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In randomized clinical trials, it is standard to include baseline variables in the
primary analysis as covariates, as it is recommended by international guidelines.
For the study design to be consistent with the analysis, these variables should
also be taken into account when calculating the sample size to appropriately
power the trial. Because assumptions made in the sample size calculation are
always subject to some degree of uncertainty, a blinded sample size reestimation
(BSSR) is recommended to adjust the sample size when necessary. In this article,
we introduce a BSSR approach for count data outcomes with baseline covariates.
Count outcomes are common in clinical trials and examples include the number
of exacerbations in asthma and chronic obstructive pulmonary disease, relapses,
and scan lesions in multiple sclerosis and seizures in epilepsy. The introduced
methods are based on Wald and likelihood ratio test statistics. The approaches
are illustrated by a clinical trial in epilepsy. The BSSR procedures proposed are
compared in a Monte Carlo simulation study and shown to yield power values
close to the target while not inflating the type I error rate.
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1 INTRODUCTION

Randomized clinical trials provide the highest evidence to estimate a treatment effect and are therefore considered the
gold standard study design.1 Even if randomization guarantees comparable treatment arms on average across repeated
trials, in individual trials, in particular if they are small, treatment groups might differ with regard to their covariate
distributions. If a covariate is predictive, in the sense that it moderates the treatment effect and its distribution differs
between the treatment arms, then comparisons between the treatment arms yield incorrect results unless the analyses are
appropriately adjusted for the covariate.2 Therefore, it is important to include predictive baseline covariates in the primary
analysis. Furthermore, this leads to a reduced between-subject variation and, thereby, to an increase in statistical power.

Abbreviations: BSSR, blinded sample size reestimation; IPS, internal pilot study; MRI, magnetic resonance imaging; MS, multiple sclerosis; PL, pseu-
dolikelihood; SD, standard deviation.
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This is obvious for normally distributed outcomes, but also holds for nonnormally distributed outcomes such as binary
endpoints.3 Therefore, the sample size planning and the analysis should match to obtain a sample size which maintains
a target power.

Depending on the scale of the outcome variable, different sample size estimation methods exist. For normally dis-
tributed outcomes, Frison and Pocock4 proposed a sample size formula for the analysis of covariance (ANCOVA). For
studies with dichotomous outcomes, Hernandez et al3 state that an adjustment for a predictive variable in the analy-
sis may lead to an increase in statistical power. In practice, sample size planning and analysis frequently mismatch as
Lyles et al5 realize. One reason might be that it is often difficult to obtain reliable estimates of the correlations between
the baseline variables and the outcome variable. In these situations, designs with internal pilot study (IPS)6 provide a
framework to deal with uncertainties in nuisance parameters such as correlations between baseline and outcome vari-
ables. For instance, Friede and Kieser studied such designs considering ANCOVA models with tests for superiority7 and
noninferiority.8 They proposed blinded procedures as they have favorable characteristics from a regulatory point of view
as compared to unblinded procedures.9,10

Many clinical trials have endpoints modeled as count data, for example, the number of malignant melanoma lesions or
number of seizures in epilepsy patients. Recurrent event data, for example, the number of multiple sclerosis (MS) relapses
during follow-up, can also be considered as count data. For the analysis of count data, in general, a Poisson regression
or, in case of overdispersion, a negative binomial regression can be used to consider covariates. Under the assumption of
constant event rates, these regression models can also be applied to analyze data with varying follow-up times by including
the logarithm of the follow-up times as off set in the regression model.

Several authors proposed sample size formulas for trials with count outcomes. While some assume specific dis-
tributions such as negative binomial distribution,11,12 others consider more general situations.13-15 In addition, some
approaches consider covariates, with Signorini16 being one of the early proposals. Lyles et al5 review approaches for the
period up to 2005 and propose a very flexible approach for the power calculation in generalized linear models (GLM).
Since then, further approaches for the sample size planning of specific designs were proposed, for example, for clustered
data,17 variable follow-up times,18 noninferiority trials,19 and overdispersed data.13 However, the general approach from
Lyles et al5 can also be applied to these designs.

Cook et al,20 Schneider et al,21,22 as well as Friede and Schmidli23,24 proposed adaptive designs for nuisance parameter
based sample size reestimation with count outcomes, but did not consider covariates. Therefore, the aim of this article is
to propose blinded sample size reestimation (BSSR) procedures for clinical trials with count data considering covariates
and to systematically investigate their operational characteristics. The proposed methods are based on Wald or likelihood
ratio (LR) test statistics and use the expected Fisher information (FI) or the Lyles approach for the sample size estimation.

