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Abstract
Three-dimensional reconstruction from truncated two-dimensional projections cannot be solved
analytically without prior knowledge of the sample or access to the non-truncated projections. To
suppress reconstruction artifacts in region of interest (ROI) or local tomography, an iterative
algorithm has been devised based on back-projection and re-projection, assuming an
approximately cylindrical shape of the entire sample of general homogeneity, which is especially
applicable for micro-tomography of biopsy samples from biological tissue. Tomographic
reconstruction is iteratively refined by minimizing the mismatch between an empty ROI and the
reconstruction from the difference between measured sinogram and forward projected ROI
reconstruction. By numerical simulation and experimental demonstration, it is shown that the
algorithm is not only able to reconstruct quantitative gray values, but also to reduce artifacts of
peripheral glow, and may lead to increased image sharpness. The method is particularly suitable
for examination of biopsy/autopsy-samples of soft tissue by micro/nano-computed
tomography.

1. Introduction

Micro- and nano-computed tomography (micro/nano-CT) is a technique to yield three-dimensional (3D)
reconstructions of millimeter-sized samples with micrometer or sub-micrometer voxel sizes, down to the
range of 50–100 nm, if nano-focused synchrotron radiation is used. Due to the commonly large aspect ratio
between the total size of the sample and the volume of a single resolution element (voxel), and the necessity
to avoid the detrimental influence of cutting and slicing during sample preparation, many micro/nano-CT
applications can be categorized as so-called region of interest (ROI) tomography. In this case, tomographic
reconstruction has to be performed using truncated projections which means that the entire object of
interest is not or not completely visible in each projection. In other words, the field of view of the detector is
not large enough to cover the whole object under every angle. Figure 1(a) illustrates a typical setting of
ROI-tomography: A detector with limited field of view is rotated around a sample (gray circle). The ROI
(white circle) contributes to each projection from 0

◦
to 180

◦
, yet each projection collects signal from

different regions of the full sample. In the sketched configuration, only the parts colored in green and the
white ROI contribute to the measured projection. None of the projections would contain the full object in
lateral dimension.

Local tomography has been subject to numerous studies over the past decades (Wang and Yu 2013). In
the following, two types of field of view have to be distinguished: (i) the field of view of the detector (dFOV)
and (ii) the field of view of the reconstruction (rFOV). Due to the nature of tomographic back-projection,
the rFOV is cylindrical (3D) or circular (two-dimensional (2D)), whereas the dFOV is reduced by one
dimension with respect to the rFOV and is either a line or the active area of a 2D detector. If the dFOV is
considerably smaller than the extent of the sample, tomographic reconstruction leads to various truncation
artifacts.
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Müller and Arce gave a detailed description and explanation of truncation artifacts (Müller and Arce
1996): objects which are completely inside the rFOV and hence visible in each and every projection are
reconstructed without artifacts. Objects which are partially inside and partially outside the rFOV lead to
circular tails along the outline of the rFOV. Objects which are completely outside the rFOV lead to two
separate circular tails. Objects which are wrapped around the rFOV but do not have a contribution inside the
rFOV lead to circular tails covering the full outline of the rFOV. Finally, it was found that gray values in the
periphery of the rFOV are considerably elevated when reconstructing from truncated projections
(Ohnesorge et al 2000). This peripheral glow becomes increasingly asymmetric with increasing distance of
the ROI from the center of the full sample (Kyrieleis et al 2011). Note, however, that even if without strong
shape artifacts, objects in the center of the rFOV also suffer from flawed gray levels, i.e. ROI reconstruction is
not quantitative concerning the voxel values.

In fact, it can be shown mathematically that exact reconstruction of a ROI from a set of projections where
truncation occurs in each image—the so-called interior problem—is not possible (Natterer 2001, Clackdoyle
and Defrise 2010). A way out of this dilemma is access to additional a priori knowledge about the sample:
Kudo et al as well as Ye et al have demonstrated that the interior problem of CT indeed can be solved,
provided that knowledge on a sub-region inside the ROI is available (Kudo et al 2008, Ye et al 2007). More
recently, local tomography algorithms making use of a priori knowledge of a sub-region have been proposed
for example by Paleo et al (2017), Paleo and Mirone (2017).

Yet, a priori knowledge on the object inside the ROI is not always available. Different techniques have
been devised to deal with the interior problem and to remove artifacts in the reconstruction. A popular
strategy is to extend truncated sinograms. To this end, different implementations have been proposed: for
example, Wagner and Ogawa et al have extended the measured projections by estimated values based on the
complete shape of the sample (Wagner 1979, Ogawa et al 1984). Ohnesorge et al have extended truncated
projections by symmetrically mirroring a defined range of projection values at the boundary of the sinogram
and subsequent cosine weighting (Ohnesorge et al 2000). Hsieh et al have extended truncated sinograms by
estimating the truncated region being due to water cylinders whose locations and radii can be determined
from the measured projections (Hsieh et al 2004). Kyrieleis et al showed that extension of the truncated
sinogram by adding pixels replicating the mean outermost projection values, suppresses peripheral glow
(Kyrieleis et al 2011). This can be understood from the observation that artifacts at the edges of the rFOV are
pushed outwards toward the artificially added voxels whereas features inside the rFOV are sufficiently
well reconstructed. However, while sizes and shapes of objects inside the rFOV are retrieved, reconstructed
gray values still cannot provide quantitative information: In fact, gray values are affected mainly—but
importantly not only (Wang and Yu 2013)—by a constant offset (Kyrieleis et al 2011). This is known to
compromise diagnosis in medical CT, and analytical power in material or biological studies by
micro/nano-CT.

