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Abstract

Causal queries about singular cases, which inquire whether specific events were causally con-

nected, are prevalent in daily life and important in professional disciplines such as the law, medi-

cine, or engineering. Because causal links cannot be directly observed, singular causation

judgments require an assessment of whether a co-occurrence of two events c and e was causal or

simply coincidental. How can this decision be made? Building on previous work by Cheng and

Novick (2005) and Stephan and Waldmann (2018), we propose a computational model that combi-

nes information about the causal strengths of the potential causes with information about their

temporal relations to derive answers to singular causation queries. The relative causal strengths of

the potential cause factors are relevant because weak causes are more likely to fail to generate

effects than strong causes. But even a strong cause factor does not necessarily need to be causal

in a singular case because it could have been preempted by an alternative cause. We here show

how information about causal strength and about two different temporal parameters, the potential

causes’ onset times and their causal latencies, can be formalized and integrated into a computa-

tional account of singular causation. Four experiments are presented in which we tested the valid-

ity of the model. The results showed that people integrate the different types of information as

predicted by the new model.
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1. Introduction

The ability to reason causally about how the world works is one of our central cogni-

tive capacities (see Sloman, 2005; Waldmann, 2017, for overviews). While previous

research has frequently investigated the question of how we learn and reason about gen-

eral causation, that is, how we learn about causal relationships referring to classes of

objects or people (e.g., “smoking causes lung disease”), relatively little is known about

how we reason about causal relations between singular events (but see Danks, 2017;

Lombrozo & Vasilyeva, 2017). For example, if a smoker is diagnosed with lung cancer,

we might wonder whether it has been her smoking that caused her lung cancer or whether

the disease was caused by something else, such as exposure to asbestos. In the context of

law, we may be interested in whether a defendant actually caused the death of his fiancée

when he was drunk, which is a different query from a sociologist who is interested in the

general relation between alcoholism and violent acts (see Hart & Honoré, 1959/1985;
Lagnado & Gerstenberg, 2017). Singular causation queries are aided by knowledge about

general causal relations, but cannot be reduced to them. Knowing that smoking proba-

bilistically causes lung cancer does not entail that the lung cancer of a specific smoker

was actually caused by her smoking.

More abstractly, when assessing singular causation, reasoners need to take into consid-

eration that a singular co-occurrence c and e of the general factors C and E, even if it is

known that there is a general causal relation between C and E (i.e., C → E), could well

be a mere coincidence. The present research asks how reasoners form beliefs about causal

links in singular cases. If the potential causes and a particular outcome are known to have

co-occurred, what influences the degree to which a reasoner believes that there has been

a causal connection between them?

Previous studies on singular or actual causation have focused mostly on a different

problem, causal selection, which refers to the phenomenon that even though several fac-

tors typically need to come together to generate an effect, people have the strong ten-

dency to regard only a subset of these factors as the cause(s) of the observed outcome

(e.g., Cheng & Novick, 1991; Hitchcock & Knobe, 2009; Icard, Kominsky, & Knobe,

2017; Kominsky, Phillips, Gerstenberg, Lagnado, & Knobe, 2015; Lagnado, Gerstenberg,

& Zultan, 2013; Novick & Cheng, 2004; Phillips, Luguri, & Knobe, 2015). An often-dis-

cussed example is a forest fire that occurred after a lit match had been dropped (e.g., Hal-

pern & Hitchcock, 2015). In this example, most people are more inclined to regard the

dropping of the lit match as the actual cause of the fire than the presence of oxygen in

the surrounding atmosphere. Importantly, selecting the lit match over oxygen presupposes

that the lit match has already been identified as being causally linked to the effect in this

particular situation. In this article, we do not address the question of what the factors are

that determine whether an event that is already known to be causally linked to the effect

is selected over others. We are interested in the upstream question of how the existence

of a singular causal link can be established in the first place.

To explain how reasoners determine whether two co-occurred events c and e were

causally connected and did not co-occur merely coincidentally, we propose a new
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computational model of singular causation judgments that is based on the power PC

framework of causal attribution developed by Cheng and Novick (2005) and extended

by Stephan and Waldmann (2018). We will show that the assessment of singular causa-

tion relations requires the combination of two types of information: (a) information

about the (general) causal strengths of the potential cause factors, and (b) information

about temporal features of the potential causes and about their temporal relation. The

model proposed by Stephan and Waldmann (2018) left open the questions of which

temporal factors are relevant for singular causation, how these factors can be assessed,

and how they can be computationally integrated with causal strength information to

derive predictions for singular causation judgments. The present paper addresses these

open questions. We will focus on two types of temporal information: (a) information

about the onset times of the potential causes, and (b) information about causal latencies,

that is, the time it takes causes to bring about their effects. We will show how informa-

tion about these components can be formalized and how the generalized model of causal

attribution (Stephan & Waldmann, 2018) combines causal strength and temporal infor-

mation to predict singular causation judgments. The results of four experiments will be

reported that support the predictions of the new model. All experimental materials,

including demo videos for the studies, and the behavioral data are available under

https://osf.io/5yvs4/.

2. Assessments of singular causation require temporal information

As an everyday life example illustrating that assessments of singular causation require

the consideration of both causal strength and temporal information, consider the question

of whether Mary’s current headache is a side effect of the particular medicine she had

taken earlier that day or whether her headache was actually caused by some alternative

cause. To answer this singular causation query, it is necessary to know whether this type

of medicine generally tends to cause headaches as a side effect and how strong the gen-

eral causal link is: The stronger it is, the more likely it is that a singular instantiation of

the respective event types is causal rather than coincidental. Merely knowing the general

causal strength of this relation is not enough, however, to determine whether Mary’s hav-

ing taken the medicine actually caused her headache, because even a perfectly reliable

cause with deterministic causal strength could have been preempted in its efficacy by an

alternative cause on a given singular occasion. Maybe Mary’s headache was actually

caused by the unusual yoga exercise she also did earlier on that day. In the present arti-

cle, we argue that temporal information is relevant for the assessment of singular causa-

tion because assessments of singular causation must take the possibility of causal

preemption into account—and it is through the combination of causal strength and tempo-

ral information that this goal can be accomplished.

Cases of preemption are an often-discussed phenomenon in the philosophical literature

on singular causation (e.g., Halpern, 2016; Halpern & Hitchcock, 2015; Hitchcock, 2007,

2009; Lewis, 1973; Menzies, 1996; Pearl, 2000) because they pose a problem for
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counterfactual and probabilistic theories of causality. A prominent example of preemption

that can be used to illustrate the temporal dimensions that we consider to be relevant is a

scenario involving two rock throwers, Billy and Suzy. It is assumed in this scenario that

neither Billy nor Suzy, when acting alone, ever fails to hit and destroy a bottle. Hence, it

is assumed that the rock throwings of either protagonist have deterministic general causal

strength. It is then mentioned that, on a particular occasion, Billy and Suzy both end up

aiming for the same bottle and both are throwing their rocks with nearly identical speed.

Crucially, Suzy manages to throw her rock a bit earlier than Billy, and we hear the bottle

shatter. In this case, it was intuitively Suzy’s and not Billy’s rock throwing that was the

singular cause of the bottle’s breaking, regardless of our certainty that Billy’s throw

would have broken the bottle had Suzy not thrown her rock first.

2.1. Onset differences

One temporal factor relevant to determine the preemptive relation between the poten-

tial singular causes of an effect, which is made explicit in the scenario description about

Billy and Suzy, is the onset difference between the potential causes. It is explicitly men-

tioned in the story that Suzy throws her rock earlier than Billy.

Generally, singular cases involving preemption can be illustrated schematically with

neuron diagrams like the one shown in Fig. 1 (see Paul & Hall, 2013). The diagram mod-

els a situation like the one in the discussed scenario in which one of the potential causes,

say our potential target cause c, was preempted by an alternative cause a that occurred

earlier than c. Scenarios of causal preemption in which one of the potential causes is

instantiated earlier than the other are also called “early preemption” in the philosophical

literature (see, e.g., Hitchcock, 2007). Abstractly, what the scenario illustrates is that,

everything else being equal, if a occurs earlier than c on an occasion on which both are

sufficiently strong to generate the effect, then a will causally preempt c. Conversely, c
will causally preempt a when c occurs earlier than a in this kind of situation. These two

possibilities are depicted in Fig. 2A.

2.2. Causal latency

We have mentioned above that onset differences between the potential singular causes

of an effect determine their preemptive relation under the assumption that “everything

Fig. 1. Neuron diagram modeling a situation of causal preemption (cf. Paul & Hall, 2013). The interrupted

causal arrow departing from c and the arrow connecting a and e illustrate a situation in which c was causally

preempted by a. The fact that a is positioned left of c and the fact that c is positioned left of e indicates that

a occurred first, followed by c and then e.
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else is equal.” The second temporal factor that we suggest to be relevant for the assess-

ment of singular causation and to which the “everything else being equal” clause is refer-

ring is the potential causes’ causal latencies, by which we mean the time it takes a cause

to produce its effect. For example, swallowing a dose of aspirin does not bring relief right

away. It takes some time until the medicine manifests its pain-relieving capacity. When

we enter an elevator and press a button, it takes a moment until the elevator begins to

move. In the scenario about Billy and Suzy, information about causal latency was con-

veyed when it was mentioned that both protagonists are throwing their rocks toward the

bottle with almost identical speed.

An important characteristic of causal latencies is that they are, like causal strength and

unlike event onsets, typically unobservable properties of causes. The causal latency of a gen-

eral cause factor C must be inferred from observable onset differences between singular

instantiations of C and E (cf. Bramley, Gerstenberg, Mayrhofer, & Lagnado, 2018). In an

environment that is shielded from potential alternative causes, the observed delay between c
and e represents a direct measure of the causal latency of c; otherwise C’s causal latency has
to be extracted from the background rate of E produced by alternative causes A.

