicago truncatula that harbours orthologous genes associated with the V+C content
of Vicia faba [14,16]. This target region is ranging approximately from 1,300,000 bp to 2,300,000 bp of
the Medicago truncatula chromosome 2. An overview of these SNPs and their mapped position in the
Medicago truncatula genome along with the genes with the closest TSS is given in Table 4. We tested
these 14 SNPs for their association with the V+C content with PLINK. The adjusted p-values presented
in Table 4 suggest that SNP_341016_236 and SNP_341016_239, which are located in the same promoter,
show a highly significant association with the V+C content in Vicia faba while the associations of the
remaining SNPs are not significant at the level α = 0.05. For both of these SNPs the reference allele
only occurs in the low V+C lines with one exception while the alternate allele is restricted to the high
V+C lines (see Supplementary Table S8).

Table 4. The 14 SNPs found in the predicted promoters of Vicia faba that were mapped to the Medicago
truncatula target genomic region.

SNP_ID Genotype FDR Position Medicago Gene

SNP_131938_118 C/T 0.234 1,385,390 MTR_2g008290
SNP_302904_183 G/A 0.179 1,385,444

SNP_341016_236 C/T 1.17 · 10−7 1,554,857 MTR_2g008620
SNP_341016_239 G/A 1.17 · 10−7 1,554,860

SNP_356745_200 A/G 0.730 1,707,078 MTR_2g008960
SNP_280549_41 C/T 0.234 1,707,183
SNP_350273_103 G/T 0.234 1,707,199
SNP_350273_90 A/C 0.234 1,707,212

SNP_350273_61 G/A 0.234 1,912,704 MTR_2g009430
SNP_29452_204 G/A 0.730 1,912,812
SNP_29452_206 G/A 0.496 1,912,814

SNP_118828_190 C/T 0.234 2,030,017 MTR_2g009690

SNP_80231_27 C/T 0.234 2,163,048 MTR_2g009940
SNP_364434_97 A/T 0.359 2,163,084

Genotype refers to the reference and alternative alleles; FDR is the false discovery rate obtained in an association
test with the V+C content of 20 Vicia faba lines; Position is the position in bp on the Medicago truncatula
chromosome 2.
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3.2.3. Systematic Identification of Regulatory SNPs Associated with the V+C Content of Vicia faba

Following the studies of Xu et al. and Fu et al. in [67,68], we scanned the flanking sequences
of the SNPs by applying the MATCHTM program [64] to systematically identify the SNPs that
are likely to affect the binding affinity of transcription factors (TFs) and, thus, influence the gene
expression level. This search was done for the 1976 SNPs that were located in the predicted
Vicia faba promoters and which could be successfully mapped onto the Medicago truncatula genome.
We considered results of this run with an MSS score ≥0.85 as putative TFBSs (as suggested in [69]).
9444 putative TFBSs were identified. SNPs that were located in putative TFBSs were considered as
rSNPs. Their consequence types were determined by examining their predicted effects on the binding
affinities of the TFs. The rSNPs, their consequence and related TFs with corresponding PWM names
are given in Supplementary Table S4. The analysis of the 14 SNPs presented in Table 4 reveals that the
binding affinities of 44 TFs to their 79 TFBSs were affected. Focusing on the two highly significant SNPs
(SNP_341016_236 and SNP_341016_239) in the same promoter, we found that a nucleotide substitution
in SNP_341016_236 is likely to entail severe consequences regarding TF binding affinity, namely loss
and gain of TFBSs.

The substitution in SNP_341016_239 results in only a moderate change of the binding affinities
of TFs (see Table 5). The remarkably different consequences of both SNPs indicate their considerably
different influence for the precise and effective regulation of the corresponding gene, although their
p-values are the same.

Table 5. The two SNPs with the strongest association to the V+C content and their consequences.
The column Allele indicates for which allele of the SNP the binding site was found. TFBS refers to the
name of the binding sites, which were named after their PWMs. The structure of the PWM names is
given as: P$TFname_version, where “P$” stands for the PWMs used for the prediction of the TFBSs of
plant TFs. “TFname” refers to the name of the transcription factor, and “_version” refers to the version
of the PWM.

