Supporting Information

Table of Content

Experimental Section 2
General 2
Synthesis 2
X-Ray Refinement 6
Electrochemical Measurements 9
CV Measurements 9
CPE measurements 16
IR-Spectroelectrochemical and IR Measurements 18
SEM Images 18
XPS Data. 20
References 21

Experimental Section

General

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded with a Bruker Avance 300 NMR spectrometer $\left({ }^{1} \mathrm{H} 300\right.$ $\mathrm{MHz},{ }^{13} \mathrm{C} 75.4 \mathrm{MHz}$) with $\mathrm{CDCl}_{3},\left[\mathrm{D}_{6}\right]$-DMSO or $\left[\mathrm{D}_{7}\right]$-dmf as the solvent at $25{ }^{\circ} \mathrm{C}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were calibrated against the residual protons and natural-abundance ${ }^{13} \mathrm{C}$ resonances of the deuterated solvents $\left(\mathrm{CDCl}_{3} \delta_{\mathrm{H}}=7.26 \mathrm{ppm},\left[\mathrm{D}_{6}\right]-\mathrm{DMSO} \delta_{\mathrm{H}}=2.50 \mathrm{ppm}\right.$ and $\left[\mathrm{D}_{7}\right]-\mathrm{dmf} \delta_{\mathrm{H}}=8.03,2.92$, $2.75 \mathrm{ppm})$. Microanalyses were performed with an Elementar Vario El II elemental analyser. Mass spectra were recorded using a Bruker APEX IV micrOTOF or a Bruker Autoflex Speed mass spectrometer.

Synthesis

3
4

$R=$ Ethoxymethyl

Scheme S 1. Ligand Synthesis.

2-Bromo-6-(1-methylimidazole-2-yl)pyridine, 2, was prepared according to a literature procedure. ${ }^{1}$

2,6-Diiodophenole, 3

2,6-Diiodophenole was prepared according to a modified literature procedure. ${ }^{2}$ Iodine (32.3 g , $127 \mathrm{mmol}, 1.48 \mathrm{eq}$.) was suspended in deionised water $(425 \mathrm{~mL})$ and phenol $(8.09 \mathrm{~g}, 86.0 \mathrm{mmol}$, 1.00 eq.) was added. Hydrogenperoxide (35% in water, $21.9 \mathrm{~mL}, 255 \mathrm{mmol}, 2.97 \mathrm{eq}$.) was slowly added
and the mixture stirred for 22 hours. A solution of sodium thiosulfate $(44.2 \mathrm{~g})$ in water (100 mL) was added and the mixture was extracted with dichloromethane (dcm) $(3 \times 200 \mathrm{~mL})$. The combined organic phases were washed with sodium thiosulfate solution in water $(10 \%, 100 \mathrm{~mL})$ and saturated NaCl solution (100 mL). After drying over MgSO_{4} the solvent was removed under reduced pressure. The product was obtained in 35% yield as a white solid after column chromatography on silica gel using hexane:ethyl acetate in a ratio of $20: 1$ as eluent.

2-(Ethoxymethoxy)-1,3-diiodobenzene, 4
3 ($1.26 \mathrm{~g}, 3.64 \mathrm{mmol}, 1.00 \mathrm{eq}$.) was dissolved in dry dcm (5 mL) and dry triethylamine (1.00 mL , $7.01 \mathrm{mmol}, 1.93 \mathrm{eq}$.$) was added at 0^{\circ} \mathrm{C}$. Chloromethylethylether ($0.68 \mathrm{~mL}, 7.33 \mathrm{mmol}, 2.01 \mathrm{eq}$.) was added after stirring the mixture for 10 minutes at $0^{\circ} \mathrm{C}$. Subsequently, the mixture was stirred for 90 minutes at $0{ }^{\circ} \mathrm{C}$ and 20 minutes at rt . Water $(10 \mathrm{~mL})$ was added, the aqueous phase was extracted with dcm ($2 \times 10 \mathrm{~mL}$), the combined organic phases were washed with saturated NaCl solution $(15 \mathrm{~mL})$, and dried over MgSO_{4}. Evaporation of the solvent yielded the pure product in 90% yield as a colourless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta=7.78\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.8 \mathrm{~Hz}, 4-\mathrm{CH}, 6-\mathrm{CH}, 2 \mathrm{H}\right), 6.56\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.8 \mathrm{~Hz}\right.$, $5-\mathrm{CH}, 1 \mathrm{H}), 5.19\left(\mathrm{~s}, \mathrm{OCH}_{2} \mathrm{O}, 2 \mathrm{H}\right), 4.03\left(\mathrm{q},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{Me}, 2 \mathrm{H}\right), 1.31\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$, $3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta=156.4\left(2-\mathrm{C}_{\mathrm{q}}\right), 140.3(4-\mathrm{CH}, 6-\mathrm{CH}), 127.9$ (5-CH), 98.7 $\left(\mathrm{OCH}_{2} \mathrm{O}\right), 91.8\left(1-\mathrm{C}_{\mathrm{q}}, 3-\mathrm{C}_{\mathrm{q}}\right), 66.9\left(\mathrm{OCH}_{2} \mathrm{Me}\right), 15.3\left(\mathrm{CH}_{3}\right)$.

MS (ESI MeOH): $m / z=426.8660[\mathrm{M}+\mathrm{Na}]^{+}$.
IR (ATR, cm^{-1}): $\tilde{v}=686$ (s$), 736$ (w), 765 (s$), 797(\mathrm{~m}), 846(\mathrm{~m}), 921$ (s$), 1022(\mathrm{~m}), 1065(\mathrm{~s}), 1086(\mathrm{~m})$, 1117 (s), 1153 (s), 1227 (m), 1271 (w), 1387 (s), 1429 (s), 1458 (w), 1546 (m), 1857 (w), 1916 (w), 2885 (w), 2929 (m), 2973 (m), 3063 (w).