In the next section, the clinical evaluation of antiepileptic drugs is discussed and the example dataset is described.
In Section 3, the statistical model, the applied test statistics, and the sample size calculation approaches are presented,
whereas in Section 4, a procedure for sample size reestimation is proposed. The statistical properties of the approaches
regarding type I error rate and statistical power are investigated in Section 5, and the approaches are applied to the example
dataset in Section 6. We close with a brief discussion of the results in Section 7.

2 CLINICAL EVALUATION OF ANTIEPILEPTIC DRUGS

The Food and Drug Administration (FDA) and European Medicines Agency (EMA) generally define the efficacy of
anti-epileptic drugs in terms of the number of seizures. The EMA recommends the reduction in the frequency of seizures
as a primary endpoint for exploratory studies.25 In contrast, for therapeutic confirmatory studies, the responder rate is
recommended as a primary endpoint, whereas a response is defined as a seizure reduction of 50%.25 For late phase I
and phase II, as well as for phase III studies, the FDA recommends the percentage change from baseline in seizure fre-
quency as primary endpoint. This may lead to studies with different primary endpoints for different regions (see, eg,
Rosenfeld et al26). A crossover study design is mentioned in both guidelines as one possible design (in the EMA guide-
line only for exploratory studies). However, in the large randomized studies published over the past few years, a parallel
group study design was used predominantly.27-30 Regarding the analysis of seizure counts, the EMA guideline explains
that “the distribution of seizure frequencies are usually heavily skewed.” Therefore, in phase III studies, the outcome
is usually transformed using a rank- or a log-transformation. Most randomized studies analyzed the seizure frequency
as percent change from baseline using an ANCOVA with the baseline seizure frequency as covariate.26,31,32 However,
in the mentioned studies, the sample size calculation ignored the baseline covariate effect and therefore did not match
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F I G U R E 1 Distributions of the number of seizures 8
weeks pretreatment and 8 weeks on treatment in the two
treatment groups observed in the study by Leppik et al34

(boxplot indicates mean +; median line; box: 25%-75% quantile;
whisker: 5%-95% quantile)

the analysis approach. We found no phase III trial with a sample size reestimation, although it often would have been
helpful, as the assumptions for the sample size calculation differed considerably from the study results in several cases,
implying potentially underpowered or overpowered studies.27,28,32 For example, in Reference 27, for the sample size cal-
culation, the mean log-transformed 28-day seizure rate was estimated to be 2.59 for placebo, 2.32 for pregabalin (PGB)
as intervention with dosage of 150 mg, and 2.01 for PGB 300 mg. By contrast, in the end, the adjusted mean values
estimated using ANCOVA were 1.96, 1.95, and 1.82 for placebo, PGB 150, and PGB 300, respectively. For confirmatory
studies, the EMA and FDA guidelines recommend at least 12 weeks as maintenance period, which is also standard
in large-scale confirmatory trials.28,29,32,33 For the baseline period, no specific duration is recommended, but mostly a
4-week interval is used.27-29,32,33 The sample size in recently published phase III trials ranged from 100 to 300 patients per
group.27,28,30,32 The median weekly seizure rates in these trials ranged from 1.75 to 3.6. Because only the median number
of seizures in the baseline period was reported in the considered articles, it was not possible to calculate the underlying
overdispersion.

To motivate our work, we consider the double-blind randomized study for the comparison of proabide and placebo
from Leppik et al34 as an example. This study has already served as an example in other methodological articles.35,36 The
sample size of 59 epileptic patients was small compared to the phase III trials mentioned above. The primary endpoint
in the study was the weekly seizure rate in an 8-week interval on treatment, and as a covariate the seizure count in the
preceding 8-week interval was used. The median number of seizures per week decreased from 2.3 to 2 in the placebo arm
and from 3 to 1.9 in the proabide arm. These seizure rates are comparable to those of the above mentioned trials and follow
a skewed distribution, as shown in Figure 1. This example is revisited and analyzed by negative binomial regression in
Section 6.

3 STATISTICAL MODEL, HYPOTHESIS TESTING, AND SAMPLE SIZE
PLANNING

Prior to presenting methods for BSSR, the focus of this article, we recapitulate the negative binomial regression model,
discuss two group comparisons in the negative binomial regression model, and present sample size planning for the
discussed hypothesis tests.