SNP_ID Allele TFBS MSS Consequence

SNP_341016_236 Ref P$MYB4_01 0.945 Loss of TFBS
SNP_341016_236 Ref P$MYB61_01 0.880 Loss of TFBS
SNP_341016_236 Alt P$SQUA_01 0.870 Gain of TFBS

SNP_341016_239 Ref P$MYB61_01 0.880 Score change
SNP_341016_239 Alt P$MYB61_01 0.881 Score change

3.3. Functional Analysis of the Candidate Gene and Transcription Factors

The Medicago truncatula gene MTR_2g008620 is the gene which is located closest to the two highly
significant SNPs. It is a beta-hydroxyacyl-ACP-dehydratase that is involved in the elongation of fatty
acids as well as in the related metabolism of biotin [70,71]. A direct association with the creation
of V+C which has been linked to the orotic acid pathway [72] is not obvious. This seems plausible
since Medicago truncatula does not synthesize V+C. Of more interest are the transcription factors for
which we found putative binding sites that are affected by the two SNPs. The TF SQUA belongs to
the MADS-box domain group whose genes play vital roles in multiple aspects of plant development
(for instance development of flowers, fruits and roots as well as regulating flowering time) [73,74].
Such genes regulate, for example, stem growth and early flowering in soybean [75] or vernalization
response in wheat [76]. SQUA itself is involved in the determination of floral meristem and organ
identity [77,78]. The MYB domain group is one of the largest families of TFs in plants. Its members are
involved in the regulation of development, metabolism, the circadian rhythm, and responses to biotic
and abiotic stresses in plants [74,79,80]. In Medicago truncatula multiple MYB TFs including MYB4 and
MYB61 are involved in flavonoid biosynthesis during macrosclereid cell development [81]. MYB4 in
particular regulates abiotic stress responses towards UV-B light and cadmium toxicity in Arabidopsis
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thaliana [82,83] and cold in Oryza sativa [84]. It has also been shown to influence the biosynthesis
of flavonoids [85]. MYB61 participates in the response to cold stress in Medicago truncatula [86].
In Arabidopsis thaliana, this TF is expressed in sink tissues, such as xylem, roots and developing seeds,
and controls resource allocation influencing growth and development of the plant [87]. It has also been
shown to affect trichome initiation, root development and stomatal aperture and it is necessary for the
biosynthesis of gibberellin [88,89]. Furthermore, it is required for the seed coat mucilage deposition
during the development of the seed coat epidermis [90,91]. This is a promising result considering that
the seed coat is the suggested site of biosynthesis of the V+C compounds [92].

4. Conclusions

With their anti-nutritive effects the high vicine and convicine content has so far restricted the
usage of Vicia faba as feed for livestock or as crop for human consumption. Identifying causal markers
and understanding the mechanisms of regulation of the V+C content are important steps for breeding
new cultivars with lower V+C content. This task is even more challenging since a complete and
annotated reference genome for Vicia faba is still missing. In this work we harnessed the knowledge
about regulatory regions in related species to train a convolutional neural network, which allowed us
to predict those regions in Vicia faba. This model permitted us to classify DNA sequences as promoter
or non-promoter without undertaking the considerable effort of assembling and annotating a reference
genome. We applied this model to GBS data of Vicia faba for the identification of its putative promoter
regions as well as regulatory SNPs therein. Our results show that we were able to detect two rSNPs
significantly associated with the V+C production in Vicia faba. We suggest these rSNPs as promising
candidates for marker-assisted selection. In particular, the associated transcription factor MYB61 could
provide new insights into the molecular mechanisms underlying V+C. To the best of our knowledge,
this is the first study which uses the gene annotations of related species of the Leguminosae family
to predict promoters and rSNPs of Vicia faba based on the GBS data. The analysis approach that we
presented here could potentially also be applied to other species that lack a reference genome which is
still the case for many crop species.
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for training the model. File S7: Non-promoter sequences used for training the model. Table S8: Alleles of the 20
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Abbreviations

The following abbreviations are used in this manuscript:

SNP Single Nucleotide Polymorphism
rSNP Regulatory Single Nucleotide Polymorphism
CNN Convolutional Neural Network
TF Transcription Factor
TFBS Transcription Factor Binding Site
V+C Vicin and Convicine
FDR False Discovery Rate
HMI Horizontal Mutual Information
GTE Generalized Topological Entropy
CPE Core Promoter Element
PWM Position Weight Matrix
MSS Matrix Similarity Score
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