2-(Ethoxymethoxy)-1,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)benzene, 5
$4(1.35 \mathrm{~g}, 3.34 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) , Bispinacolatodiboron (2.59 \mathrm{~g}, 10.2 \mathrm{mmol}, 3.05 \mathrm{eq}$.), potassium tertbutoxide ($966 \mathrm{mg}, \quad 10.0 \mathrm{mmol}, ~ 2.99 \mathrm{eq}$.), copper(I)iodide ($125 \mathrm{mg}, \quad 656 \mu \mathrm{~mol}, 0.20 \mathrm{eq}$.$) and$ triphenylphosphine ($228 \mathrm{mg}, 869 \mu \mathrm{~mol}, 0.26$ eq.) were suspended in dry thf (35 mL) and the mixture stirred at rt for five days. Diethylether (25 mL) was added and the mixture filtered through Celite. The residue was flushed with diethylether (60 mL) and the solvent of the filtrate was removed under reduced pressure. Column chromatography on silica with hexane:ethylacetate (ratio of $40: 1$ to $15: 1$ to 10:1) gave the product in 66% yield as slightly yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta=7.81\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}, 4-\mathrm{CH}, 6-\mathrm{CH}, 2 \mathrm{H}\right), 7.09\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}\right.$, $5-\mathrm{CH}, 1 \mathrm{H}), 5.19\left(\mathrm{~s}, \mathrm{OCH}_{2} \mathrm{O}, 2 \mathrm{H}\right), 3.83\left(\mathrm{q},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{Me}, 2 \mathrm{H}\right), 1.33\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}} \mathrm{CH}_{3}, 24 \mathrm{H}\right), 1.19(\mathrm{t}$, $\left.{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, 3 \mathrm{H}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta=168.0\left(2-\mathrm{C}_{\mathrm{q}}\right), 140.0(4-\mathrm{CH}, 6-\mathrm{CH}), 139.5\left(1-\mathrm{C}_{\mathrm{q}}, 3-\mathrm{C}_{\mathrm{q}}\right), 123.0$ $(5-\mathrm{CH}), 100.3\left(\mathrm{OCH}_{2} \mathrm{O}\right), 83.7\left(\mathrm{OC}_{q} \mathrm{Me}_{2}\right), 65.4\left(\mathrm{OCH}_{2} \mathrm{Me}\right), 25.0\left(\mathrm{C}_{\mathrm{q}} \underline{\mathrm{CH}}_{3}\right)$, $15.3\left(\mathrm{CH}_{2} \underline{C H}_{3}\right)$.

MS (ESI MeOH): $m / z=422.2871\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 427.2429[\mathrm{M}+\mathrm{Na}]^{+}$.
IR (ATR , cm^{-1}): 661 (m), 783 (w), 848 (s$), 882(\mathrm{~m}), 966(\mathrm{~s}), 1067(\mathrm{~m}), 1133(\mathrm{~s}), 1211(\mathrm{~m}), 1257(\mathrm{~m})$, 1277 (m), 1331 (s), 1371 (s), 1439 (w), 1463 (m), 1590 (m), 2931 (w), 2977 (m).

2-(Ethoxymethoxy)-1,3-bis(2-(1-methylimidazole-2-yl)pyridine-6-yl)benzene, 6
5 ($1.81 \mathrm{~g}, 4.48 \mathrm{mmol}, 1.00 \mathrm{eq}.), 2(2.42 \mathrm{~g}, 10.2 \mathrm{mmol}, 2.28 \mathrm{eq}$.$) , bis(dibenzylidenacetone)palladium$ ($42.0 \mathrm{mg}, 73.0 \mu \mathrm{~mol}, 0.02 \mathrm{eq}$.), 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (SPhos; 72.0 mg , $175 \mu \mathrm{~mol}, 0.04 \mathrm{eq}$.), and potassium phosphate ($3.79 \mathrm{~g}, 17.9 \mathrm{mmol}, 4.00 \mathrm{eq}$.) were dissolved in degassed toluene (30 mL). Subsequently, degassed water (3 mL) was added and the mixture was heated to $100{ }^{\circ} \mathrm{C}$ for three days. After cooling to rt , $\mathrm{dcm}(60 \mathrm{~mL})$ and water $(30 \mathrm{~mL})$ were added. The aqueous phase was
extracted with dcm ($2 \times 40 \mathrm{~mL}$ and $1 \times 20 \mathrm{~mL}$), the combined organic phases were washed with saturated NaCl solution (20 mL), and dried over MgSO_{4}. Column chromatography on silica with hexane:ethylacetate in a ratio 1:1 to ethylacetate:triethylamine in a ratio of 1:0.05 as eluent yielded the product as pale yellow solid in 85% yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta=8.20-8.13$ (m, Py-5-CH, 2H), 7.84-7.78 (m, 4-CH, 6-CH, Py-3$\mathrm{CH}, \operatorname{Py}-4-\mathrm{CH}, 6 \mathrm{H}), 7.37\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}, 5-\mathrm{CH}, 1 \mathrm{H}\right), 7.14\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=1.1 \mathrm{~Hz}, \mathrm{Im}-4-\mathrm{CH}, 2 \mathrm{H}\right), 6.99(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{HH}}=1.1 \mathrm{~Hz}, \operatorname{Im}-5-\mathrm{CH}, 2 \mathrm{H}\right), 4.57\left(\mathrm{~s}, \mathrm{OCH}_{2} \mathrm{O}, 2 \mathrm{H}\right), 4.21\left(\mathrm{~s}, \mathrm{NCH}_{3}, 6 \mathrm{H}\right), 3.03\left(\mathrm{q},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}\right.$, $\left.\mathrm{OCH}_{2} \mathrm{Me}, 2 \mathrm{H}\right), 0.70\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}, 3 \mathrm{H}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta=155.2\left(\mathrm{Py}-2-\mathrm{C}_{\mathrm{q}} / \mathrm{Py}-6-\mathrm{C}_{\mathrm{q}}\right), 153.2\left(2-\mathrm{C}_{\mathrm{q}}\right), 150.8\left(\mathrm{Py}-2-\mathrm{C}_{\mathrm{q}} / \mathrm{Py}-6-\right.$ C_{q}), $145.0\left(\mathrm{Im}-2-\mathrm{C}_{\mathrm{q}}\right), 136.8(3-\mathrm{Py}-\mathrm{CH} / 4-\mathrm{Py}-\mathrm{CH}), 135.4\left(1-\mathrm{C}_{\mathrm{q}}, 3-\mathrm{C}_{\mathrm{q}}\right), 131.8(4-\mathrm{CH}, 6-\mathrm{CH}), 128.3$ (Im-4$\mathrm{CH}), 124.8(5-\mathrm{CH}), 124.6(\mathrm{Im}-5-\mathrm{CH}), 124.0(\mathrm{Py}-3-\mathrm{CH} / \mathrm{Py} 4-\mathrm{CH}), 120.9(\mathrm{Py}-5-\mathrm{CH}), 98.7\left(\mathrm{OCH}_{2} \mathrm{O}\right), 65.4$ $\left(\mathrm{OCH}_{2} \mathrm{Me}\right), 36.8\left(\mathrm{NCH}_{3}\right), 14.8\left(\mathrm{CH}_{2} \underline{\mathrm{CH}}_{3}\right)$.