To overcome these limitations at least partly, about 40 years ago, Nalcioglu et al used low resolution scans
of the entire sample to subtract contributions of external regions from high resolution but truncated
projections (Nalcioglu et al 1979). Roughly at the same time, to reduce dose outside a ROI and to achieve
artifact free reconstructions inside the ROI, Wagner et al recorded projections covering the whole sample but
with varying dose inside and outside the ROI (Wagner 1979), followed by Yu et al who combined truncated
and normal-dose projections with a few full and low-dose projections (Yu et al 2006). Less concerned with
dose being one of the prime issues in medical CT, but rather with measurement time and quantitative gray
values for a ROI, da Silva et al have combined full size and finely sampled projections recorded at coarsely
distributed angular positions with truncated and equally finely sampled projections at intermediate angular
positions such that the total number of projections is equal to the number of projections required for
non-local tomography (da Silva et al 2018).

Apart from single step algorithms, iterative methods were composed in order to tackle the interior
tomography problem. The common idea of these techniques is to minimize the difference between a known
and a reconstructed quantity, i.e. the difference between a computed forward-projection and the measured
data, based on iterative back-projection and re-projection (Nassi et al 1982, Kim et al 1985, Ogawa et al
1984). A particular but different case arises, if iterative tomography is chosen for sake of reconstruction
quality, but cannot be carried out in the full projections due to computational load. In this context, Ziegler
et al proposed to use full projections in order to first compute a complete tomographic reconstruction.
Subsequently, the ROI was zeroed out from the slice, a sinogram of the region exterior to the ROI was
computed and subtracted from the measured data. These modified projections were truncated and
iterative reconstruction was finally applied to the modified and truncated projections (Ziegler
et al 2008).

Iterative ROI tomography techniques have also been developed to reconstruct from truncated
projections—in this case without the knowledge of the entire projection. An example is the method of
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Azencott et al who stabilized iterative ROI reconstruction by wavelet-based regularization (Azencott et al
2018) and used truncated projections without access to the full non-truncated radiographs.

Iterative algorithms including maximum-likelihood methods take photon statistics into account.
Maximum-likelihood methods have been successfully adapted to ROI tomography (Ziegler et al 2008, Zhang
and Zeng 2007), and are capable of providing good reconstructions even when analytic methods fail (Zhang
and Zeng 2007).

The need for quantitative gray value recovery in micro/nano-CT studies arises from the aim to extract
material characteristics—such as electron density—from tomographic scans and establish a high resolution
three dimensional map of the examined tissues containing specification of the different materials, i.e. as
calcium-rich component or iron-rich component, thereby opening up new options and diagnostics for
virtual histology.

The motivation of this work is to design a reconstruction method for micro-CT applications, where
projections display only a small portion of the full sample (typically, inside a full slice of the sample the ROI
covers about two percent) and where we require the reconstructed gray values to be quantitative in the sense
that they agree with those that would be reconstructed from complete projections.

We further require that sample preparation can be designed to some degree: In particular, we are
motivated by the case of biological tissue extracted by biopsies or autopsies for micro/nano-CT examination
(see Töpperwien et al (2018), Robisch et al (2020)). In this case, samples taken out from a tissue block by
using a biopsy punch are not of a diameter small enough to avoid ROI tomography, if high (nano-scale)
resolution is required.

Hence, the desired tomographic reconstruction method needs to cope with fully truncated projections
and needs to provide voxel-wise quantitative gray values. Importantly and in contrast to Ziegler et al (2008),
no measurements of the full object are available.

In fact, in micro/nano-CT applications, the ROIs often amount to only a very small portion of the entire
sample. For this reason, and keeping in mind that high resolution cameras (about 2048× 2048 resolution
elements) are used to record the truncated projections, it is challenging to simply extend the sinogram to the
required amount of pixels. This is at least the case for methods where the sinogram has to be extended to
match the size which full projections would have, so that the shape of the entire sample can be properly
modeled. Note that this may not be required for all (analytical) shape corrections, but such methods are
certainly far from being standard.

Because there is no single step unique solution to the interior problem, an iterative technique based on
back-projection and re-projection was chosen.