Neuron diagrams illustrating the relevance of causal latency for the assessment of sin-

gular causation are depicted in Fig. 2B. Everything else being equal (i.e., given identical

onset times of the potential causes) a sufficiently strong potential target cause c of the

effect e preempts a simultaneously sufficiently strong potential alternative cause a on an

occasion if c’s causal latency is smaller than a’s. Causal latency here refers to the time it

would have taken the target cause c to produce the effect if it had acted in isolation. Con-

versely, a preempts c in causing e if a’s causal latency is smaller than c’s on this occa-

sion. Of course, the “everything else being equal” criterion will rarely hold in real-life

situations. On most occasions, different onset times will be combined with different cau-

sal latencies, which leads to the possibility that even causes with a long causal latency

can preempt alternative causes if they have an onset advantage. Likewise, a target cause

c that occurs after its causal competitors can still manage to preempt them if it has a

short causal latency.

Fig. 2. Illustration of the temporal components relevant for the assessment of the potential preemptive rela-

tion between two potential causes of an effect. (A) illustrates the relevance of the instantiation times of the

potential causes. (B) illustrates the relevance of the causal latencies of the potential causes.
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The focus of the present paper is on the role of temporal assumptions in singular cau-

sation judgments. However, given that singular causation assessments require general cau-

sation knowledge (cf. Danks, 2017), it is interesting to see what role temporal

assumptions have been found to play in general causal learning (see Buehner, 2017, for a

state-of-the-art review of research on the role of time in general causation learning). A

typical early finding was that reasoners seem to have a strong preference for spatio-tem-

poral contiguity when learning about the general strengths of causes (e.g., Shanks, Pear-

son, & Dickinson, 1989). These studies manipulated temporal gaps and found that

learning about contingencies becomes more difficult with increasing spatio-temporal dis-

tance between causes and effects.

However, it could also be shown that contiguity becomes less potent once background

knowledge about latencies is activated by means of cover stories drawing on prior knowl-

edge. For example, Hagmayer and Waldmann (2002) showed that assumptions about tem-

poral delays determine which events in a sequence of observed events are considered

candidates for a causal relation, which in turn affected which contingencies were learned

as indicators of causal strength.

Another study, conducted by Buehner and McGregor (2006), confronted subjects with

an unfamiliar apparatus in which marbles running down a pathway could activate differ-

ent switches connected to a light bulb. During an inspection phase, the steepness of the

pathways within the machine was varied, which either suggested a relatively short or a

relatively long causal latency. During the test phase, the mechanism of the device was

covered and subjects observed multiple instances of marble insertion and light activation.

The observed delays were either compatible or incompatible with previously learned cau-

sal mechanisms. The results showed that subjects who observed highly contiguous succes-

sions of events only gave high causality ratings when the mechanism in fact suggested

short delays, while causality ratings were low when subjects expected the delays to be

longer.

In another study, Lagnado and Speekenbrink (2010) showed that lowered causal

strength judgments with increasing causal delays might indeed be due to subjects’

assumptions about the preemptive relation between the target cause and potential alterna-

tive causes that occur in the delay period. In their experiment, Lagnado and Speekenbrink

(2010) varied the causal latency of the target cause factor and the probability with which

alternative causes of the effect occurred during the cause–effect interval. This experimen-

tal design made it possible to compare causal judgments between conditions with equal

causal latencies but varying probabilities with which potential alternative causes occurred

prior to the effect. Causal judgments tended to be lower when the probability of the

occurrence of alternative causes prior to the occurrence of the effect was high but not

when this probability was low, presumably because the occurrence of alternative causes

before the occurrence of the effect opens up the possibility that the target cause was pre-

empted. Variation in causal latency alone did not affect causal judgments in this study.

While the study of Lagnado and Speekenbrink (2010) focused on the role of temporal

relations and possible cases of preemption in a general causation learning task, our focus
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is on the interaction between causal strength, temporal assumptions, and preemption in

judgments about singular causation relations.

3. Combining causal strength and temporal factors—The generalized power model
of causal attribution

The crucial idea of the present paper is that the assessment of singular causation

requires the integration of knowledge about general causal strength of the potential causes

of an observed effect and about the temporal relation between them. We have already

introduced the temporal factors that we consider to be crucial, the onset difference

between the potential causes and their causal latencies. Building on the power PC frame-

work of causal attribution (Cheng & Novick, 2005; Stephan & Waldmann, 2018), we will

show how all these factors can be combined in an integrated model of singular causation

judgments. As in the scenarios discussed in the introduction, our analysis focuses on the

relatively simple case in which a target effect E can be produced by two potential causes,

either by a target cause C or by an alternative cause A. Moreover, we consider singular

occasions on which it is known that all factors were actually instantiated, that is, on situa-

tions in which it is observed that C = 1 (or c in short), that A = 1 (i.e., a), and that

E = 1 (i.e., e).
The general causal relation between C, A, and E can be modeled with the common-ef-

fect causal Bayes net depicted in Fig. 3A, in which bC and bA denote the base rates of

the two causes and wC and wA denote the causal strength of C and A, respectively. It is
assumed that C and A represent independent causes of E that combine their influences

according to a noisy OR-gate (Griffiths & Tenenbaum, 2005; Pearl, 1988).1 According to

the causal Bayes net framework (Pearl, 1988, 2000; Spirtes, Glymour, & Scheines, 1993)

and rational models of causal induction (Cheng, 1997; Griffiths & Tenenbaum, 2005),

causal strength can be understood as the probability with which a cause generates the

effect E independent of the influence of the other causes of E (see also Rottman, 2017;

Rottman & Hastie, 2014, for overviews of research on causal Bayes nets as models of

causal reasoning).

Based on Cheng’s (1997) causal power PC theory, Cheng and Novick (2005) have pro-

posed a computational model which we will call the standard power model of causal

attribution here. The model shows how knowledge about the general causal strengths of

the potential causes of an observed singular effect e can be used to determine whether a

potential target cause c was the singular cause of e. According to the standard model, the

probability that c caused e on a singular occasion on which c, e, and a potential alterna-

tive cause a are known to have occurred (cf. Fig. 3B) can be denoted P(c → e|c, a, e),
which can be computed using Eq. 1:

Pðc ! ejc, a, eÞ ¼ wC

wC þ wA � wC � wA
¼ wC

Pðejc, aÞ : (1)
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In this equation, the target cause’s causal strength, wC, is normalized by the probability

of the effect in the presence of its potential causes, P(e|c, a, e). P(e|c, a, e) corresponds
to the sum of the potential causes’ causal strengths minus their intersection. Stephan and

Waldmann (2018) have argued that the model effectively represents a “sufficiency filter”:

It identifies among all co-occurrences of c, a, and e the proportion of cases in which the

target cause was sufficiently strong to generate the effect. The standard model thus cor-

rectly captures the notion that the probability that a target cause is the singular cause of

an effect increases with the target cause’s general causal strength. However, as Stephan

and Waldmann (2018) have pointed out, a consequence of the model’s focus on causal

strength is that it neglects the possibility that the target cause could have been preempted

by the alternative cause on a particular occasion. As a result, Eq. 1 tends to overestimate

P(c → e|c, a, e). For example, for the rock-throwing scenario in which Billy and Suzy

are assumed to be perfectly accurate rock throwers but Suzy acts earlier, the model

makes the counterintuitive prediction that we should be certain that both Suzy’s and

Billy’s throwing were the singular cause of the effect. The scenario can be modeled by

setting wC = wA = 1, which would yield Pðc ! ejc, e, aÞ ¼ 1
1
¼ 1.

Figure 3C shows the different singular causal relations that are compatible with the

assumed general common-effect model shown in Fig. 3A and the singular observation of

the three events c, a, and e, shown in Fig. 3B. Since the standard model solely focuses

on the causal strengths of the potential causes, it correctly attributes causality to c in the

situations a1, a2, and c1. Situation a1 illustrates a scenario in which the alternative cause

a does not possess sufficient power to generate the effect. In Scenario a2, the target cause

c preempts its competitor a. In Scenario c1, both c and a act in a way that is called

“symmetric overdetermination” in the literature (cf. Hitchcock, 2001; Paul & Hall, 2013;

Fig. 3. Illustration of a general common-effect model (A) with two independent causes C and A, underlying
a situation in which c, a, and e were observed (B). (C) shows alternative singular causal structures compatible

with the general causal structure and the singular observation.
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Pearl, 2000; Strevens, 2008); that is, both are sufficiently strong to generate the effect

and they unfold their causal capacity synchronously. However, the model also erro-

neously attributes causality to c whenever a situation exhibits structure b2, in which a
preempts c in its efficacy.

To incorporate the possibility of causal preemption, Stephan and Waldmann (2018)

have proposed a generalization of the standard power PC model of causal attribution. Eq.

2 summarizes the generalized model:

Pðc ! ejc, a, eÞ ¼ wC � wC � wA � α
wC þ wA � wC � wA

¼ wC � 1� wA � αð Þ
Pðejc, aÞ : (2)

Equation 2 introduces a new parameter, α, which is weighted with the product of

wC and wA. The product wC � wA � α captures the probability of preemption of the tar-

get cause by its competing alternative cause. The intersection of wC and wA identifies

cases in which C and A are both probabilistically sufficient for E. This part of the

term is relevant because causal preemption can only occur when the potential causes

are each probabilistically powerful enough to generate the effect. On these occasions,

it can either be the case that c preempts a, that a preempts c, or that c and a act sym-

metrically and instantiate a case of “symmetric overdetermination.” The α parameter

represents an allocation parameter, 0 ≤ α ≤ 1, that determines the proportion of the

sufficiency overlap in which C is preempted by A. As wC � wA � α captures the proba-

bility of preemption of the target cause by its competitor, it needs to be subtracted

from wC.