MS (ESI MeOH): $m / z=467.2190[\mathrm{M}+\mathrm{H}]^{+}, 489.2002[\mathrm{M}+\mathrm{Na}]^{+}$.
IR (KBr, cm^{-1}): $\tilde{v}=627(\mathrm{w}), 724(\mathrm{~m}), 765(\mathrm{~m}), 796(\mathrm{~s}), 821(\mathrm{~m}), 938(\mathrm{~s}), 1069(\mathrm{~m}), 1105(\mathrm{~m}), 1158(\mathrm{~m})$, 1210 (m), 1281 (m), 1372 (m), 1454 (s), 1476 (s$), 1568$ (s$), 1592$ (m), 2895 (m), 2895 (m), 2935 (m), 2955 (m), 2972 (m), 3069 (w), 3097 (w), 3128 (w).

2,6-Bis(2-(1-methylimidazole-2-yl)pyridine-6-yl)phenol, 7
$6(2.19 \mathrm{~g}, 4.69 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) was dissolved in ethanol (120 \mathrm{~mL})$, hydrochloric acid ($37 \%, 8 \mathrm{~mL}$) was added, and the mixture was stirred for 24 hours at rt. Subsequently, the pH was adjusted to pH 8 by adding sodium hydroxide solution (30%) and sodium carbonate solution (10%). The crude product was extracted with dcm ($1 \times 80 \mathrm{~mL}$ and $2 \times 40 \mathrm{~mL}$), the combined organic phases were washed with saturated NaCl solution (20 mL), and dried over MgSO_{4}. The solvent was removed under reduced pressure and the crude product was washed with diethylether ($3 \times 20 \mathrm{~mL}$). After drying in vacuo the product was obtained as a colourless solid in 86% yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta=14.30(\mathrm{~s}, \mathrm{OH}, 1 \mathrm{H}), 8.08\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.1 \mathrm{~Hz}, \mathrm{Py}-5-\right.$ $\mathrm{CH}, 2 \mathrm{H}), 7.99\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=8.1 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.1 \mathrm{~Hz}, \mathrm{Py}-3-\mathrm{CH}, 2 \mathrm{H}\right), 7.94\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.8 \mathrm{~Hz}, 3-\mathrm{CH}, 5-\mathrm{CH}\right.$, $2 \mathrm{H}), 7.89\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.9 \mathrm{~Hz}, \operatorname{Py}-4-\mathrm{CH}, 2 \mathrm{H}\right), 7.15\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=1.1 \mathrm{~Hz}, \mathrm{Im}-4-\mathrm{CH}, 2 \mathrm{H}\right), 7.08\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.8 \mathrm{~Hz}\right.$, $4-\mathrm{CH}, 1 \mathrm{H}), 7.01\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=1.1 \mathrm{~Hz}, \mathrm{Im}-5-\mathrm{CH}, 2 \mathrm{H}\right), 4.11\left(\mathrm{~s}, \mathrm{NCH}_{3}, 6 \mathrm{H}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta=157.3\left(1-\mathrm{C}_{\mathrm{q}}\right), 155.7\left(2-\mathrm{C}_{\mathrm{q}}, 6-\mathrm{C}_{\mathrm{q}}\right), 148.8\left(\mathrm{Py}-2-\mathrm{C}_{\mathrm{q}}\right), 145.0(\mathrm{Im}-$ $2-\mathrm{C}_{\mathrm{q}}$), 137.8 (4-Py-CH), 130.5 (3-CH, 5-CH), 128.7 (Im-4-CH), 124.6 (Im-5-CH), 121.7 (Py-3-CH), $121.5(\mathrm{Py}-5-\mathrm{CH}), 119.2(4-\mathrm{CH}), 36.3\left(\mathrm{NCH}_{3}\right)$.

MS (ESI MeOH): $m / z=409.1773[\mathrm{M}+\mathrm{H}]^{+}, 431.1590[\mathrm{M}+\mathrm{Na}]^{+}$.
IR (KBr, cm ${ }^{-1}$): $\tilde{v}=631(\mathrm{~m}), 677(\mathrm{~m}), 716(\mathrm{~s}), 732(\mathrm{~s}), 788(\mathrm{~m}), 823(\mathrm{~m}), 842(\mathrm{w}), 920(\mathrm{w}), 1042(\mathrm{~m})$, 1088 (m), 1134 (w), 115 (w), 1249 (w), 1274 (m), 1286 (m), 1367 (w), 1421 (m), 1446 (s), 1473 (s), 1510 (w), 1570 (s), 1597 (m), 2853 (w), 2921 (w), 2946 (w), 3056 (w), 3088 (w), 3133 (w), 3415 (w).