Biopsy samples of biological tissue come with two general properties which we require for the proposed
method: By the nature of sample preparation the shape of the entire sample is always cylindrical and the
(soft) tissue is approximately homogeneous in density, i.e. its composition shows similar variations in
structure sizes and similar variations from a mean index of refraction inside and outside the ROI.
Furthermore, experiments are designed such that the axis of rotation always passes through the center of the
ROI and that the relative position of the ROI with respect to the center of the full sample is known. The last
requirement is always fulfilled when using motorized stages to align the axis of rotation centered in the dFOV
as well as to position the sample with respect to the axis of rotation. With such configurations in mind, in
this work, the central idea of the proposed method is to exploit the linearity of the Radon transform (Radon
1917) and to split the truncated sinogram in a contribution due to the material inside the ROI and a
contribution from the material outside the ROI. The reconstructed ROI is refined in an iterative procedure
which involves a geometry correction based on the path lengths through the full sample, repetitive steps of
filtered back-projection (FBP) and subsequent forward-projection.

The manuscript is organized as follows: The introduction covering challenges and developments in local
tomography is followed by section 2 which comprises the proposed ROI-reconstruction technique with a
detailed description of the algorithm as well as illustration of its performance by simulations. Section 3
presents an application of the method to experimental data collected at a custom-built in-house micro-CT
instrument. Finally, section 4 summarizes the key points of this work and puts it into a broader perspective.

2. Method and simulation

The general method for correcting artifacts resulting from tomographic reconstruction from truncated
projections is to extend the sinogram artificially by replicating its outermost or mean outermost pixels as
proposed in Kyrieleis et al (2011). However, as discussed in the introduction, the inverse Radon transform of
an artificially extended sinogram does not allow the extraction of quantitative gray values. To make matters
worse, due to memory and computational limitations, it can be challenging to extend the sinograms to the
sizes of the non-truncated projections of the entire sample.
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Figure 1. (a) Local tomography: Whereas ideally, one would like to record line integrals exclusively through the ROI (white
circle), additional absorption of radiation inside the green regions cannot be avoided. (b) Position and angle dependent chord
lengths of the full sample s(φ,∆) for the geometry shown in (a) as well as two orthogonal profiles for constant angle and constant
position, respectively. (c) Iterative scheme for tomography from truncated projections. Color code: light gray/dashed lines:
(x, y)-space (slice); dark gray/solid lines: (φ,∆)-space (sinogram). Inset (1): Difference slice used to update the reconstruction
(see simulation in figure 2). Inset (2): Difference between successive iterates (see simulation in figure 2).

A way out is to include knowledge about the shape of the full sample as in Wagner (1979), Ziegler et al
(2008). In the present work, we assume the sample to be of cylindrical shape and of almost isotropic content
with similar variations inside and outside the ROI. This configuration is motivated by our goal in
reconstructing native unstained tissue samples from biopsies and autopsies by micro/nano-CT. These tissues
are characterized by small variation of the index of refraction around an average value (e.g. due to cellular
nuclei, blood vessels, fibrous proteins etc). During the scan, the samples are kept inside a cylindrical polymer
tube. With these restrictions, it becomes possible to analytically find correction values for each entry of the
truncated sinogram. This allows reconstructing the approximately correct mean index of refraction inside
the ROI.

Figure 1(a) illustrates a 2D section of a cylindrical sample with a highlighted ROI. By the nature of the
Radon transform, the ROI itself is also circular/cylindrical. The axis of rotation is placed in the center of the
ROI. Before reaching the detector, x-rays not only pass through the ROI itself (white circle in figure 1(a)), but
also through its surrounding material (regions colored in light green in figure 1(a)). Hence, the accumulated
absorption/phase shift encoded in the truncated sinogram is much larger than the accumulated
absorption/phase shift corresponding to the ROI itself. The contribution of the surrounding material of the
ROI can be estimated by the difference of the angle dependent chord lengths s through the full sample and
those through the ROI sr multiplied by an average gray value b per voxel.

Let the radius of the full sample be R. Given a ROI of radius r< R, the path lengths sr through the
circular ROI are found by

sr(∆) = 2
(
r2 −∆2

)1/2
, (1)

where∆ ∈ ]−r, r[ is the shortest distance of sr(∆) to the center of the ROI. The calculation of the path
lengths s(φ,∆) through the entire sample requires some more information: the distance of the ROI with

respect to the center of the sample D=
√
δ2x + δ2y (horizontal shift δx and vertical shift δy), as well as the

radius R of the full sample, the angular position of the detector φ and the distance∆ inside the ROI with
respect to its center. With the help of figure 1(a) and the Pythagorean theorem, one finds all possible chords
s(φ,∆) passing through sample and ROI under the angle φ and with distance∆ to the center of the ROI (see
figures 1(a)–(b)):

s(φ,∆) = 2
{
R2 − [∆ − aD sin(φ+ aα)]2

}1/2
, (2)

where


α= arcsin(δx/D) & a=−1 for δy > 0
α= arcsin(δx/D) & a= 1 for δy ≤ 0
α= 0& a=−1 for D= 0 .