To demonstrate deviations of subjects’ singular causation judgments from the predictions

made by the standard model, Stephan and Waldmann (2018) used a cover story in their

study in which it was plausible that the alternative causes fully preempted the target cause

in its efficacy (captured by the new model by an α value of 1). The experiments supported

the model. However, a shortcoming of the study was that the temporal factors underlying a

possible case of preemption were neither spelled out nor experimentally manipulated. The

present article remedies this shortcoming by providing a link between the value of the α
parameter and the temporal factors onset differences and causal latencies.

3.1. Quantifying alpha based on onset differences and causal latencies

The onset times of the potential causes c and a are in the following abbreviated as tc
and ta. The onset difference between them can be denoted as Δt = ta − tc In Fig. 2A, Δt

is shown on the x-axes. Formally, if two potential causes c and a are both sufficiently

powerful on an occasion and have identical causal latencies, c preempts a in causing e
when Δt is positive. Conversely, a preempts c in causing e when Δt is negative.

As for causal latencies, in some contexts we may experience causal latencies that have

an (almost) invariant value (e.g., the causal delay between the pressing of an elevator but-

ton and the elevator’s starting to move), but in most cases causal latencies will be vari-

able. For example, a dose of aspirin might normally take effect after 20 min, but it is
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reasonable to expect some variability (explained by the operation of unobserved hasteners

or delayers; see, e.g., Lagnado & Speekenbrink, 2010). In most cases, it therefore seems

appropriate to represent causal latency as a random variable following a particular distri-

bution.

A standard way of modeling variable latencies is to use gamma distributions. Gamma

distributions are used, for example, in queueing theory to model waiting times (Shortle,

Thompson, Gross, & Harris, 2018). In a recent study in which Bramley et al. (2018)

investigated the role of time in general causal structure induction, gamma distributions

were used to model causal latencies. The gamma distribution represents a generalization

of the exponential distribution and is characterized by two parameters: shape, κ > 0, and

scale, θ > 0. The expected value of a random variable X following a gamma distribution

is E[X] = κ � θ. Its variance is Var[X] = κ � θ2. Different gamma distributions together

with their expected values (vertical lines) are shown in Fig. 4.

With these formalizations of the different temporal components at hand, the α parame-

ter of our model can be quantified. We here consider situations in which the causal laten-

cies of the potential causes have been learned through multiple observations and in which

the causes’ onset difference in the target situation is known. In these cases, the probabil-

ity that the target cause c was preempted by its competitor a if both happen to be simul-

taneously sufficient for the effect corresponds to:

α ¼ P ta!e þ Δt< tc!eje, c, að Þ: (3)

Fig. 4. Example of gamma distributions with different shape (κ) and scale (θ) parameters. The expected

value of a gamma distribution is given by E[X] = κ � θ. The expected values of the example distributions are

illustrated by the vertical lines.
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α corresponds to the probability that the sum of the causal latency of the competing cause

a and the difference between c’s and a’s onset times is smaller than the causal latency of

c, given e, c, and a. If the causal latencies of C and A are represented as fixed invariant

values, α can be determined simply by comparing the sum of t(a→e) and Δt with t(c→e). In

this case, α will either be 0 or 1. If the causal latencies exhibit variability and are mod-

eled with gamma distributions, α can take on any value between 0 and 1. Its value can

then be approximated with the following Monte Carlo (MC) algorithm:

1. Sample N pairs of causal latencies (tc→e, ta→e) from the latency distributions (tC→E,

tA→E) of C and A, respectively.

2. Calculate ta→e + Δt for all sampled ta→e-values.

3. Count all pairs for which ta→e + Δt < tc→e.

4. Divide this count by N.

For an illustration, consider Fig. 4 again. Assume that the target cause’s causal latency

follows the gamma distribution with the parameters κ = 10 and θ = 150, and that the

alternative cause’s causal latency corresponds to the rightmost distribution. It can be seen

that the target cause tends to act more quickly than its competitor but that the curves also

visibly overlap, which implies that there exist occasions on which the alternative cause

outperforms the target cause. The α parameter captures the probability with which this

happens. For occasions on which the two causes occur simultaneously (i.e., Δt = 0), the

MC algorithm presented above yields a value of α = 0.05, which means that the probabil-

ity that a acts more quickly than c on such a singular occasion is 5%. Now imagine that

it is known that both causes not only occurred at the same time but also that their causal

latencies followed the same gamma distribution. In this case, α would be 0.50 because in

a set of randomly sampled pairs of causal latencies, the sampled latency of the alternative

cause would be smaller in half of the pairs.2

Let us now demonstrate how the whole generalized model works by first looking again

at the original version of the rock-throwing scenario in which the protagonists represent

deterministic causes. The model’s causal strength parameters wC and wA need to be set to

1.0 in this case. Furthermore, since Billy and Suzy both throw their rocks with almost

identical speed on the target occasion, identical causal latency values can be assumed in

this case, tc→e = ta→e. Finally, since Suzy throws her rock earlier than Billy, Δt is <0. α
would take on a value of 1.0 in this case because ta→e + Δt < tc→e. If we insert all

parameter values into Eq. 2, we obtain P(c → e|c, a, e) = 0. Hence, in line with the intu-

ition the scenario aims to convey and contrary to what the standard model predicts, the

generalized model predicts that Billy’s rock throwing was not the singular cause of the

bottle’s shattering.

Let us now consider the more complicated probabilistic case and assume that rock

throwings of Billy and Suzy each have a causal strength of only 0.5, that is, wC = wA =
0.50 this time. We further assume that the velocities with which the protagonists throw

their rocks exhibit variability and that Billy, on average, throws his rocks slightly faster

than Suzy. We assume that Billy’s and Suzy’s causal latencies are described by the mid-

dle and the rightmost gamma distribution in Fig. 4, respectively. Finally, we assume that
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Suzy throws her rock exactly 550 ms before Billy on the target occasion, which yields

Δt = −550 ms. Remember that when we first considered the two rightmost gamma distri-

butions in Fig. 4 and assumed Δt = 0 ms, we obtained α = 0.05. Since we now assume

that Δt = −550 ms, we can imagine that the rightmost gamma distribution describing

Suzy’s causal latency is shifted 550 ms to the left on the x-axis, thereby increasing the

overlap of the distributions. As a result, it should be more likely now that Suzy’s throw-

ing her rock preempted Billy’s. Applying our sampling algorithm, we indeed obtain a

higher value of 0.20 for α.
We can now illustrate what happens if we enter all the parameter values into Eq. 2.

First, wC � wA in the numerator yields 0.50 � 0.50 = 0.25, implying that Billy and Suzy’s

rock throwings are simultaneously sufficiently powerful to generate the effect in 25% of

the situations in which the two agents aim at the same target. The α value of 0.20 that

we estimated implies that Suzy’s throwing can be expected to preempt Billy’s in 20% of

these situations. We thus obtain wC � wA � α = 0.50 � 0.50 � 0.20 = 0.05 for the product

in the equation’s numerator. The product of 0.05 means that Billy’s throwing is pre-

empted by Suzy’s throwing in 5% of all situations in which both protagonists aim at the

same bottle. These 5% should therefore be attributed away from the target cause accord-

ing to the model. We obtain P(c → e|c, a, e) = 0.60: The probability that Billy’s throw-

ing was the singular cause of the effect on this occasion is 60%.

Let us now see what would have happened if Suzy had not had the onset advantage on

her side and that both protagonists had thrown their rocks simultaneously. We already

know that α is 0.05 in this case, implying that we should have been slightly more confi-

dent that Billy’s throwing was the singular cause. The model predicts that our confidence

should have increased to P(c → e|c, a, e) = 0.65. Now imagine it had been Billy who

had the onset advantage on his side, implying Δt = 550 ms. α would have been close to

zero in this case (0.01). Yet P(c → e|c, a, e) would still have only increased to 0.66. The

reason for this rather small increase is the relatively low causal strength of Billy’s throw-

ing of only 0.50 and the fact that the rock throwing of his competitor Suzy has identical

causal strength. The standard model (Eq. 1) predicts almost the same value in this case

(0.67), which illustrates that the generalized model reduces to the standard model when α
approaches 0.

Consider now the case of “symmetric overdetermination.” Imagine that Billy and Suzy

throw their rocks with identical speed at the same time with sufficient strength. This case

can be modeled by setting α to 0. If both potential causes are by definition assumed to

act symmetrically, no preemption occurs and it seems normative to judge both acts to be

singularly causally linked to e (cf. Lagnado & Gerstenberg, 2017; Pearl, 2000; Schaffer,

2003).3

In sum, the generalized power model of causal attribution we have presented combines

causal strength information with temporal information about onset times and causal laten-

cies to estimate the probability that a target cause was the singular cause of an observed

effect. Fig. 5 shows the predictions that the model makes for different value combinations

of wC, wA, and α. Colored lines represent different values of the target cause’s causal

strength wC; the alternative cause’s causal strength wA is shown on the x-axes (decreasing
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in magnitude). The different panels represent different α values. As can be seen, the

model predicts that a reasoner should be more confident that the target cause was the sin-

gular cause of the observed effect the higher its causal strength is relative to the causal

strength of the potential alternative cause. Given a particular non-zero value for wA, P
(c → e|c, a, e) increases with increasing values of wC. Similarly, given a particular non-

zero value for wC, P(c → e|c, a, e) increases with decreasing values for wA. In the case

of wA = 0 and wC > 0, the model predicts that we can be certain that c caused e because

there is no alternative cause that could have generated e. Fig. 5 also shows that these

effects are moderated by the probability with which the target cause is preempted by the

alternative cause: Given a particular combination of wC and wA, our confidence that the

target cause caused the effect should decrease with increasing values of α. It can also be

seen that this mitigating effect is particularly pronounced for high causal strength values.