4-Bromo-2,6-bis(2-(1-methylimidazole-2-yl)pyridine-6-yl)phenol, 8
$7(1.65 \mathrm{~g}, 4.04 \mathrm{mmol}, 1.04 \mathrm{eq}$.$) was dissolved in pyridine (150 \mathrm{~mL})$ and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. In the absence of light, a solution of bromine ($200 \mu \mathrm{~L}, 3.90 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in tetrachloromethane $(6 \mathrm{~mL})$ was added dropwise. The solution was stirred for three hours at $0^{\circ} \mathrm{C}$ in the dark. Subsequently, a solution of sodium thiosulfate $(10 \%, 60 \mathrm{~mL})$ in water was added and the mixture was stirred for further 15 minutes at rt . The pH was adjusted to 8 with sodium carbonate solution (10%) and the product was extracted with dcm ($1 \times 120 \mathrm{~mL}$ and $3 \times 60 \mathrm{~mL}$). The combined organic phases were washed with saturated NaCl solution (40 mL) and the aqueous solution was extracted with dcm (150 mL). The combined organic phases were dried over MgSO_{4}, the solvent was removed under reduced pressure. The
crude product was dissolved in a small amount of dcm and filtered. Drying of the filtrate in vacuo yielded the product as a mixture with 7 in a ratio of 1:0.18 as a brown solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta=8.11\left(\mathrm{dd}, J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, J_{\mathrm{HH}}=1.3 \mathrm{~Hz}, \mathrm{Py}-\mathrm{CH}, 2 \mathrm{H}\right), 8.05(\mathrm{~s}, \mathrm{Ph}-$ $\mathrm{CH}, 2 \mathrm{H}$), 8.09 ($\mathrm{s}, \mathrm{Ar}-\mathrm{CH}, 2 \mathrm{H}$), 7.99-7.87 (m, Ar-CH, 4H), 7.16 (d, $\left.{ }^{3} J_{\mathrm{HH}}=1.1 \mathrm{~Hz}, \mathrm{Im}-4-\mathrm{CH}, 2 \mathrm{H}\right), 7.02$ $\left(\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=1.1 \mathrm{~Hz}, \mathrm{Im}-5-\mathrm{CH}, 2 \mathrm{H}\right), 4.10\left(\mathrm{~s}, \mathrm{NCH}_{3}, 6 \mathrm{H}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta=156.4\left(\mathrm{C}_{\mathrm{q}}\right), 154.3\left(\mathrm{Ph}_{\mathrm{C}}\right)$, $148.9\left(\mathrm{C}_{\mathrm{q}}\right), 144.7\left(\mathrm{Im}-2-\mathrm{C}_{\mathrm{q}}\right)$, 138.0 (Py-CH), 132.7 (Ph-CH), 128.8 (Im-4-CH), 126.2 (C C_{q}), 124.7 (Im-5-CH), 122.0 (Py-CH), 121.7 (Py$\mathrm{CH}), 111.4\left(\mathrm{Ph}-\mathrm{C}_{\mathrm{q}}\right), 36.2\left(\mathrm{NCH}_{3}\right)$.

MS (ESI MeOH): $m / z=487.0874[\mathrm{M}+\mathrm{H}]^{+}, 511.0664[\mathrm{M}+\mathrm{Na}]^{+}$.

5-Bromo-2-(ethoxymethoxy)-1,3-bis(2-(1-methylimidazole-2-yl)pyridine-6-yl)benzene, 9

$8\left(1.51 \mathrm{~g}, 3.10 \mathrm{mmol}, 1.00 \mathrm{eq}\right.$.) was dissolved in dry thf (60 mL) and the solution was cooled to $0^{\circ} \mathrm{C}$. Sodium hydride (60% in mineral oil, $208 \mathrm{mg}, 5.20 \mathrm{mmol}, 1.68 \mathrm{eq}$.) was added in small portions and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 50 minutes. Chloromethylethylether ($570 \mu \mathrm{~L}, 6.14 \mathrm{mmol}, 1.98 \mathrm{eq}$.) was added dropwise at $0^{\circ} \mathrm{C}$ and the solution was stirred for 165 minutes at rt . Water (50 mL) was slowly added to the solution at $0^{\circ} \mathrm{C}$ and the mixture was extracted with $\mathrm{dcm}(4 \times 50 \mathrm{~mL})$. The combined organic phases were washed with saturated NaCl solution (50 mL) and dried over MgSO_{4}. Column chromatography on silica with ethylacetate:triethylamine ($1: 0.01$) yielded the product as a mixture with 6 in a ratio of 1:0.22 as light yellow solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta=8.11\left(\mathrm{dd}, J_{\mathrm{HH}}=6.5 \mathrm{~Hz}, J_{\mathrm{HH}}=2.6 \mathrm{~Hz}, \mathrm{Py}-\mathrm{CH}, 2 \mathrm{H}\right), 7.94(\mathrm{~s}, \mathrm{Ph}-$ $\mathrm{CH}, 2 \mathrm{H}), 7.86-7.79(\mathrm{~m}, \mathrm{Py}-\mathrm{CH}, 4 \mathrm{H}), 7.15\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=1.1 \mathrm{~Hz}, \mathrm{Im}-4-\mathrm{CH}, 2 \mathrm{H}\right), 7.01\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=1.1 \mathrm{~Hz}, \mathrm{Im}-\right.$ $5-\mathrm{CH}, 2 \mathrm{H}), 4.56\left(\mathrm{~s}, \mathrm{OCH}_{2} \mathrm{O}, 2 \mathrm{H}\right), 4.21\left(\mathrm{~s}, \mathrm{NCH}_{3}, 6 \mathrm{H}\right), 3.02\left(\mathrm{q},{ }^{3} \mathrm{JHH}_{\mathrm{HH}}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{Me}, 2 \mathrm{H}\right), 0.69(\mathrm{t}$, $\left.{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, 3 \mathrm{H}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta=153.8\left(\mathrm{C}_{\mathrm{q}}\right)$, $152.3\left(\mathrm{Ph}-2-\mathrm{C}_{\mathrm{q}}\right), 150.9\left(\mathrm{C}_{\mathrm{q}}\right), 144.8\left(\mathrm{Im}-2-\mathrm{C}_{\mathrm{q}}\right), 137.1$ $\left(\mathrm{C}_{\mathrm{q}}\right)$, 137.0 (Py-CH), 134.3 (Ph-CH), 128.4 (Im-4-CH), 124.8 (Im-5-CH), 123.9 (Py-CH), 121.4 (Py$\mathrm{CH}), 117.8\left(\mathrm{Ph}_{\mathrm{C}}\right)$, $98.8\left(\mathrm{OCH}_{2} \mathrm{O}\right), 65.6\left(\mathrm{OCH}_{2} \mathrm{Me}\right), 36.9\left(\mathrm{NCH}_{3}\right), 14.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.