(3)
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The variable a—being a sign—and the angular offset α are chosen such that they match the convention of
Matlab regarding the coordinate system and the implementation of the Radon transform. The measured,
truncated sinogram S(φ,∆) together with the path lengths s(φ,∆) can be used to estimate the mean
absorption b per voxel:

b=
1

MN

M∑
m=1

N∑
n=1

S(φm,∆n)

s(φm,∆n)
, (4)

whereM is the number of projections and N is the number of pixels. In order to compensate for the
absorption outside the ROI, one can now subtract an offset o(φ,∆) from the truncated sinogram:

o(φ,∆) := [s(φ,∆)− sr(∆)] b . (5)

The gray values inside the ROI are reconstructed from S(φ,∆)− o(φ,∆). This geometric correction is
necessary, but not sufficient. In fact, contrast and sharpness of the reconstructed structures and details inside
the ROI turn out to be unsatisfactory, even if the gray value level has been corrected in this way. To increase
sharpness and contrast, an iterative ansatz based on back-projection and re-projection is proposed as a
second step. The underlying idea is to refine the tomographic reconstruction by using the truncated,
measured sinogram S(φ,∆) and the Radon transform Si−1(φ,∆) of the current estimate of the ROI, i.e. the
solution from the previous iteration i− 1, in the following way: The tomographic reconstruction (i.e. FBP)
of S(φ,∆)−Si−1(φ,∆) is computed. If Si−1(φ,∆) represents the Radon transform of the ROI already, one
can expect gray values close to zero after tomographic reconstruction of the difference between the measured
sinogram and the sinogram of the current iterate. Otherwise, one can expect that tomographic
reconstruction of the difference sinogram still bears features inside the ROI that have not yet been
reconstructed. These features are delivered by FBP of S(φ,∆)−Si−1(φ,∆) and are used to update the
tomographic reconstruction of the current iterate in an additive way.

Figure 1(c) presents a schematic of the algorithmic workflow. Consider the initial iteration i= 0. The
input of the algorithm is the measured, truncated sinogram S(φ,∆). The detector pixel size, the diameter of
the full sample, and the relative position of the ROI with respect to the center of the full sample enter as
known parameters, required to compute the angle dependent correction matrix o(φ,∆) given in
equation (5). The idea of the geometric correction is to reduce the projected gray values of the truncated
sinogram according to the position and size of the ROI inside the sample by subtraction of an angle and pixel
dependent offset. This offset approximates the contributions from regions outside the ROI. Thus, here, we
modify the classical FBP operatorR−1

f (see e.g. Kak and Slaney (2001)) by including geometry as
offset-subtraction:

R−1
f [·]→R−1

f, o [·] :=R−1
f [· − o(φ,∆)] . (6)

A two dimensional slice Σ0(x,y) =R−1
f, o [S(φ,∆)] is calculated. For the current demonstration, FBP is

implemented using the function iradon provided by Matlab with a Ram-Lak filter kernel and linear
interpolation. Note that forward and backward projection can be replaced by any pair of functions or even
iterative procedures that can handle tomographic projection and reconstruction. The reconstructed slice
Σ0(x, y) is limited to the ROI (radius r) by application of a smooth support constraint:

Ps [Σ0(x,y)] = Σ0(x,y) · [H(x,y) ∗G(x,y,σ = 1)] , (7)

where G(x, y,σ= 1) is a Gaussian filter kernel with standard deviation σ set to 1 pixel, ∗ symbolizes
convolution and H(x, y) is a circular hat profile

H(x,y) =

{
1 for

(
x2 + y2

)1/2 ≤ r

0 else.
(8)

The support-limited slice is used to compute a sinogram S0(φ,∆) by the Radon transformR:
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S0(φ,∆) :=R [Ps [Σ0(x,y)]] . (9)

The sinogram S0(φ,∆) is subtracted from the measured sinogram S(φ,∆) resulting in a ‘difference
sinogram’. To reduce artifacts, the outermost pixels of the difference sinogram in the spatial direction are
replicated. Next, a temporary or difference slice Σt,0(x,y) is calculated:

Σt,0(x,y) =R−1
f, o [S(φ,∆)−S0(φ,∆)] . (10)

The motivation for the last step derives from the fact that subtraction of the re-projected sinogram S0(φ,∆)
from the measured sinogram S(φ,∆), must lead to a truncated sinogram of a sample with an empty
ROI—provided that Σ0(x, y) has been a sufficiently accurate reconstruction of the ROI. The reason is found
in the nature of the Radon transform itself, which is based on line integrals through the sample, or in the
discrete case, on the summation of values along straight paths. However, as long as the difference slice
displays features inside the ROI, the current reconstruction is not yet satisfactory. Inset (1) of figure 1(c)
shows the difference slices Σt,0(x,y), Σt,9(x,y) and Σt,49(x,y). In iteration 0, definitively, the difference slice
Σt,0(x,y) is not an empty ROI. The following step is to refine the reconstruction Σ0(x, y) by replacing the
reconstructed slice Σ0(x, y) with the sum of Σ0(x, y) and Σt,0(x,y):

Σ1(x,y) = Σ0(x,y)+Σt,0(x,y) . (11)