For example, for α = 1.0, which is shown in the last panel, P(c → e|c, a, e) approaches 0
the stronger the alternative cause A is. For α = 0 (first panel), the predictions of the gen-

eralized model are identical to those made by the standard model. This panel with α = 0

illustrates that the standard model, due to its neglecting temporal information and the pos-

sibility of preemption, tends to overestimate P(c → e|c, a, e).
The following four experiments will test the core assumptions of our generalized

model. The focus of the studies will be on the interaction between causal strength, tempo-

ral assumptions, and preemption in judgments about singular causation relations.

4. Experiment 1

The goal of Experiment 1 was to test whether the two temporal components, causal

latency, and onset difference, affect reasoners’ singular causation judgments in the way

predicted by the new model. The α parameter of the new model integrates onset and cau-

sal latency information and assigns equally important roles to both factors, which means

that a relatively slowly acting cause might compensate its disadvantage on this dimension

with an advantage on the onset dimension and vice versa. We aimed to test if subjects

would integrate both types of information in this way. Moreover, the first study aimed to

isolate the influence of the temporal factors from the influence of causal strength, which

was achieved by testing deterministic causes. The standard causal power model of attribu-

tion (Eq. 1) predicts high singular causation ratings in this case. Finally, to keep things

simple in this initial study, the cause factors were assigned fixed, non-varying causal

latencies as well as fixed, non-varying onset times.

The four different scenarios involving two potential causes, labeled A and B, of a single

effect are shown in Table 1. The two causes were associated with different combinations of

causal latency and onset times across the different situations. When both potential causes

have equal causal strengths, our model predicts that subjects should give high singular cau-

sation ratings for the cause for which the sum of causal latency and onset time is smaller, as

it is unlikely that this cause was preempted by its competitor. The sum of causal latency and

onset time for each of the two potential causes is listed in the last row of Table 1. Subjects
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were expected to give high singular causation judgments when the target cause was Cause A
and low judgments when the target cause was Cause B.

In the first scenario, the influence of onset differences was isolated as both causes had

identical causal latencies. While both potential causes always produced the effect after

800 ms in this scenario, the onset difference was Δt = 800 ms. The second scenario

tested the influence of causal latencies. Both causes always occurred simultaneously

800 ms (Δt = 0 ms) after a trial had begun but produced the effect with different laten-

cies.

The last two scenarios (3 and 4) pitted causal latency and onset difference against each

other. Two different versions (A and B) tested whether subjects actually integrated both

temporal components or whether they considered one component to be more important

than the other. For example, had we only tested the third scenario, higher singular causa-

tion judgments for cause A could be explained by a bias toward relatively low causal

Fig. 5. Predictions of the generalized power model of causal attribution (Eq. 2) for different value combina-

tions of wC, wA, and α.

Table 1

Overview of the set of different situations tested in Experiment 1

(1) Different

Onsets but Equal

Causal Latencies

(2) Equal Onsets

but Different Cau-

sal Latencies

(3) Different

Onsets and Causal

Latencies (A)

(4) Different

Onsets and Causal

Latencies (B)

Cause A Cause B Cause A Cause B Cause A Cause B Cause A Cause B

Onset (ms) 800 1,600 800 800 1,600 800 800 2,400

Causal latency (ms) 800 800 800 1,600 800 2,400 1,600 800

Sum 1,600 2,400 1,600 2,400 2,400 3,200 2,400 3,200
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latencies. Likewise, results in the expected direction in Scenario 4 could be explained by

a bias toward causes with an onset advantage. By testing both cases, we can show that

onset times and latencies are both relevant.

4.1. Methods

4.1.1. Participants
Three hundred and eighty-four subjects (Mage = 35.14, SDage = 12.38, 202 female, 178

male, four subjects did neither indicate male nor female as their gender) were recruited

via Prolific (www.prolific.ac). This sample size (n = 96 subjects per scenario) allows us

to detect medium effects (of d = 0.60) in single group comparisons conducted with con-

servative two-sided t tests with more than 80% test power. We planned to analyze the

data using planned contrasts, which entails an even higher test power. No data were ana-

lyzed until n = 96 subjects per condition had completed the study. Subjects were at least

18 years old, had at least an A-level degree, were native English speakers, and had an

approval rate concerning participation in previous studies of at least 90%. Subjects were

paid £1.25 for their successful participation.

4.1.2. Design, materials, and procedure
A demo video of the experiment is available under https://osf.io/3rfgx/. Subjects were

randomly assigned to one of four different scenarios (n = 96) that varied with respect to

the combination of causal latencies and onset differences of the two potential causes as

shown in Table 1. Several factors were counterbalanced between subjects that will be

described below.

Subjects were presented with a story about a fictitious medieval kingdom called “Exto-

nia” whose king had two watchtowers (“North” and “South”) built at the border to pro-

tect the empire from invading barbarians. Subjects learned that the watchtowers were

instructed to send carrier pigeons to the palace to cause alarm whenever they spotted bar-

barians approaching the border. It was pointed out that pigeons automatically set off an

alarm the moment they arrive at the palace. Participants were asked to take the perspec-

tive of Extonia’s secretary of defense who plans to inspect the efficacy of the kingdom’s

defense system. It was mentioned that two factors must be investigated: the flight dura-

tions of the pigeons from the two towers and the alertness of each tower (i.e., how fast

each tower reacts when barbarians are coming). The flight durations of the pigeons con-

stituted our manipulation of the towers’ causal latencies, whereas the reaction times of

the towers allowed us to manipulate onset differences.

Participants were further instructed that they will learn about the two factors in sep-

arate learning phases. They were also informed that they will observe 10 pigeons from

each tower in the flight duration phase (i.e., 20 observations in total) and that they will

make 10 observations in the alertness phase. The function of these learning phases pre-

senting multiple trials was to establish the general causal relationship and the relevant

parameter values. The instructions additionally contained illustrations of how the
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animations in the two different learning phases look (see Fig. 6). Finally, participants

were informed that at the end they will be asked to answer a causal test query about

a singular occasion on which the palace was alarmed. Subjects had to pass five

instruction check questions probing their understanding of the scenario before they

could proceed. Subjects who failed to answer all these questions correctly four times

in a row were counted as invalid and excluded from the data set prior to any analysis

of the data.

Whether subjects first learned the flight durations of the pigeons (cf. Fig. 6A) or began

with the onset differences (cf. Fig. 6B) between the two towers was counterbalanced

between subjects. The flight duration learning phase consisted of two parts, as subjects

observed the two towers separately. Whether participants began with tower “North” or

“South” was also counterbalanced between subjects. In each trial, the sending of a carrier

pigeon was indicated by a colored circle surrounding the active watchtower that appeared

with a delay of 500 ms. The corresponding inactive tower was transparent (see Fig. 6A).

The arrival of the pigeon at the palace was signaled by a colored circle surrounding the

palace. The circles remained visible until the end of the trial. The 10 flight durations pre-

sented for each tower were based on the causal latencies tested in the respective condi-

tions. Whether tower “North” or tower “South” had the faster pigeons was

counterbalanced between subjects. After each trial, participants had to click a “Next” but-

ton to proceed to the next observation. The “Next” button was operational 500 ms after

the circle around the palace had appeared. After subjects finished their observations, they

proceeded to the learning phase of the second relevant factor. The animation shown dur-

ing the onset learning phase resembled the illustration depicted in Fig. 6B. The palace

was masked with a grey rectangle in this phase to underline that it was irrelevant in this

case. As in the flight duration phase, the sending of letter pigeons was indicated by col-

ored circles surrounding the towers. The 10 onset differences subjects observed depended

on condition. Whether tower “North” or tower “South” reacted more quickly was counter-

balanced between subjects.

Fig. 6. Illustration of the learning task used in Experiment 1.
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Subjects then proceeded to the target situation. A situation was described in which the

palace had been alarmed. Participants read that the people of Extonia now want to deco-

rate the crew of the tower that had caused the alarm on this occasion. All that the Extoni-

ans knew, however, was that both towers had spotted the barbarians and had sent a

pigeon to the palace on this occasion. Subjects were also shown an image showing col-

ored circles around each tower and around the palace. We then asked subjects to indicate

how strongly they believed that the alarm was caused by tower “North”/“South” on this

occasion. Judgments were provided using an 11-point rating scale with end points “defi-

nitely not caused by Tower ‘North/South’” and “definitely caused by Tower ‘North/
South’” (the midpoint was labeled “50:50”). This rating was intended to measure P(c →
e|c, a, e).4 Whether the question referred to tower “North” or “South” was counterbal-

anced between subjects. A bipolar rating scale with one tower on either side of the scale

would have forced subjects to decide for one of the towers, which would have introduced

a disadvantage for the standard power PC model of causal attribution. As the standard

model solely focuses on causal strength information, it predicts that both towers should

be considered causal in this case. Finally, the orientation of the rating scale (i.e., whether

high confidence had to be expressed on the left or on the right side of the scale) was

counterbalanced between subjects.

4.2. Results and discussion

The results are summarized in Fig. 7. As can be seen, subjects made different singular

causation judgments for the two potential causes in the four scenarios, which shows that

they applied their background knowledge about both the onset differences and the causal

latencies. The upper two panels in Fig. 7 show the results for the two scenarios that

tested each temporal component in isolation (Scenarios 1 and 2 in Table 1). The left

panel shows the results for Scenario 1 in which both causes had the same causal latency

but different onsets, while the right panel shows the results for Scenario 2 in which both

causes had identical onsets but different causal latencies. In the condition in which one

cause factor tended to occur earlier than the other but both had identical causal latencies

(Scenario 1) subjects who were asked about the “early” cause (Cause A in Table 1) gave

higher singular causation judgments (M = 0.75, SD = 0.24, Md = 0.80, 95% CI [0.68,

0.82]) than subjects who were asked about the “late” cause (M = 0.21, SD = 0.24, Md =
0.10, 95% CI [0.14, 0.28]). A planned contrast revealed that this difference was signifi-

cant, t(376) = 9.9, p < .001, d = 2.25. In the scenario in which both causes had syn-

chronous onset times but varying causal latencies (Scenario 2), subjects gave higher

singular causation ratings when asked about the cause with the shorter causal latency

(M = 0.83, SD = 0.21, Md = 0.90, 95% CI [0.77, 0.89]) than when asked about the cause

with the longer causal latency (M = 0.25, SD = 0.25, Md = 0.10, 95% CI [0.18, 0.32]).