MS (ESI MeOH): $m / z=547.1278[\mathrm{M}+\mathrm{H}]^{+}, 569.1085[\mathrm{M}+\mathrm{Na}]^{+}$.
2-(Ethoxymethoxy)-1,3-bis(6-(1-methylimidazol-2-yl)pyridin-2-yl)-5-(pyren-1-yl)benzene $\mathbf{1 0}$
9 ($200 \mathrm{mg}, 367 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$.), 1-pyreneboronic acid ($99.0 \mathrm{mg}, 402 \mu \mathrm{~mol}, 1.10 \mathrm{eq}$.), potassium phosphate ($158 \mathrm{mg}, 744 \mu \mathrm{~mol}, 2.03 \mathrm{eq}$), bis(dibenzylideneacetone)palladium ($3.0 \mathrm{mg}, 5.22 \mu \mathrm{~mol}$, 0.01 eq.) and SPhos ($3.6 \mathrm{mg}, 8.77 \mu \mathrm{~mol}, 0.02$ eq.) were suspended in degassed toluene (6 mL) and degassed water $(0.6 \mathrm{~mL})$. The mixture was heated to $100^{\circ} \mathrm{C}$ for three days. After cooling to room temperature, water $(5 \mathrm{~mL})$ and $\mathrm{dcm}(10 \mathrm{~mL})$ were added and the phases were separated. The aqueous phase was extracted with dcm (10 mL and $2 \times 5 \mathrm{~mL}$) and the combined organic phases were washed with saturated aqueous NaCl and dried over MgSO_{4}. The solvent was removed under reduced pressure. Purification by column chromatography over silica with ethylacetate:triethylamine (1:0.02) yielded the product as a mixture with $\mathbf{6}$ in ratio of 1:0.07 as yellow solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta=8.43$ (d, $J_{\mathrm{HH}}=9.3 \mathrm{~Hz}$, Pyr-CH, 1 H), 8.24-8.16 (m, Ar-CH 5H), 8.12 (s, Ar-CH, 2H), 8.09 (s, Ar-CH, 2H), 8.07-7.96 (m, Ar-CH, 5H), 7.88 (t, $J_{\mathrm{HH}}=7.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{CH}, 2 \mathrm{H}$), $7.12\left(\mathrm{~d},{ }^{3} \mathrm{JH}_{\mathrm{HH}}=1.0 \mathrm{~Hz}, \mathrm{Im}-4-\mathrm{CH}, 2 \mathrm{H}\right), 6.94\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=0.9 \mathrm{~Hz}, \mathrm{Im}-5-\mathrm{CH}, 2 \mathrm{H}\right), 4.74\left(\mathrm{~s}, \mathrm{OCH}_{2} \mathrm{O}, 2 \mathrm{H}\right), 4.17$ (s, $\left.\mathrm{NCH}_{3}, 6 \mathrm{H}\right), 3.15\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.1 \mathrm{~Hz}, \mathrm{OCH} \mathrm{H}_{2} \mathrm{Me}, 2 \mathrm{H}\right), 0.78\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, 3 \mathrm{H}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta=155.0,152.6,150.8,144.9\left(\mathrm{Im}-2-\mathrm{C}_{\mathrm{q}}\right)$, 137.6, 136.9, 136.9, 135.3, 133.8, 131.6, 131.0, 130.8, 128.5, 128.2 (Im-4-CH), 127.7, 127.7, 127.6, 127.5, 126.2, 125.4, 125.4, 125.2, 125.0, 125.0, 124.9, 124.7 (Im-5-CH), 124.1, 121.0, $98.9\left(\mathrm{OCH}_{2} \mathrm{O}\right), 65.6\left(\mathrm{OCH}_{2} \mathrm{Me}\right), 36.9$ $\left(\mathrm{NCH}_{3}\right), 14.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.

MS (ESI MeOH): $m / z=334.1440[\mathrm{M}+2 \mathrm{H}]^{2+}, 667.2809[\mathrm{M}+\mathrm{H}]^{+}, 689.2627[\mathrm{M}+\mathrm{Na}]^{+}, 1333.5558$ $[2 \mathrm{M}+\mathrm{H}]^{+}$.

2,6-Bis(6-(1-methylimidazol-2-yl)pyridin-2-yl)-4-(pyren-1-yl)phenol 11

10 ($39.0 \mathrm{mg}, 58.8 \mu \mathrm{~mol}, 1.00$ eq.) was dissolved in ethanol (10 mL) and hydrochloric acid (37%, 0.6 mL) added dropwise. The solution was stirred at rt for 21.5 hours. The pH was adjusted to 8 by adding aqueous $\mathrm{NaOH}(30 \%)$ and aqueous $\mathrm{NaHCO}_{3}(10 \%)$ solution. Water $(10 \mathrm{~mL})$ and dem (30 mL) were added and the phases were separated. The aqueous phase was extracted with dcm ($2 \times 20 \mathrm{~mL}$) and the combined organic phases were washed with saturated aqueous $\mathrm{NaCl}(10 \mathrm{~mL})$ and dried over MgSO_{4}. Drying in vacuo yielded the product as yellow solid in 53% yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta=14.54(\mathrm{~s}, \mathrm{OH}, 1 \mathrm{H}), 8.31\left(\mathrm{~d}, J_{\mathrm{HH}}=9.3 \mathrm{~Hz}, \operatorname{Pyr}-\mathrm{CH}, 1 \mathrm{H}\right), 8.22-$ $7.95(\mathrm{~m}, \mathrm{Ar}-\mathrm{CH}, 12 \mathrm{H}), 8.08(\mathrm{~s}, 3-\mathrm{CH}, 5-\mathrm{CH}, 2 \mathrm{H}), 7.86\left(\mathrm{t}, J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{CH}, 2 \mathrm{H}\right), 7.15\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=1.0\right.$ $\mathrm{Hz}, \mathrm{Im}-4-\mathrm{CH}, 2 \mathrm{H}), 6.95\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=0.8 \mathrm{~Hz}, \mathrm{Im}-5-\mathrm{CH}, 2 \mathrm{H}\right), 4.06\left(\mathrm{~s}, \mathrm{NCH}_{3}, 6 \mathrm{H}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta=156.8,155.4,148.8,144.8\left(\operatorname{Im}-2-\mathrm{C}_{\mathrm{q}}\right), 137.9,137.2,132.5$, $131.9,131.6,131.0,128.7$ (Im-4-CH), 128.6, 127.7, 127.6, 127.5, 126.2, 125.3, 125.2, 125.2, 125.0, $124.9,124.9,124.6,124.4,121.8,121.6,36.3\left(\mathrm{NCH}_{3}\right)$.