As a consequence, missing features or low contrast in Σ0(x, y) but contained in Σt,0(x,y) are recovered. To
remove high frequency artifacts resulting from multiple forward and backward projections, a low-pass filter
L[·] consisting of a two dimensional Gaussian filter kernel is applied. For the presented reconstructions, the
standard deviation of the Gaussian filter kernel is set to 0.37 pixels in case of the noise free simulations, 0.47
pixels in case of the simulation containing noise and 0.35 pixels in case of the measured projections. Finally
the reconstructed slice is confined to the ROI by the support constraint. In summary, one iteration i of the
algorithm can be formulated as follows:

Σi(x,y) = PsL
{
Σi−1(x,y)+R−1

f, o [S(φ,∆)−Si−1(φ,∆)]
}
, (12)

where the initial iterate is

Σ0(x,y) = Ps

{
R−1

f, o [S(φ,∆)]
}

(13)

and where

Si−1(φ,∆) =R [Σi−1(x,y)] . (14)

The process is iterated until the difference sliceR−1
f, o [S(φ,∆)−Si−1(φ,∆)] does not contain features

different from noise anymore (see inlet (1) of figure 1(c)). Finally, convergence can be monitored by
computing the gap g(i) of successive iterates (see inlet (2) of figure 1(c)):

g(i) =
1

M

∑
x,y∈ROI

|Σi(x,y)−Σi−1(x,y)| , (15)

where here,M is the number of elements inside the ROI.
The described iterative procedure is tested by numerical simulations, with geometry as depicted in

figure 2(a): a truncated sinogram of a circular sample consisting of N/2= 350 pixels along radius R and
embedded in an empty quadratic array of 1500 pixels side length, off-centered by 250 pixels in the
y-direction is used. The embedding of the phantom in an empty background is necessary in order to
simulate non-truncated projections with the axis of rotation passing through an off-centered sample. The
sinogram is simulated using Matlab’s function radon applied to the embedded phantom.

The number of projections Nφ covering an angular range∆φ of π is set to Nφ = Nπ/2≈ 1100, fulfilling
the angular sampling criterion for tomography and resulting in an angular step size of 0.16 deg. Note that for
the angular sampling criterion, the spatial extent (here N = 700 pixels) of the sample rather than the full
extent (here 1500 pixels) of sample and background has to be considered. The full noise-free sinogram
(figure 2((d), top)) is truncated to a circular ROI of 100 pixels in diameter (figure 2((d), middle)). The
corresponding ROI is marked by a light green circle and separately displayed in the bottom part of
figure 2(a).
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Figure 2. (a) Phantom for ROI-tomography. Truncated projections are simulated for a ROI consisting of 100 pixels in diameter
and marked by a light green circle. The white circle enclosing the ROI represents the rFOV after artificially extending the
truncated sinogram. The position of the axis of rotation is marked by a green dot and the dashed circle represents the positions of
the detector. (b) Filtered back-projection of the extended truncated sinogram. (c) Iterative reconstruction of the truncated
sinogram with quantitative recovery of gray values. (d) Sinogram of the full sample (top) with marked truncation region,
truncated sinogram (middle) used for the reconstructions ((b)–(c)), sinogram of the iteratively reconstructed ROI (bottom). (e)
Angle dependent, mean projected gray values outside the ROI computed by subtraction of the sinogram corresponding to the
reconstructed ROI (see (d, bottom)) from the measured truncated sinogram (see (d, middle)).

First, the truncated sinogram (figure 2((d), middle)) is extended to twice its size by replicating the
outermost gray values in positive and negative spatial direction. Its FBP is depicted in figure 2(b). Even
though the reconstruction does not show typical truncation artifacts, it does not provide the correct gray
values: Compared to the phantom shown in figure 2(a), the gray value level is considerably elevated. Without
access to the ground truth, it is not possible to determine whether the reconstructed gray values coincide
with those of the phantom.

Second, the truncated sinogram (figure 2((d), middle)) is reconstructed by the proposed iterative
method. Based on the observation that successive iterates do not change significantly anymore, the algorithm
is terminated after 100 iterations. The reconstructed ROI shown in figure 2(c) is very close to the true
solution. In addition, figure 2((d), bottom) shows the sinogram simulated from the reconstruction of the
ROI (figure 2(c)).

Figure 2(e) demonstrates that the iterative model including the geometry correction is a reasonable
strategy to properly reconstruct gray values: The mean projected gray values outside the ROI estimated by
equation (5) (dotted line) coincide well with the expected mean gray values extracted from the phantom
without the ROI (black line). Structures and gray values inside the ROI were successfully reconstructed by
the iterative procedure: The iteratively reconstructed ROI is subtracted from the phantom and the mean gray
value outside the ROI (dashed curve in light red) coincides with that of the phantom (black curve). The same
analysis is carried out for the reconstruction of the ROI by extending the sinogram. As expected, here the
mean gray values deviate considerably (gray curve). Further, the image sharpness of the iterative
reconstruction (c) is found to be enhanced compared to the reconstruction resulting from sinogram
extension (b).

The benefit in resolution or sharpness and gray level accuracy is corroborated by comparison of the
profiles shown in figures 3(a)–(c).