A planned contrast revealed that this difference was significant, t(376) = 10.68, p < .001,

d = 2.76.

To test whether subjects actually integrated the two types of temporal information, rat-

ings for Scenarios 3 and 4 were compared. We found that subjects tended to answer as
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predicted by our model. In Scenario 3, subjects gave higher singular causation ratings

when asked about the cause with the shorter causal latency (M = 0.66, SD = 0.30, Md =
0.80, 95% CI [0.57, 0.75]) than when asked about the cause with the longer causal

latency (M = 0.47, SD = 0.32, Md = 0.50, 95% CI [0.38, 0.56]), even though the onset

difference pointed in the other direction. A planned contrast testing this difference was

significant, t(376) = 3.56, p < .001, d = 0.63. However, one possible explanation for this

pattern is that subjects might have had a bias toward shorter causal latencies. The ratings

obtained for Scenario 4 show that this does not explain the judgments, however, because

subjects here gave higher singular causation ratings when asked about the cause with the

longer rather than the one with the shorter causal latency (M = 0.69, SD = 0.28, Md =
0.75, 95% CI [0.61, 0.77] vs. M = 0.42, SD = 0.25, Md = 0.50, 95% CI [0.35, 0.49]). A

planned contrast testing this difference was significant, t(376) = 4.87, p < .001, d = 0.96.

Subjects also had no general tendency to favor the cause that had an onset advantage, as

one could have hypothesized based on the results of Scenario 4 alone. In Scenario 3, the

Fig. 7. Results (bars represent mean singular causation ratings; error bars denote 95% bootstrapped CIs) of

Experiment 1.
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cause with the onset advantage received lower ratings than the cause with the onset dis-

advantage. Additional evidence that subjects considered both temporal dimensions to be

equally important is that the difference between the two causes is similar in Scenarios 3

and 4.

The results of this experiment show that subjects integrated onset and latency informa-

tion when making singular causation judgments. Moreover, in line with what the general-

ized model predicts, subjects tended to favor the cause for which the sum of onset time

and causal latency was minimal. The fact that the observed differences between the target

causes were smaller in Scenarios 3 and 4 in which the causes differed on only one tem-

poral dimension can be explained by the higher difficulty of the computation in the more

complex cases and by the fact that the more complex conditions were more memory

demanding. A further explanation, in line with Weber’s law, is that the constant total dif-

ference of 800 ms between the respective competing causes (1,600 ms vs. 2,400 ms in

Scenarios 1 and 2; 2,400 ms vs. 3,200 ms in Scenarios 3 and 4) might have been per-

ceived as smaller in Scenarios 3 and 4.

5. Experiment 2

Experiment 1 shows that reasoners apply more than just their knowledge about the

causal strength of the potential causes when assessing how likely it is that a particular

factor C was causal on a singular occasion. Reasoners also rely on what they have

learned about the onset times of the causes and the causes’ causal latencies.

The causal latencies subjects learned in Experiment 1 had fixed non-varying values.

The goal of Experiment 2 was to investigate and focus on the more natural case in which

causal latencies are variable (while cancelling onset differences). We compared different

conditions in which the two potential causes were paired with causal latencies described

by different gamma distributions. On the assumption that variations of causal latencies

are the default situation, we expected subjects to be sensitive to this factor. However,

another possibility is that subjects might only learn and use the expected values of the

causal latencies. The way in which we manipulated causal latencies in the present study

allows us to test both possibilities (see Fig. 9). Again, we restricted the scenarios to deter-

ministic causes and this time also dropped onset difference to be able to focus on the

contribution of causal latency information.

The pairs of gamma distributions we contrasted in the five different conditions of the

experiment are shown in Fig. 8. The distances between the distributions (G1–G5; higher
numbers indicate higher expected values) in the different conditions varied quantitatively,

from fairly extreme in Conditions 1 and 5 to identical in Condition 3. The latency distri-

bution belonging to the target cause C in each condition is depicted in dark blue. In Con-

dition 1, for example, the target cause’s latency follows G1, whereas the latency of the

alternative cause follows G5. Conditions 4 and 5 involve the same pairs of distributions

as Conditions 1 and 2, but the distribution associated with the target cause was changed.

Fig. 8 also shows the different α values estimated with the sampling algorithm presented
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above. For the first pair, for example, α equals 0.01. In the case of deterministic causes,

α corresponds to the probability that c was preempted by a. Thus, participants should be

confident in this condition that it was the target cause c that caused the effect. In the fifth

condition, by contrast, participants should be confident that c did not cause the effect.

Fig. 8 also shows that all the other conditions should elicit more uncertainty. For exam-

ple, in the third condition in which the potential causes have the same latency distribu-

tion, participants should be maximally uncertain about the singular cause of the outcome

(α = 0.50).

Figure 9 shows the predictions that the different models make. The predictions made

by the standard model are shown in the first panel (Eq. 1). We also included the predic-

tions derived from Eq. 2 with α set to 1, which are shown in the second panel. The goal

here was to show that subjects do not misinterpret our test question as one that is asking

for the probability that “c alone” caused e on the target occasion, a possibility discussed

by Cheng and Novick (2005). Note that the “c alone” query according to Cheng and

Novick’s (2005) framework asks for the probability with which c alone was probabilisti-

cally sufficient on an occasion because the standard model equates probabilistic suffi-

ciency with causality. If subjects equated sufficiency with causality and understood the

test query as a “c alone” query, we should expect low ratings in all conditions (see sec-

ond panel in Fig. 9). The third panel in Fig. 9 shows the predictions that the generalized

model makes when α is estimated based on only the expected values of the causes’ causal

latencies. In this case, the cause factor with the lower expected value of causal latency is

Fig. 8. Pairs of gamma distributions contrasted in the five conditions of Experiment 2. The shape (κ) and

scale (θ) parameters of the five different gamma distributions are listed for each pair. The α values were

obtained using the MC algorithm corresponding to Eq. 3. The dark distributions show the causal latencies of

the target cause, and the light distributions show the causal latencies of the alternative cause.
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identified as the singular cause. When both causes have the same expected causal latency

value (Condition 3), the situation is treated as a case of symmetric overdetermination.

Finally, the fourth panel shows the predictions the generalized model (Eq. 2) makes when

α is estimated based on the respective causal latency distributions.

5.1. Methods

5.1.1. Participants
Two hundred subjects (Mage = 27.14, SDage = 8.71, 119 female, 91 male) were

recruited via Prolific (www.prolific.ac). This sample size (n = 40 subjects per condition)

allows us to detect medium effects (of d = 0.60) in simple group comparisons using con-

servative t tests with more than 80% test power. The plan, however, was to analyze the

data by fitting quantitative trends, which guarantees an even larger test power for medium

effects. No data were analyzed until n = 40 subjects per condition had completed the

study. The inclusion criteria were the same as in the previous study. Subjects were paid

£0.80 for their successful participation.

Fig. 9. Model predictions (Plots 1–4) and results (Plot 5; bars show mean singular causation ratings; error

bars denote 95% bootstrapped CIs) for the different conditions (see Fig. 8) of Experiment 2. The predictions

of the standard model were obtained by setting alpha to 0. Plot 2 shows the predictions of the generalized

model with α set to 1. Plots 3 and 4 show the generalized model’s predictions with different ways of estimat-

ing alpha: Plot 3 shows the predictions obtained when α is calculated based only on the expected values of

the respective gamma distributions, and Plot 4 shows the predictions obtained when α is estimated based on

the full gamma distributions.
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5.1.2. Design, materials, and procedure
A demo video of the experiment is available under https://osf.io/g6p72/. Participants

were randomly assigned to one of five conditions varying with respect to the contrasted

gamma distributions and with respect to the gamma distribution associated with the target

cause (see Fig. 8).

Because we included several counterbalancing factors, the full design had 40 condi-

tions. The cover story and the paradigm were largely identical with the one in Experi-

ment 1. This time, however, subjects were instructed that the flight durations tend to

differ between different pigeons, and that they will therefore observe a sample of 13

pigeons from each tower. As in Experiment 1, before participants could proceed to the

learning task, they had to pass five instruction check questions testing their understanding

of the scenario.

During the causal latency learning task, the screen looked similar to the picture shown

in Fig. 6A. The 13 flight durations presented for each tower corresponded to 13 quantiles

that were uniformly distributed between the 5th and the 95th percentile of the respective

gamma distribution (lists of the exact durations presented in this and in the other experi-

ments can be accessed under https://osf.io/k4mj9/). This way, relatively small yet repre-

sentative samples of the respective distributions could be presented. After each trial,

participants had to click a “Next” button, which was operational 500 ms after the circle

around the palace had been displayed. The 13 flight durations per tower were presented

in random order. After subjects had observed both towers, they proceeded to an interme-

diate screen that informed them that they will next be shown the situation to which the

test query refers.

Like in Experiment 1, the test scenario described a situation in which the palace was

alarmed. Participants read that the people of Extonia wanted to decorate the crew of the

tower that caused the alarm and that it was known that both towers had sent their pigeons

simultaneously on this occasion. Subjects had to indicate how strongly they believed that

the alarm was caused by tower “North”/“South” Judgments were provided using an 11-

point rating scale with the end points “definitely not caused by Tower ‘North/South’” and

“definitely caused by Tower ‘North/South’” (the midpoint was labeled “50:50”). Whether

the test question referred to tower “North” or tower “South” and the orientation of the

scale were counterbalanced.

5.2. Results and discussion

The results are summarized in Plot 5 in Fig. 9 and in Table 2, which both show that

singular causation ratings followed a negative linear trend. A polynomial trend analysis

revealed that the observed negative linear trend was significant, F(4, 195) = 111.70,

p < .001, r = .83. No other polynomial trend was significant.