MS (ESI MeOH): $m / z=609.2367[\mathrm{M}+\mathrm{H}]^{+}, 631.2196[\mathrm{M}+\mathrm{Na}]^{+}$.
IR (ATR, cm^{-1}): 680 (s), 701 (s$), 720$ (s$), 798$ (s$), 813$ (s), 845 (m), 919 (m), 1019 (s$), 1038$ (s$), 1080$ (m), 1259 (m), 1340 (w), 1408 (w), 1431 (m), 1449 (m), 1565 (m), 2859 (w), 2962 (w), 3033 (w), 3097 (w).

Scheme S 2. Schematic representation of the isomers.

X-Ray Refinement

X-ray data were collected with a Bruker D8 VENTURE CMOS diffractometer by use of ω and φ scans (graphite monochromated Mo-K ${ }_{\alpha}$ radiation, $\lambda=0.71073 \AA$ Å). The structure was solved by direct methods and refined on F^{2} using all reflections with SHELX-2014/7. ${ }^{3}$ Non-hydrogen atoms were refined anisotropically and hydrogen atoms were placed in calculated positions and assigned to an isotropic displacement parameter of $1.2 / 1.5 \mathrm{Ueq}(\mathrm{C})$. Absorption correction was performed by the multi-scan method with the program SADABS V2014/4. ${ }^{4}$ The unit cell contained solvent molecules which have been treated as a diffuse contribution to the overall scattering without specific atom positions by SQUEEZE/PLATON. ${ }^{5}$ The number of electrons and the void volume may count for 17-18 molecules of diethyl ether or dimethyl formamide. The structure was uploaded to the CCDC Database and can be obtained free of charge from https://www.ccdc.cam.ac.uk, no. 1973247.

Table S 1. Crystal data and refinement details for 1.

empirical formula	$\mathrm{C}_{46} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{O}_{7} \mathrm{Re}_{2}, 6\left[\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right]$
formula weight	1658.62
$T[\mathrm{~K}]$	$100(2)$
crystal system	triclinic
space group	$P-1$
$a[\AA \AA]$	$8.9050(9)$
$b[\AA]$	$20.176(3)$
$c[\AA]$	$20.556(2)$
$\alpha\left[{ }^{\circ}\right]$	$92.208(4)$
$\beta\left[^{\circ}\right]$	$97.473(3)$
$\gamma\left[{ }^{\circ}\right]$	$99.790(5)$
$V\left[\AA^{\circ}\right]$	$3601.6(7)$
Z	4
$\rho\left[\mathrm{~g} / \mathrm{cm}^{3}\right]$	1.529
$F(000)$	1652
$\mu\left[\mathrm{~mm}^{-1}\right]$	3.468
$T_{\text {min }} / T_{\text {max }}$	$0.6445 / 0.7458$
θ-range $\left[{ }^{\circ}\right]$	$2.193-29.221$
$h k l-$ range	$-12-9, \pm 27, \pm 28$
measured refl.	183498
unique refl. $\left[R_{\text {int }}\right]$	$19341[0.1433]$
observed refl. $(I>2 \sigma(I))$	12815
data / restraints $/$ param.	$19341 / 0 / 568$
goodness-of-fit $\left(F^{2}\right)$	1.047
$R 1, w R 2(I>2 \sigma(I))$	$0.0437,0.0899$
$R 1, w R 2$ (all data)	$0.0874,0.1006$
resid. el. dens. $\left[\mathrm{e} / \AA^{3}\right]$	$-1.590 / 2.157$

Figure S 1.| Molecular structure of 1. Most hydrogen atoms were omitted for clarity.

Table S 2. Selected torsion angles 1° of 1.

Atoms	Angle
N5-C24-C23-N4	$2.3(6)$
N4-C19-C2-C1	$85.2(5)$
N1-C11-C12-N2	$-4.5(6)$
N1-C7-C6-C1	$117.4(5)$
C00M-C00J-C4-C3	$-44.7(6)$

Electrochemical Measurements

CV Measurements

The cell was prepared in a nitrogen filled glovebox with dry solvents. All CV measurements have been conducted with a glassy carbon (GC) working electrode, a platinum wire counter electrode, and a diluted silver/silver nitrate electrode (organic solvents), or a SCE electrode (water). All data in organic solvents were referenced internally $v s . \mathrm{Fc}^{+/ 0}$. All data in water were referenced $v s$. SCE. All measurements have been conducted with a Gamry Reference 600 or $600+$ potentiostat. In the CO_{2} reduction experiments, the sealed cell was purged with CO_{2} (quality 5.3) for 10 minutes. $\mathrm{i} R$ compensation was applied by the positive feedback method, which is implemented in the software.

Conversion of the potentials: $\mathrm{Fc}^{+/ 0}$ exhibits a standard reduction potential of $0.40 \mathrm{~V} v s$. NHE in water ${ }^{6}$ and the SCE exhibits a standard reduction potential of $0.24 \mathrm{~V} v s$. NHE. ${ }^{7}$

Scheme S 3. Proposed coupled electrochemical and chemical steps during reduction of 1 under N_{2}.

Figure S 2. Scan rate dependent CV data of 1 under N_{2} atmosphere, dmf, $c_{1} \sim 1 \mathrm{mM}, 0.1 \mathrm{M}^{n} \mathrm{Bu}_{4} N P F_{6}$, $v=0.1,0.2,0.4,0.8,1,2 \mathrm{Vs}^{-1}$.

Figure S 3. Overlay of the CV data of $\mathbf{1}$ and I under N_{2} atmosphere, in dmf, $c_{\text {complex }} \sim 1 \mathrm{mM}, 0.1 \mathrm{M}$ ${ }^{n} B u_{4} N P F_{6}, v=0.1$ and $1 \mathrm{Vs}^{-1}$.

Figure S 4. CV data of 1 in dmf with various amounts of water under N_{2} atmosphere, $c_{1} \sim 1 \mathrm{mM}, 0.1 \mathrm{M}$ ${ }^{n} B u_{4} N P F_{6}, v=0.1 \mathrm{Vs}^{-1}$.

Figure $\mathbf{S} 5$. Scan rate dependent CV data of 1 under CO_{2} atmosphere 0% water, dmf, $c_{1} \sim 1 \mathrm{mM}, 0.1 \mathrm{M}$ ${ }^{n} B u_{4} N P F_{6}$. The arrows indicate the first and second wave.