First, the cropped FBP reconstruction of the complete sinogram (figure 2((d), top)) of the phantom
(figure 2((a), top)) is computed and compared to the original: The gray line in figure 3(a) shows the vertical
profile through the central part of the ROI inside the phantom. The black line shows the profile through the
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Figure 3. (a) Line profiles through phantom (figure 2((a), bottom), and gray line) and filtered back-projection of full sinogram
(figure 2((d), top), and black line). (b) Line profiles through phantom (figure 2((a), bottom), and gray line) with shifted mean
gray value and reconstruction from truncated sinogram by extension (figure 2(b), and black line). (c) Line profiles through
phantom (figure 2((a), bottom), and gray line) and sinogram by iterative ROI-tomography (figure 2(c), and black line). (d) Line
profiles through current estimate of the ROI in iterations 1, 2, 3, 10 and 100.

same pixels of the reconstruction by FBP. On the one hand, one clearly observes, that mean and relative gray
values are preserved. This is expected since the reconstruction was computed from the full sinogram. On the
other hand, the sharpness of the reconstruction is visibly decreased and high spatial frequencies are not fully
retrieved. FBP or the specific Matlab implementation of FBP by the iradon-function with options Ram-Lak
as filter and linear as interpolation method, seems to reduce the sharpness of the reconstruction with
respect to the phantom. Second, the same vertical profile through the reconstruction of the truncated
projections via sinogram-extension is shown against the true solution (figure 3(b)). Note that here, the mean
value of the original gray values is shifted such that reconstruction and original can be easily compared. In
addition to the decreased feature sharpness, which cannot exclusively be a consequence of local tomography
(see figure 3(a)), an artificial gradient spoils the reconstruction (see blue lines). This gradient is due to the
extremely asymmetric position of the ROI inside the sample (Kyrieleis et al 2011). Figure 3(c) presents the
result of the iterative ROI reconstruction side by side with the phantom. Gray values are found correctly
without having access to the full sinogram. Feature sharpness is clearly enhanced and comparable to the
original. Furthermore, the peripheral glow appearing in (b) is visibly reduced. Finally, profiles through
different iterates, i.e. through intermediate reconstruction steps are plotted in figure 3(d). During successive
iterates, relative contrast is increased and the change between successive iterates is decreased (see also inlay
(2) of figure 1(c)). Note, that the observed benefit in feature sharpness may not necessarily be a benefit in
resolution. Further, we cannot explicitly exclude, that the loss in feature sharpness in case of the pure
FBP-ansatz is a consequence of the specific implementation of FBP used in this work.

Next, the influence of the sample shape on the result of the iterative reconstruction is examined.
Figure 4(a) puts the simulation of a ROI embedded in a perfectly circular sample side by side with
simulations using phantoms of the same sample but with shapes deviating from a circle to different degrees
(figures 4(b)–(c)). While the single step ROI reconstruction based on sinogram extension does not show
significant dependence on the geometry of the sample and displays similar artifacts of peripheral glow and
elevated gray values for all three cases, the iterative algorithm is capable to capture the correct gray values
inside the center of the ROI in every examined configuration but shows increasing artifacts of peripheral
glow toward the outer regions of the ROI with increasing deviation from the circular shape of the entire
sample. This is illustrated by line profiles through phantom, single step reconstruction and iterative
reconstruction displayed to the left of figures 4(a)–(c). Note that here, for clarity, the mean gray value of the
single step reconstruction was shifted to that of the phantom in order to enable direct comparison of the
profiles. These findings allow the conclusion that the effect of geometry correction is mainly two-fold: First,
the projected gray values are reduced to the contribution of the ROI. This leads to correct mean gray values
inside the reconstructed ROI. Second, geometry dependent artifacts such as peripheral glow are reduced.
Once the cross-section of the full sample deviates from a circle, compensation of geometry dependent
artifacts is not that efficient. Yet, the correct range of gray values inside the reconstructed ROI is less strongly
affected and can be retrieved even for samples slightly deviating from a circular/cylindrical shape. In this
case, however, artifacts of peripheral glow have to be corrected by different approaches. The performance of
the proposed algorithm in view of even stronger deviations of the sample shape from a cylindrical geometry
has not been examined within the scope of this work.
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Figure 4. (a) From left to right: Phantom of circular shape with highlighted region of interest consisting of 100 pixels in diameter.
Filtered back-projection of the extended truncated sinogram. Iterative reconstruction of the truncated sinogram. Color bars
indicate gray values of phantom/reconstructions. Line profiles through phantom, single step (with adjusted mean gray value) and
iterative reconstruction. Red arrow points to regions where increasing influence of peripheral glow can be observed. (b) Same
arrangement as in (a) for a phantom slightly deviating from circular shape. (c) Same arrangement as in ((a)–(b)) for a phantom
considerably deviating from circular shape.

Figure 5. (a) Region of interest extracted from phantom and consisting of 100 pixels in diameter. (b) Iterative reconstruction of
the truncated sinogram using 1100 projections. (c) Iterative reconstruction of the truncated sinogram using 550 projections. (d)
Iterative reconstruction of the truncated sinogram using 184 projections. The displayed gray value range is the same for ((a)–(d)).