The results are at odds with the predictions made by the standard model. As in Experi-

ment 1, subjects used information about causal latency to make singular causation judg-

ments. Moreover, subjects’ judgments closely followed the predictions of the version of

our new model that utilizes gamma distributions to represent causal latencies (Eq. 2).
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There was a high correlation between model predictions based on the gamma distribu-

tions and individual ratings, r = .83, p < .001, which is depicted graphically in the left

scatterplot of Fig. 10. We also analyzed the fit between model predictions and mean sin-

gular causation judgments. The correlation between model predictions and group means

is shown in the right panel of Fig. 10. This correlation amounts to r = .99, p < .001.

A limitation of the experiment is that the expected values of the gamma distributions

and their variances were not manipulated independently; the gamma distributions with

the higher expected values also had higher variances. We presented these cases because

we felt that it would make our test situations similar to how causal latencies behave in

many real-life situations. As a result, however, the present experiment cannot address the

question of whether subjects’ ratings were driven more by experienced variability, more

by information about expected values, or equally by both.

6. Experiment 3

In Experiments 1 and 2, deterministic causes were tested because we aimed to focus

on the influence of temporal factors on singular causation judgments. However, causal

strength information should also play a crucial role. A central new prediction of our

model is that causal strength and temporal information are expected to interact. The goal

of Experiment 3 was to explore this core property of our model.

We tested a scenario in which both causes either had a relatively high causal strength

of wC = wA = 0.83 or relatively low causal strength of wC = wA = 0.5. Causal latency

was manipulated by using the first pair of gamma distributions (G1 vs. G5) shown in

Fig. 8. The causal latency of the target cause was either associated with G1 or G5, while

the causal latency of the alternative cause always followed the complementary distribu-

tion of the pair. This combination of causal strengths and causal latencies of the potential

causes leads to the prediction of an interaction effect that is shown in the middle panel of

Fig. 11. As can be seen there in the left pair of bars, when the target cause has a longer

causal latency than the alternative cause (i.e., its causal latency follows G5 while the cau-

sal latency of the alternative cause follows G1), the generalized model predicts that sub-

jects should be less confident that the target cause generated the observed effect if both

causes have relatively high causal strengths of 0.83 than if both causes have relatively

Table 2

Summary of the results of Experiment 2

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5

Md 0.90 0.80 0.50 0.30 0.10

M 0.91 0.69 0.54 0.37 0.11

SD 0.10 0.22 0.24 0.19 0.12

95% CI [0.88, 0.94] [0.62, 0.76] [0.46, 0.62] [0.31, 0.43] [0.07, 0.15]
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low causal strengths of 0.50. Conceptually, the condition in which both causes have high

causal strengths of 0.83 represents a situation in which a reliably working target cause is

competing with an alternative cause that not only is working very reliably but that also

tends to operate quicker. According to our model and in contrast to the standard model,

this combination of high causal strength and short causal latency of the competing alter-

native cause should make it relatively unlikely that the target cause was the singular

cause of the effect. Since its high causal strength implies that the competing cause will

often be strong enough to generate the effect and because its much shorter causal latency

means that it almost always unfolds its causal capacity more quickly than the target

cause, it should be relatively unlikely that the target cause generated the observed effect.

By contrast, in the case in which both causes are less reliable and succeed in generating

the effect only with a 50% chance, our model predicts that the ratings for the target cause

should be higher. The reason is that the quicker competing alternative cause will rela-

tively often fail to preempt the target cause because it is not strong enough to generate

the effect, thereby leaving more room for the target cause to succeed.

Fig. 11 also shows that the predictions of our new model are reversed and align with

those made by the standard model when the causal latency of the target cause is rela-

tively short (i.e., when it follows G1; see right pair of bars). In this case, the model pre-

dicts that subjects should give higher ratings for the target cause in the condition in

which both causes are relatively strong. The reason is that this condition represents a situ-

ation in which the target cause only rarely is too weak to generate the effect and in which

it also tends to unfold its causal capacity more quickly than its competitor. Its causal

latency advantage allows the target cause to manifest its high causal strength. By contrast,

if both causes have relatively low causal strengths, ratings should be lower because the

target cause will often fail to take advantage of its short causal latency.

Finally, Fig. 11 shows that the generalized model also predicts a main effect of causal

latency: Causes that tend to be faster than their competitors (right pair of bars) should

receive higher singular causation ratings than causes whose competitors tend to preempt

Fig. 10. Scatterplots depicting the correlations between predictions of the generalized model and individual

singular causation judgments (left; triangles represent medians) and between model predictions and group

means (right).
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them (left pair of bars). Finally, a main effect of causal strength is predicted by the stan-

dard but not by our generalized time-sensitive model for the set of parameter values we

used. It is important to note, though, that the absence of a predicted main effect of causal

strength does not mean that causal strength information is per se considered to be less

relevant than latency information by the generalized model. The absence of a predicted

main effect of causal strength is a result of the particular parameter value combination

we chose in this study. Specifically, it is mainly due to the fact that the target and alter-

native cause have identical causal strength, whereas they differ with respect to causal

latency. We used this combination of parameter values for which our generalized model

predicts an interaction but no main effect of causal strength because it gives us a strong

test of our new model.

6.1. Methods

6.1.1. Participants
One hundred and sixty subjects (Mage = 38.14, SDage = 12.20, 116 female, 44 male)

were recruited via Prolific (www.prolific.ac). This sample size (n = 40 subjects per condi-

tion) allows us to detect medium effects of d = 0.60 for simple group comparisons on the

basis of directed t tests with more than 80% test power. The inclusion criteria were the same

as in the previous studies. Subjects were paid £1.20 for their successful participation.

6.1.2. Design, materials, and procedure
A demo video of this experiment is available under https://osf.io/hdwx3/. Subjects

were randomly assigned to one of four conditions (n = 40) that resulted from a 2 (causal

strength of the two causes: wC = wA = 0.83 vs. wC = wA = 0.50) × 2 (relative causal

Fig. 11. Model predictions and results (bars represent mean singular causation ratings; error bars denote 95%

bootstrapped CIs) of Experiment 3. The x-axes show the relative causal latency of the target cause.
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latency of the target cause: long vs. short) between-subjects design. The following factors

were counterbalanced between subjects: the order of presentation of the two causes in the

learning phase (i.e., tower “North” first vs. tower “South” first); which cause had the

shorter/longer relative causal latency; the target cause to which the main test question

referred; the orientation of the rating scale belonging to the main test question (high con-

fidence on the left vs. on the right side of the scale).

The materials and the procedure were largely identical to those of Experiments 1 and

2 with the following exceptions: First, information about the probabilistic causal nature

of the towers was added to the instructions by informing subjects that pigeons might get

lost on their way to the palace and that it would therefore be important to study the

pigeons’ arrival rates. Secondly, the learning task was modified so that causal strength

and causal latency information were conveyed together.

Unlike in Experiment 2, subjects observed 24 pigeons per tower in this experiment. Our

goal was to ensure that participants observed sufficiently many successful pigeons to be able

to learn the causal latencies. Depending on the causal strength condition, subjects observed

20 or 12 successful pigeons per tower. The flight durations corresponded to 12 versus 20

percentiles of the respective causal latency distributions. Whenever a pigeon failed to reach

the palace, the words “pigeon probably lost” were displayed 5 s after the pigeon had been

sent out. This delay corresponded to the 99.9th percentile of the slower latency distribution.

The singular causation test question was the same as in Experiments 1 and 2.

Additionally, on a separate screen subjects were asked to estimate the causal strengths

of the two causes because we wanted to control for the possibility that subjects’ causal

strength representations of the two causes might have been influenced by the causes’ cau-

sal latencies. The new model considers causal strength and causal latency to be two inde-

pendent properties of causes. Yet subjects might not have kept causal strength and

latency information apart. They might have, for instance, represented a relatively slow

cause as less powerful than a relatively fast cause. To assess subjects’ causal strength rep-

resentations, they were asked the following question for each tower, with the order of

presentation being randomized: “Based on what you have learned: how many out of 10

letter pigeons sent from Tower ‘North’ (‘South’) would make it to the palace?” Ratings

were provided on an 11-point scale (0–10).

6.2. Results and discussion

The results are summarized in the right panel of Fig. 11. Singular causation ratings fol-

lowed the predictions of the new model, whereas the standard model does not explain the

results. As for the predicted interaction, Fig. 11 shows that when the target cause had a

relatively long causal latency, ratings in the low causal strength condition were higher

(M = 0.40, SD = 0.23, Md = 0.40, 95% CI [0.33, 0.47]) than those in the high causal

strength condition (M = 0.29, SD = 0.26, Md = 0.20, 95% CI [0.21, 0.37]). The reversed

pattern was obtained when the target cause had relatively short causal latency (M = 0.67,

SD = 0.20, Md = 0.70, 95% CI [0.61, 0.73] when causal strength was 0.50 vs. M = 0.75,

SD = 0.19, Md = 0.80, 95% CI [0.69, 0.81] when causal strength was 0.83). A planned
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contrast testing the predicted interaction was significant, t(156) = 2.68, p < .01, d = 0.32.

However, Fig. 11 also shows that the simple effects qualifying the interaction were smal-

ler than predicted by the generalized model (t(156) = 2.17, p = .016 one-sided, d = 0.44

for the condition in which the target cause had a relatively long causal latency vs. t
(156) = 1.62, p = .05 one-sided, d = 0.41 for the condition in which the target cause’s

causal latency was relatively short).

Figure 11 also shows a main effect of the relative causal latency of the target cause. A

planned contrast testing this predicted main effect was significant, t(156) = 10.47,

p < .001, d = 1.62. Finally, the main effect of causal strength, which is predicted by the

standard but not by the generalized model, was not found.