Figure S 6. Scan rate dependent $C V$ data of 1 under CO_{2} atmosphere, 6% water, dmf, $c_{1} \sim 1 \mathrm{mM}, 0.1$ $M^{n} B u_{4} N P F_{6}$.

Figure S 7. Scan rate dependent CV data of 1 under CO_{2} atmosphere, 10% water, dmf, $c_{1} \sim 1 \mathrm{mM}, 0.1$ $M^{n} B u_{4} N P F_{6}$.

Figure \mathbf{S} 8. Catalytic current of 1 over i_{p} versus the reciprocal square root of the scan rate, under CO_{2} atmosphere, 0% water, dmf, $c_{1} \sim 1 \mathrm{mM}, 0.1 \mathrm{M}^{n} \mathrm{Bu}_{4} N P F_{6}$.

Figure \mathbf{S} 9. Catalytic current of 1 over i_{p} versus the reciprocal square root of the scan rate, under CO_{2} atmosphere, 6% water, dmf, $c_{1} \sim 1 \mathrm{mM}, 0.1 \mathrm{M}^{n} B u_{4} N P F_{6}$.

Figure S 10. Catalytic current of 1 over i_{p} versus the reciprocal square root of the scan rate, under CO_{2} atmosphere, 10% water, $d m f, c_{1} \sim 1 m M, 0.1 M^{n} B u_{4} N P F_{6}$.

Figure S 11. Scan rate dependent CV data of $1+L D A$ under N_{2} atmosphere, dmf, $c_{1} \sim 1 \mathrm{mM}, 0.1 \mathrm{M}$ ${ }^{n} B u_{4} N P F_{6}, v=0.1,0.2,0.4,0.8,1,2 V s^{-1}$.

Figure S 12. Left: 50 CV scans of $1 @ M W C N T$ under N_{2} atmosphere in dmf $+10 \%$ water, 0.1 M ${ }^{n} B u_{4} N P F_{6} ; v=0.1 \mathrm{Vs}^{-1}$. right: current vs. cycles at representative potentials.

Figure S 13. Magnification of the first CV scan of 1 @MWCNT to highlight the integral, N_{2} atmosphere in $d m f+10 \%$ water, $v=0.1 \mathrm{Vs}^{-1}$, $0.1 \mathrm{M}^{n} \mathrm{Bu}_{4} N P F_{6}$.

Figure \mathbf{S} 14. $C V$ of $1 @ M W C N T$ under N_{2} and $C O_{2}$ atmosphere in $d m f+10 \%$ water, $v=0.1 \mathrm{Vs}^{-1}, 0.1$ $M^{n} B u_{4} N P F_{6}$.

Figure \mathbf{S} 15. Presentation of the peak current at selected potentials vs. cycles of the experiment of $1 @ M W C N T$ under C_{2} atmosphere in dmf $+10 \%$ water, $0.1 M^{n} B u_{4} N P F_{6}, C V$ data are depicted in Figure 6.

Figure S 16. Difference between the peak current under CO_{2} atmosphere and under N_{2} atmosphere at selected potentials vs. cycles; dmf $+10 \%$ water, $0.1 M^{n} B u_{4} N P F_{6}, C V$ data of the experiments are depicted in Figure 6 and Figure S 12.

Figure S 17. 50 CV scans of bare $M W C N T$ under N_{2} (left) and CO_{2} (right) atmosphere in dmf $+10 \%$ water, $v=0.1 \mathrm{Vs}^{-1}, 0.1 \mathrm{M}^{n} \mathrm{Bu}_{4} N P F_{6}$.

Figure S 18. Left: 50 CV scans of $1 @ M W C N T$ under Ar atmosphere in water, $0.5 \mathrm{M} \mathrm{NaHCO}{ }_{3}$; right: current vs. cycles at the representative potentials of -1.03 and -1.37 V vs. SCE.

Figure S 19. CV of $1 @ M W C N T$ under Ar and CO_{2} atmosphere in water, $v=0.1 \mathrm{Vs}^{-1}, 0.5 \mathrm{M} \mathrm{NaHCO}_{3}$.

Figure S 20. Left: 50 CV scans of 1 @ ${ }^{2} W C N T$ under CO_{2} atmosphere in water, $0.5 \mathrm{M} \mathrm{NaHCO} \mathrm{O}_{3}$; right: current vs. cycles the representative potential of $-1.37 \mathrm{~V} v \mathrm{v}$. $S C E$.

Figure S 21. Difference between the peak current under CO_{2} atmosphere and under N_{2} atmosphere at -1.37 V (vs. SCE) vs. cycles, water, $0.1 M^{n} B u_{4} N P F_{6}, C V$ data of the experiments are depicted in Figure S 18 and Figure S 20.

Figure \boldsymbol{S} 22. 50 CV scans of bare MWCNT under N_{2} (left) and CO_{2} (right) atmosphere in water, 0.5 M NaHCO_{3}.

CPE measurements

In the CPE experiments, the counter electrode was separated from the bulk solution by a sample holder with a porous glass frit, a 3 mm glassy carbon rod was used as working electrode, and a Pt spiral electrode as counter electrode. In heterogeneous CPE experiments a $1 \mathrm{~cm}^{2} \mathrm{GC}$ plate coated with MWCNT was used as a working electrode. CO and H_{2} were detected and quantified with a Shimadzu GC-2014 equipped with a thermal conductivity detector (TCD) and a ShinCarbon ST 80/100 silco column. Methane was used as an internal standard in order to determine $n_{\mathrm{H} 2}$ and n_{CO}. FE were calculated according to n (measured $)_{\mathrm{H} 2 / \mathrm{CO}} /(Q / 2 F), Q=$ electric charge. Calibration curves for $\mathrm{CH}_{4} / \mathrm{H}_{2}$ and $\mathrm{CH}_{4} / \mathrm{CO}$ were determined separately by injecting known quantities of the mixtures.

Figure \boldsymbol{S} 23. Charge build-up during the electrolysis experiment $\left(E_{\text {appl. }}=-2.20 \mathrm{Vvs} . \mathrm{FeCp}_{2}{ }^{+/ 0}\right)$ of $\mathbf{1}$ in $d m f+10 \%$ water under CO_{2} atmosphere, $c_{1} \sim 1 \mathrm{mM}, 0.1 \mathrm{M}^{n} \mathrm{Bu}_{4} N P F_{6}$.