Furthermore, the influence of the number of projections on the reconstructed gray values is determined.
To this end, iterative reconstruction of the truncated sinogram (figure 2((c), middle)) is performed using all
1100 projections (figure 5(b)), 550 projections (figure 5(c)) and 184 projections (figure 5(d)). Parameters for
the iterative reconstruction are the same as for the simulation presented in figure 2. While for a reduced
number of projections expected artifacts more and more deteriorate the reconstruction, the overall range of
reconstructed gray values is not influenced compared to the original (figure 5(a)). This demonstrates that the
iterative reconstruction procedure is still able to reconstruct gray values in the proper range even for a
limited number of projections.

Finally, to avoid overly optimistic conclusions drawn from noise free reconstructions and to illustrate the
influence of the number of iterations as well as the influence of the regions outside the ROI on the quality of
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Figure 6. (a) Phantom of circular shape with highlighted region of interest consisting of 100 pixels in diameter and containing
homogeneously filled quadratic regions of randomly chosen gray value. (b) Iterative reconstruction from noise free truncated
sinogram terminated after one iteration, after 10 iterations and after 100 iterations. (c) Iterative reconstruction from truncated
sinogram with additive Gaussian noise terminated after 100 iterations. (d) Phantom of circular shape with highlighted region of
interest consisting of 100 pixels in diameter and containing homogeneously filled quadratic regions of randomly chosen gray
value centered around zero gray value. The region of interest is chosen such that it contains zero gray value. (e) Influence of gray
values from outside the ROI on the reconstructed ROI. Artifacts can be prevented by artificially extending the difference sinogram
during iterative reconstruction. Histograms of the reconstructed gray values inside the ROI for different amount of extension.
Inlays: reconstructed ROI. Color bars indicate gray values of phantom/reconstructions.

the reconstruction, a second phantom is considered: an arrangement of squares of randomly chosen gray
values in the interval of [0, 5] (see figure 6(a)). The remaining parameters of the simulation, the number of
pixels of phantom and ROI and the number of projections are not changed. Figure 6(a) presents the
phantom with highlighted and separately displayed ROI followed by (b) iterative reconstructions of noise
free truncated projections stopped after 1, 10 and 100 iterations and (c) by an iterative reconstruction (100
iterations, low-pass filter kernel set to 0.47 pixels) from projections with added Gaussian noise of mean value
µnoise = 0 and with standard deviation σnoise = 10. The ratio between the standard deviation σsignal of the
noise free projections and σnoise is σsignal/σnoise ≈ 25.6. Figure 6(b) details that while edges appear blurred
after the first iteration, after ten iterations, sharpness is significantly increased. Yet, inspection of the noise
free reconstructions points to the necessity of avoiding overly strong transfer of high spatial frequencies in
the reconstruction. This can be achieved by low-pass filtering as detailed in equation (12), or/and by
terminating the reconstruction after sufficient iterations. In figure 6(c), the influence of random noise is
visible. Importantly, however, neither the overall gray values of the squares, nor the general appearance of the
reconstruction are impaired. Note that for this reconstruction, the low-pass filter kernel was slightly
increased compared to the filter kernel used for the noise free simulations. Hence, the parameter choice of
the proposed algorithm has to be balanced such that neither the positive effect of enhancement of high
spatial frequencies is lost, nor noise deteriorates reconstructions.

Last but not least, the influence of regions outside the ROI on the reconstruction is examined: A
phantom consisting of mean zero gray value is chosen for tomographic reconstruction from truncated
projections. The ROI itself is chosen such that it is free of material and hence contains only gray values of
zero. Figure 6(d) displays such a phantom. Figure 6(e) shows iterative reconstructions of the ROI. Gray
values from outside the ROI particularly contaminate the edges of the reconstruction, as can be clearly seen
in the left part of figure 6(e). A way out is to extend the difference sinogram during iterative reconstruction,
in the same manner as the sinogram would be extended for single step reconstruction and as detailed in the
description of the algorithm. The effect of extending the difference sinogram pushes artifacts outside the
actual ROI and allows to achieve less contaminated reconstructions (see figure 5(e), middle and right part).
The histograms in figure 5(e) demonstrate that indeed, it is possible to reconstruct gray values centered
around zero nearly everywhere inside the ROI with the proposed iterative method given the fact that the
mean gray value inside the sample is centered around zero and provided that the difference sinogram was
extended during reconstruction.
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Figure 7. (a) Top: Filtered back-projection of a full sinogram from a foam sample inside a polymer tube; scale bar: 100 µm.
Bottom: Zoom into the central ROI; scale bar: 10 µm. Green dot: Position of the axis of rotation. Light green circle: rFOV of ROI.
(b) Reconstruction from a truncated sinogram with artificial extension; white ring in (a) marks the amount of extension; scale
bar: 10 µm. (c) Iterative reconstruction from the truncated sinogram; scale bar: 10 µm. (d) Offset corrected dot structures in
(top) the reconstruction based on the truncated, extended sinogram, (middle) the iterative reconstruction based on the truncated
sinogram and (bottom) the reconstruction using the full sinogram. (e) Sharpness of mean dot structure (see (d)). (f)
Reconstructed mean gray values outside the ROI. Dashed line: homogeneously filled hollow cylinder of background value b; black
line: truncated, re-projected sinogram from sample (a) with empty ROI (see inset); light red line: truncated measured sinogram
with subtracted sinogram from iterative ROI-reconstruction.