The causal strength ratings subjects made are summarized in Fig. 12. Causal strength

estimates were not distorted by the different causal latencies of the two causes

(M = 5.16, SD = 1.07, Md = 5.00, 95% CI [4.92, 5.40] vs. M = 5.31, SD = 1.18, Md =
5.00, 95% CI [5.05, 5.57], for the condition with causal strength = 0.50 and M = 7.58,

SD = 1.75, Md = 8.00, 95% CI [7.19, 7.96] vs. M = 7.66, SD = 1.86, Md = 8.00, 95%

CI [7.25, 8.08] for the condition with causal strength = 0.83). The causal strength ratings

were close to the normative values of 0.83 and 0.50. A mixed ANOVA with relative cau-

sal latency of the target cause as a within-subject factor and causal strengths of the causes

as between-subjects factor only yielded a significant main effect for causal strength, F(1,
158) = 122.68, p < .001, d = 1.6. This main effect confirms that causal strength ratings

were solely determined by causal strength and not by causal latency. These results rule

out that subjects’ singular causation ratings were influenced by differences in the per-

ceived causal strengths of the causes.

7. Experiment 4

Although the pattern of singular causation judgments in Experiment 3 was captured

well by the new model, the predicted interaction effect turned out to be relatively weak.

Since the predicted interaction follows from a core principle of the new model, we

wanted to replicate the results in a fourth, pre-registered experiment with a selected set of

causal power parameters that should lead to a larger interaction effect. The same causal

latency distributions were used as in Experiment 3, but this time causes were contrasted

that either had a causal strength of 0.93 or 0.40. The predictions are shown in Fig. 13.

The experiment was pre-registered at the Open Science Framework (OSF; https://osf.io/).

The pre-registration can be accessed under https://doi.org/10.17605/OSF.IO/N93BU.

At the end of Experiment 3, subjects had been asked to estimate the causal strength of the

two causes because it was important to control for the possibility that subjects’ causal

strength representations are influenced by the observed differences in causal latencies. We

found that this was not the case. However, it is possible that there is an influence in the other

direction. Differences in causal strengths might have an impact on causal latency representa-

tions. This is not unlikely in the paradigm we used because trials in which a cause failed to

generate the effect ended after a duration that corresponded to the 99.9th percentile of the
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slower latency distribution (G5). Consequently, subjects in the low causal strength condition

spent more time on the task than subjects in the high causal strength condition. In the pre-

sent study, we therefore included a control question assessing how much subjects’ causal

latency representations were affected by causal strength information.

7.1. Methods

7.1.1. Participants
Three hundred and eighty-four subjects (Mage = 34.25, SDage = 11.38, 182 female, 200

male, two subjects did not want to report their gender) were recruited via Prolific (www.

prolific.ac). Subjects were at least 18 years old, had at least an A-level degree, were

native English speakers, and had an approval rate concerning participation in previous of

at least 90%. They were paid £1.20 for participation. The sample size calculation was

done with the program G*Power 3.1 (Faul, Erdfelder, Lang, & Buchner, 2007) and based

on the effect sizes found in a set of pilot studies conducted after the third experiment and

prior to the pre-registration of the new study. Both Experiment 3 and these pilot studies

indicated that the smallest difference between the means is to be expected in the condi-

tion in which the target cause has a relatively short causal latency (see right pair of bars

in Fig. 11). We focused on this smallest difference when we planned the present study.

We calculated the sample size such that independent-samples t tests (one-sided) testing

the two mean differences involved in the predicted interaction effect would detect med-

ium effects of d = 0.5 (α = 0.05) with about 95% probability. This conservative criterion

also implies that an ANOVA would detect the predicted interaction effect with even

higher probability.

Fig. 12. Results (bars represent means; error bars denote 95% bootstrapped CIs) for the causal power ques-

tion in Experiment 3. The left panel shows the ratings for the condition in which both causes had a causal

power of 0.50. The right panel shows the ratings for the condition in which both causes had a causal power

of 0.83.
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7.1.2. Design, materials, and procedure
A demo video of the experiment is available under https://osf.io/7x6tu/. The study

design was identical to the one of Experiment 3. Subjects were randomly assigned to one

of four conditions (n = 96) resulting from a 2 (causal strengths of the two causes: wC =
wA = 0.93 vs. wC = wA = 0.40) × 2 (relative causal latency of target cause: long vs.

short) between-subjects design.

Since this experiment contrasted causal strength values of 0.93 and 0.40, the learning

phase differed from the one in Experiment 3. In the condition in which the causes had

causal strengths of 0.93, subjects learned that each cause was successful in generating the

effect in 28 out of 30 attempts. In the low causal strength condition, each cause generated

the effect on 12 out of 30 occasions.

After subjects had answered the singular causation query, they were asked a control

question referring to the causal latencies of the two causes. Subjects were asked to imag-

ine an occasion on which both towers simultaneously sent a pigeon. They then should

indicate on an 11-point scale with endpoints “definitely the pigeon from Tower ‘North’”

and “definitely the pigeon from Tower ‘South’” (the midpoint was labeled “50:50”)

Fig. 13. Model predictions and results (bars represent mean singular causation ratings; error bars denote 95%

bootstrapped CIs) of Experiment 4.
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which pigeon they think would arrive at the palace first. Answers to this question allowed

us to estimate participants’ α parameter. The orientation of the scale (whether tower

North was on the left or right side of the scale) was randomly varied between subjects.

7.2. Results and discussion

The results are summarized in the fourth panel of Fig. 13, which shows that the repli-

cation was successful. The results of a 2 (causal power of the two causes: 0.93 vs.

0.40) × 2 (relative causal latency of target cause: long vs. short) factorial ANOVA con-

firmed that all predicted effects were significant. There was a main effect of “relative

causal latency of target cause”, F(1, 380) = 381.02, p < .001, d = 2.0, confirming that

singular causation ratings were overall higher when the target cause had a shorter causal

latency than its competitor. Importantly, the interaction between causal strength and rel-

ative causal latency of target cause was also significant, F(1, 380) = 71.19, p < .001,

d = 0.87. Contrast analyses testing the simple effects qualifying the interaction showed

that the difference between high and low causal strength was significant in both causal

latency conditions. In the condition in which the target cause’s causal latency was

longer than the one of the alternative cause, subjects gave higher singular causation rat-

ings when causal strength was 0.40 (M = 0.39, SD = 0.22, Md = 0.40, 95% CI [0.35,

0.44]) than when causal strength was 0.93 (M = 0.23, SD = 0.20, Md = 0.20, 95% CI

[0.19, 0.27]), t(380) = 5.74, p < .001, d = 0.85. In the condition in which the target

cause’s causal latency was shorter than the one of the alternative cause, the reverse pat-

tern was found (M = 0.62, SD = 0.22, Md = 0.70, 95% CI [0.58, 0.67] for causal

strength = 0.40; M = 0.81, SD = 0.17, Md = 0.80, 95% CI [0.77, 0.84] for causal

strength = 0.93), t(380) = 6.20, p < .001, d = 1.05. As predicted by our model, there

was no main effect of causal strength, F(1, 380) < 1. Furthermore, the effects were

overall larger than the ones we observed in Experiment 3, which indicates that subjects

were indeed sensitive to the causal strength difference. In Experiment 3, the size of the

interaction effect was d = 0.32, whereas it was d = 0.87 in the present study.

We next consider the results for the causal latency control question subjects answered

toward the end of the study. We transformed subjects’ ratings across the different coun-

terbalancing factors so that high ratings are associated with the cause with the shorter

causal latency. We found that ratings were overall high in both causal strength condi-

tions, confirming that subjects tended to correctly identify the cause with the shorter

causal latency. However, we also found that our causal strength manipulation seems to

have led to a small distortion: In the condition in which both causes were strong, sub-

jects were more likely to make ratings associated with the cause with the shorter causal

latency (M = 0.877, SD = 0.169, Md = 0.90, 95% CI [0.852, 0.90]) than in the condi-

tion in which the causes were weak (M = 0.764, SD = 0.254, Md = 0.90, 95% CI

[0.728, 0.80]). One explanation for this difference might be that trials during the learn-

ing phase in which a cause failed to generate the effect in fact lasted longer than suc-

cessful trials (see procedure). Subjects in the low causal strength condition saw more of
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these trials, and it is possible that these trials contaminated their causal latency repre-

sentations. (We will consider another possible explanation for this effect in Section 8.)

The model predictions shown in Panel 2 of Fig. 13 were obtained with α values that

were computed based on the objective causal latency parameters. However, we can also

use the responses subjects gave for the latency control question to estimate α. We there-

fore also examined how using these subjective values for the α parameter (0.877 and

1 − 0.877 for high vs. low alpha in the high-causal power case; 0.764 and 1 − 0.764

for high vs. low alpha in the low-power case) would change the model predictions. The

model predictions relying on the subjective α values are depicted in the third panel in

Fig. 13. It can be seen that, because the subjective α values were less extreme than the

objective ones, the model predictions for all the conditions became slightly less extreme

and moved a bit closer to the midpoint of the scale. Comparing Panels 3 and 4 in

Fig. 13, it can be seen that using participants’ subjective α values led to an even closer

fit between model predictions and subjects’ singular causation judgments than when

using the objective parameter values (Panel 2). The results of this experiment demon-

strate again the validity of the new model.