Figure S 24. Charge build-up during the electrolysis experiment $\left(E_{\text {appl }}=-2.50 \mathrm{~V} v \mathrm{~s} . \mathrm{FeCp}_{2}{ }^{+/ 0}\right)$ of $\mathbf{1}$ in $d m f+10 \%$ water under CO_{2} atmosphere, $c_{1} \sim 1 \mathrm{mM}, 0.1 \mathrm{M}^{n} \mathrm{Bu}_{4} N P F_{6}$.

Figure \boldsymbol{S} 25. Current versus time during the electrolysis experiment $\left(E_{\text {appl }}=-2.20 \mathrm{~V}\right.$ vs. $\left.\mathrm{FeCp}_{2}{ }^{+/ 0}\right)$ of $1 @ M W C N T$ in dmf $+10 \%$ water, under CO_{2} atmosphere, $0.1 \mathrm{M}^{n} B u_{4} N P F_{6}, \emptyset=3 \mathrm{~mm}$ disc electrode, the right graph is a magnification of the first $200 s$.

Figure S 26. Current versus time during the electrolysis experiment ($E_{\text {appl }}=-1.37 \mathrm{~V}$ vs. SCE) of $1 @ M W C N T$ in water under CO_{2} atmosphere, $0.5 \mathrm{M} \mathrm{NaHCO}{ }_{3}, ~ \emptyset=3 \mathrm{~mm}$ disc electrode, the right graph is a magnification of the first 200 s .

Figure S 27. Current versus time during the electrolysis experiment ($E_{\text {appl }}=-1.37 \mathrm{~V}$ vs. SCE) of $M W C N T$ in water under CO_{2} atmosphere, $0.5 \mathrm{M} \mathrm{NaHCO} 3, \emptyset=3 \mathrm{~mm}$ disc electrode, the right graph is a magnification of the first 200 s.

Table S 3. Results of the CPE experiments of $\mathbf{1}$ in dmf $+10 \%$ water under CO_{2} atmosphere, $c_{1} \sim 1 \mathrm{mM}$, $0.1 M^{n} B u_{4} N P F_{6}$. Average of two runs.

E / V^{0}	$F E(\mathrm{CO}) / \%$	$F E\left(\mathrm{H}_{2}\right) / \%$
-2.20	$45(71 \mu \mathrm{~L})$	$35(55 \mu \mathrm{~L})$
-2.50	$30(31 \mu \mathrm{~L})$	$20(18 \mu \mathrm{~L})$

Table S 4. Results of the 30 min CPE experiment of $M W C N T$ in water under CO_{2} atmosphere, 0.5 M NaHCO_{3}
E/V vs. SCE
$F E(\mathrm{CO}) / \%$
$F E\left(\mathrm{H}_{2}\right) / \%$
-1.37
0 ($0 \mu \mathrm{~L}$)
$65(48 \mu \mathrm{~L})$

IR-Spectroelectrochemical and IR Measurements

IR-SEC experiments were conducted in an OTTLE cell. ${ }^{8}$ The cell is equipped with a platinum working electrode, pseudo-Ag-reference electrode, and a platinum counter electrode. The IR spectra were recorded with a Bruker Vertex 70 IR spectrometer.

Figure S 28. IR spectra of $\mathbf{1}^{A}$ (black) as recorded during IR-SEC of 1, $0.1 M^{n} B u_{4} N P F_{6}$, dmf, and IR of $1+L D A(r e d)$.

SEM Images

A FEI Nova NanoSEM and a Nova Nano Lab 600 SEM was used for surface topology investigation.

Figure S 29. SEM picture of the electrode surfaces after decorating with MWCNT.

Figure S 30. SEM picture of the electrode surfaces after decorating with MWCNT and soaking in a solution of 1 .

Figure S 31. SEM picture of the electrode surfaces after 7200 s of electrolysis under CO_{2}-atmosphere; $d m f+10 \%$ water, $0.1 M^{n} B u_{4} N P F_{6}$.

XPS Data

XPS data were collected using a hemispherical XPS analyser (SPECS PHOIBOS 100) with a monochromatic X-ray source (SPECS FOCUS 500 monochromator, Al K_{α} radiation, 1486.74 eV). Fine spectra were collected at a normal angle from the surface. The pass energy was set to 10 eV for fine spectra with step sizes of 0.05 eV .

Figure S 32. XPS data at the Re edge of the electrode surface of 1 @MWCNT prior catalysis.

Figure S 33. XPS data at the Re edge of the electrode surface of $1 @ M W C N T$ after 30 min. CPE experiment at $-2.20 \mathrm{~V} v \mathrm{vs} . \mathrm{Fc}^{+/ 0}$ in $\mathrm{dmf}+10 \%$ water under CO_{2} atmosphere, $0.1 \mathrm{M}^{n} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$.

Figure S 34. XPS data at the Re edge of the electrode surface of $1 @ M W C N T$ after 30 min. CPE experiment in water under CO_{2} atmosphere, $0.5 \mathrm{M} \mathrm{NaHCO}_{3}$.

NMR Spectrum

Figure S 35. ${ }^{l} H-N M R$ spectrum of 1 in dmso- d_{6}.

References

1 A. Wilting, M. Kügler and I. Siewert, Z. Anorg. Allg. Chem., 2015, 641, 2498-2505.
2 R. D. C. Gallo, K. S. Gebara, R. M. Muzzi and C. Raminelli, J. Braz. Chem. Soc. 2010, 21, 770-774. 3 G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112-122.

4 SADABS V2014/4, Bruker AXS Inc., Madison, WI, USA.
5 (a) A. L. Spek, J. Appl. Cryst. 2003, 36, 7-13. (b) P. van der Sluis, A. L. Spek, Acta Cryst. 1990, A46, 194-201.

6 I. M. Kolthoff and M. K. Chantooni, J. Phys. Chem. 1972, 76, 2024-2034.
7 Bard, A. J.; Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications. $2^{\text {nd }}$ ed.; Wiley: New York, 2001.

8 M. Krejcik, M. Danek and F. Hartl, J. Electroanal. Chem. Interfacial Electrochem. 1991, 317, 179-187.