3. Local tomography of foam from an earplug

For experimental validation, the proposed method is tested on measured data. For this purpose, dense foam
from an earplug is selected as a test pattern which is rich in interior structure. It is placed in a polymer tube
of d= 1.4mm diameter and aligned in a home-built micro-CT setup with a micro-rotating copper anode
(Rigaku mm007). Acceleration voltage is set to 40 kV and the tube current to 30mA. The sample is
positioned 500 mm behind the focal spot of the rotating anode (spot size≃70 µm). Projection images are
recorded with a high resolution x-ray camera (scintillator plus lens unit: XSight Micron camera model LC
0540, Rigaku) and pixel size 0.54 µm, placed 5 mm behind the sample. This minimizes blur by the source
spot and justifies the assumption of parallel beam illumination. The sample is rotated from 0 deg to 180 deg
(1801 projections with angular steps of 0.1 deg). Each frame contains the full sample and is exposed for 40 s.
In this way, we have access the complete projections, and can compute truncated projections artificially for
reconstruction. In the first step before any reconstruction, the single projections are binned to a pixel size∆p

of 1.35 µm. Due to the tomographic sampling criterion, dπ/(2∆p)≈ 1629 projections are required to
properly reconstruct the ROI. Hence, the tomogram is angular-wise slightly over-sampled. Reconstruction
artifacts from insufficient angular sampling can thus be excluded. Single frames are pre-processed by
Bronnikov-aided correction (Witte et al 2009) to eliminate effects of edge enhancement, see also Bartels et al
(2013), Töpperwien et al (2016) for implementation of this correction at in-house micro-CT sources. The
negative natural logarithm of the processed projections is used for absorption based tomography, i.e. to
reconstruct the 3D distribution of the absorption coefficient µ of the sample.

Projections are low-pass filtered. The full sinogram consisting of 1319 pixels in spatial direction (after
binning) is processed by a tomographic wavelet based filter for ring removal (Münch et al 2009).

First, a slice of the complete sample is reconstructed by FBP (see figure 7(a)). Second, the sinogram is
truncated to 99 pixels symmetrically around the axis of rotation. The truncated sinogram is reconstructed
twice: (i) by artificial extension of the sinogram (symmetrical addition of 118 pixels in total in the spatial
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direction replicating the outermost gray values) and (ii) by iterative ROI-tomography (100 iterations,
extension of the difference sinogram by approximately the same amount of pixels as used for extending the
truncated sinograms for reconstruction (i)). The iterative procedure is stopped after 100 iterations, since
successive iterations do not show visible differences anymore. Results are depicted in figures 7(a)–(c).

Compared to the ROI shown in (a), the iterative procedure yields correct gray values from truncated
projections, i.e. in agreement with those reconstructed from the complete projections, while the single step
sinogram extension technique results in systematically elevated gray values. The gain in feature sharpness
observed in simulations is illustrated by three examples of dot-like structures extracted from (a–c) and
shown in (d). The visible impression that iterative ROI tomography increases feature sharpness is further
emphasized by comparing the full widths at half maximum of the mean angular averaged dot profiles (see
(e)). Finally (f) depicts the mean projected gray values for the region outside the ROI, obtained by the
differences between truncated sinograms and sinograms computed from the ROI-reconstructions. Both
curves agree well despite some deviation for the projections taken under about 20 degrees.

4. Conclusion

In this work, an iterative algorithm for local tomography was introduced that is capable of reconstructing
quantitative gray values. Importantly, no full projections are required. The main underlying idea is to exploit
the linearity of the Radon transform and knowledge about the shape of the full sample, while minimizing the
mismatch between a uniform ROI filled with constant zero gray value and the FBP from the difference
between measured sinogram and forward projected current guess of gray values and structures inside the
ROI. The algorithm was designed for samples of cylindrical shape and with small deviations in the index of
refraction. It covers applications/samples commonly examined in the field of micro/nano-CT of biological
tissues. Yet, the algorithm can be adapted to shapes of different geometry, by modeling the geometry
dependent offset correction appropriately. As a positive side-effect, the algorithm does not only allow
reconstructing correct gray values and reduces peripheral glow but may increase feature sharpness of the
reconstruction compared to a single-step FBP approach. The extension of this algorithm to cone beam
tomography is straightforward despite the design of the geometric offset correction which would require
some more work. Importantly, the method is not limited to using a FBP approach: it can be combined with
any tomographic reconstruction operator and its inverse. Finally, we stress that this correction scheme could
be combined with overview scans recorded at different magnification, as well as with clever stitching of ROIs
to extend the reconstruction, as required for challenging applications such as 3D histology of large brain
regions. For example, covering a cubic millimeter of brain tissue with 50 nm resolution would be a major
benchmark for neuroscience, and a correspondingly large challenge not only for data acquisition but also for
ROI tomographic reconstruction.
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