8. General discussion

The present article argues that assessments of singular causation require the integra-

tion of two different types of information: First, causal strength of the potential causes

is important. If an outcome can be explained by either of two potential causes, then

the present stronger cause is more likely to be the singular cause than the weaker pre-

sent cause. The standard causal power theory of attribution by Cheng and Novick

(2005) provides a formal analysis of how the causal strengths of the potential causes

should be weighed against each other to reach a decision in a singular causation sce-

nario. Relying on the generalized power model of causal attribution by Stephan and

Waldmann (2018), we here argued and demonstrated that considering only causal

strength is not enough, however. The second crucial type of information is information

about the potential causes’ temporal relation. Without temporal information, it would

be impossible to distinguish situations in which a sufficiently strong cause actually

succeeds in bringing about the effect from those in which a likewise sufficient com-

petitor manages to preempt the target cause. We therefore proposed a formal model

that incorporates the probability of preemption to estimate how likely it is that the tar-

get cause actually caused the target outcome. We showed that the probability of pre-

emption can be estimated by the combination of causal strength and temporal

information about cause onset times and causal latencies. The results of the reported

experiments demonstrate that the new model makes accurate predictions of subjects’

singular causation judgments. Interestingly, the model was accurate even in the com-

putationally quite demanding situations in which its parameters were probabilistic

(Experiments 3 and 4).
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8.1. Limitations and avenues for future studies

8.1.1. Modeling more complex types of situations
The type of test situations we investigated represents only a subset of possible situa-

tions. For example, we here focused on rather simple situations in which there were only

two potential causes of an observed effect. Subjects’ singular causation judgments were

well predicted by our model in these cases. However, often there are more than two

potential causes of an effect. Our model can also be applied to these cases, and it would

be interesting to see how subjects’ performance changes in these more complicated condi-

tions in which tracking and integrating causal strength and temporal information about

multiple causes represent a cognitively quite challenging task.

Another noteworthy characteristic of our test scenarios was that all potential causes of

the effect were actually observed. In many real-world situations, however, reasoners

observe only a subset of the potential causes and will therefore be confronted with uncer-

tainty concerning the presence of further alternative causes. Although we have not con-

sidered situations with unobserved background causes here, the new model can

principally be applied to such situations, too. As Cheng (1997) has shown, when alterna-

tive causes of the effect are unobserved and independent of the target cause, the causal

strength parameter wC of the target cause can be estimated by ΔP/(1 − P[e|¬c]) and the

base rates and strengths of the potential alternative causes is estimated by P(e|¬c). The
causal strength parameters of the model can therefore be estimated in these cases. A

novel question is how the α parameter can be estimated in such situations. One idea is

that the computation of α can be realized by carrying out multiple steps. First, informa-

tion about the temporal distribution of the effect in the absence of the target cause needs

to be considered. As Bramley et al. (2018) have shown in their article on general causal

structure learning, the temporal distribution of the effect in the target cause’s absence can

be modeled with exponential distributions.

Next, it needs to be analyzed how the distribution changes in the presence of the target

cause. The observed causal delay distribution in the presence of the target cause would

be a mixture of the gamma distribution of the target cause’s causal latency and the previ-

ously measured exponential background distribution. In a next step, the previously gained

knowledge about the background distribution can be used to decompose the mixed distri-

bution into its elements. Once the causal latency distribution of the target cause has been

extracted from the mixed distribution, the same algorithm that we used to estimate α in

the present studies can be applied. We plan to test such situations in future experiments.

Again, we expect that target causes with a short causal latency should more likely be

viewed as singular causes than otherwise identical causes with longer causal latency, as

the latter are more likely to be intercepted by unobserved background causes (see Lag-

nado & Speekenbrink, 2010).

Furthermore, the present studies tested only static target situations. Subjects were asked

to make singular causation judgments in a specific scenario based on knowledge about

strength, delays, and onsets that was acquired in separate learning situations. The
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structure of the target situation thus resembled a classical crime scenario in which the

detective enters the scenery and tries to identify the perpetrator after all events had

unfolded. We focused on this type of test situation because it is the type of situation that

was studied in previous related studies (e.g., Cheng & Novick, 2005; Holyoak, Lee, &

Lu, 2010; Meder, Mayrhofer, & Waldmann, 2014). In many real-life situations, however,

singular causation queries arise in dynamic contexts. A crucial feature of dynamic target

situations is that the onsets and delays are experienced during the observation phase prior

to the singular causation query. This way, the interaction between prior beliefs about cau-

sal strength and temporal parameters could be compared to the actually observed

sequence of events. Imagine a target cause with an average causal strength of wC = 0.90

and an expected causal delay of 20 min (e.g., a dose of ibuprofen). Now imagine a rea-

soner observes that the relief from pain occurs after 2 hours. The unexpected long delay

may be taken as diagnostic evidence that the generally positive causal strength of the

drug was zero on this occasion, and therefore might weaken the belief that the drug was

the singular cause of the effect. How reasoners make singular causation judgments in

dynamic target situations and how their judgments can be modeled in this case is an

interesting question for future investigations (for a first pass on how this online attribution

problem could be handled, see Bramley, Mayrhofer, Gerstenberg, & Lagnado, 2017).

8.1.2. The influence of other psychological factors
Since we here proposed a rational computational model of singular causation judg-

ments, we have largely left unaddressed other plausible psychological factors that might

constrain subjects’ performance. Two of these factors that may have influenced subjects’

answers in our tasks are working memory constraints and psychophysical effects. There

are, however, also less obvious factors that might explain deviations of reasoners’ perfor-

mance from the model predictions. For example, one interesting effect found in previous

studies is the so-called temporal binding effect.5 The effect describes the phenomenon

that knowledge about the existence of a general causal relationship between two factors

can diminish the perceived temporal distance between cause and effect (Buehner, 2012;

Faro, Leclerc, & Hastie, 2005; Faro, McGill, & Hastie, 2010; Marsh & Ahn, 2009; see

also Bechlivanidis & Lagnado, 2016, for the even more intriguing phenomenon that cau-

sal knowledge might sometimes even change the perception of the order in which events

occurred). One result in our studies that is in line with the temporal binding effect are the

causal latency ratings we assessed in Experiment 4. We found that subjects tended to

report a shorter causal latency for the cause that had higher causal strength, even though

the effect was small. To which extent this finding is actually due to a temporal binding

effect or due to other features of our experimental task is an interesting question open for

future research.

8.1.3. The role of causal mechanism information
Another question that we left unaddressed in the present paper concerns the role of

causal mechanism information in the assessment of singular causation. Causal mechanism

information has been identified as an important type of information in causal reasoning
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(see Cartwright, 2017; Danks, 2017; Johnson & Ahn, 2017, for overviews). Different

studies have shown that reasoners regard mechanism information as particularly relevant

when making causal attributions (Ahn, Kalish, Medin, & Gelman, 1995; Johnson & Keil,

2018).

An interesting step for future work would be to experimentally study the role of

mechanism information in singular causation judgments and to incorporate this factor in

our computational model. In a first approximation, causal mechanisms can be modeled

in causal Bayes nets as causal chains or causal networks in which the target cause and

effect are connected indirectly by one or more intermediate variables. It is possible to

extend our model to incorporate mechanism information by adding variables mediating

between the target cause and effect. However, an additional complexity arises because

mechanisms are not only chains or networks of interconnected variables but also extend

in time. Causal mechanism information not only constrains the causal strength parame-

ters in the model but also the temporal parameters attached to the different causal rela-

tions. For example, a causal mechanism connecting a cause and an effect might involve

multiple causal paths which might differ not only with respect to their causal strengths

but also with respect to their causal latencies. Take the example of a coroner who

wants to find out whether a victim displaying an abdominal gunshot wound actually

died because of the gunshot. The causal strength with which bullets kill their victims is

surely quite high on average, but also fairly variable. Similarly, bullets typically bring

death to their victims relatively quickly, but not always. Depending on the organs that

are damaged, both the probability of dying from a gunshot and the latency can be high

or low. If the bullet hit the victim’s heart, one will be more confident in a causal link

between gunshot and death than in a case in which the bullet left all organs intact. Bul-

lets that stop their victims’ hearts are not only more effective, they also bring death so

quickly that there is less room for alternative causes to strike (e.g., an assassin might

first have administered a lethal dose of poison but then decided to shoot the victim).

Testing the influence of causal mechanism information on singular causation judgments

will be an interesting avenue for future studies.

8.2. Conclusion

In the present research, we have shown that singular causal judgments are influenced

by both causal strength and temporal information. We have proposed a computational

model that integrates these factors and thereby explicitly considers the role of causal pre-

emption. Yet our research only represents a first step. Future versions of our model need

to consider more complex situations in which events dynamically unfold in time and are

mediated by more or less complex networks of mechanisms. It would also be interesting

to widen the range of test questions our computational model can address. The focus here

was on singular causation queries in which the potential causes and the target effect were

all observed. It would be interesting to also study situations in which some or all of the

potential causes remain unobserved.
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Notes

1. The psychological validity of this independence assumption has been confirmed in

several empirical studies that investigated default assumptions of human learners

(Buehner & Cheng, 1997; Cheng, 1997; Cheng & Lu, 2017; Griffiths & Tenenbaum,

2005; Liljeholm & Cheng, 2007; Lu, Yuille, Liljeholm, Cheng, & Holyoak, 2008;

Meder & Mayrhofer, 2017; Meder, Mayrhofer, & Waldmann, 2014).

2. The same sampling algorithm can be used to estimate α for fixed causal latencies.

However, it is easy to see that α will either be 1 or 0 in such situations depending

on whether the sum of t(a→e) and Δt is smaller than t(c→e) or not.

3. Empirical studies that explicitly investigated this type of situation have yielded

mixed results (see Sloman & Lagnado, 2015, for an overview). Some studies (e.g.,

Spellman & Kincannon, 2001) found that people seem to regard symmetrically

overdetermining causes as highly causal. Others found that such cases are viewed

as less causal than cases of preemption (e.g., Gerstenberg, Goodman, Lagnado, &

Tenenbaum, 2015).

4. One may wonder whether subjects’ responses were purely causal or, since subjects

read that the people of Extonia wanted to decorate the crew who caused the alarm,

whether they also involved considerations about praise and blame (see Samland &
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Waldmann, 2016). While this is a possibility, we do not think that it undermines

our results because (a) praise and blame are closely linked to causality, and (b)

because the phrasing of the test situation was kept constant in the present and all

the following studies.

5. We thank one of the reviewers for pointing out this possibility.
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