3.1 Statistical model

Let the random variable Yi ∈ N0 denote the number of events of subject i = 1,… ,n after some subject specific follow-up
time ti ∈ [0,T] and let Xi ∈ Rp be the corresponding p-dimensional vector of baseline covariates and group affiliation, in
the following referred to as explanatory variables. We model the number of events Yi by a negative binomial regression
model.37 In detail, the number of events Yi has the probability mass function

PNB (yi, 𝜆i, 𝜂) ∶= P (Yi = yi|Xi = xi) =
Γ (𝜂 + yi)
Γ (𝜂) yi!

(
𝜆i

𝜂 + 𝜆i

)yi
(

𝜂

𝜂 + 𝜆i

)𝜂

,
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where 𝜆i is the expected number of events conditioned on the explanatory variable, that is,

𝜆i = E [Yi|Xi = xi] = ti exp
(

x⊤
i 𝜷

)
, i = 1,… ,n.

The conditional variance is given by

Var [Yi|Xi = xi] = 𝜆i

(
1 + 𝜆i

𝜂

)
, i = 1,… ,n.

We refer to 𝜂 as the shape parameter. For increasing 𝜂, the variance converges to 𝜆i, the variance of a Poisson distribu-
tion. In this manuscript, we focus on the case in which the subjects are allocated to two treatment arms: the experimental
treatment group and the control group. The treatment effect can be modeled through the explanatory variable Xi by set-
ting its first entry to one, that is, Xi1 = 1, and its second entry to an indicator variable which is zero if subject i is in the
control group, that is, Xi2 = 0, or one if subject i is in the experimental treatment group, that is, Xi2 = 1. Thus, the first
entry 𝛽1 of the parameter vector 𝜷 corresponds to the intercept and the second entry 𝜃 ∶= 𝛽2 is the treatment effect in
terms of the log rate ratio. We assume that smaller rates of 𝜆i are better and, therefore, the smaller 𝜃, the more efficient is
the experimental treatment compared to the control. The statistical hypothesis testing problem of interest is given by

H0 ∶ 𝜃 = 𝛿 versus H1 ∶ 𝜃 ≠ 𝛿,

where 𝛿 ∈ R, commonly 𝛿 = 0 is chosen. In the following subsection, we present several statistical tests for the
hypothesis H0.

3.2 Hypothesis testing

In this subsection, we discuss two common likelihood-based tests, a Wald and the LR test, for the negative binomial
regression model. Both tests are conditional tests, that is, even though we modeled the explanatory variables Xi (i =
1,… ,n) as random, the hypothesis tests are defined conditioned on the explanatory variables.

3.2.1 Wald test

A Wald statistic is defined as the ratio of an estimator for the parameter of interest and its standard error. Here, we
focus on estimating the log rate ratio 𝜃 through the maximum likelihood approach. Let 𝛽 be the maximum likelihood
estimator of the parameter vector 𝜷, �̂� be the maximum likelihood estimator of the shape parameter 𝜂, and let I(𝜷, 𝜂) be
the corresponding FI matrix. The conditional FI matrix I(𝜷, 𝜂|X), where X is a placeholder for X1,… ,Xn, can be split into
diagonal parts relating to 𝜷 and 𝜂 and zeroes otherwise, that is,

I(𝜷, 𝜂|X) =
(I𝜷(𝜷, 𝜂|X) 0

0 I𝜂(𝜷, 𝜂|X)

)
.

According to Lawless,37 the maximum likelihood estimator 𝛽 asymptotically follows a multivariate normal distribu-
tion, that is,

√
n
(
�̂� − 𝜷

) ∼
n→∞

 (
0, I𝜷(𝜷, 𝜂|X)−1) .

Since the treatment effect 𝜃 is the second entry of the parameter vector 𝜷, the maximum likelihood estimator �̂� is
the second entry of the maximum likelihood estimator 𝛽. The maximum likelihood estimator �̂� asymptotically follows a
normal distribution,

√
n
(
�̂� − 𝜃

) ∼
n→∞

 (
0, c⊤I𝜷(𝜷, 𝜂|X)−1c

)
,
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where c is a vector that has a one as the second entry and zeros otherwise. With these preliminaries, we define the Wald
statistic as

TW = n
(
�̂� − 𝛿

)2

c⊤I𝜷(�̂�, �̂�|X)−1c
. (1)

The maximum likelihood estimators 𝛽 and �̂� are consistent and with Slutsky's theorem, it follows that c⊤I𝜷(�̂�, �̂�|X)−1c
is a consistent estimator of c⊤I𝜷(𝜷, 𝜂|X)−1c. Furthermore, under the null hypothesis H0, the Wald statistic TW is asymp-
totically 𝜒2 distributed with one degree of freedom and an asymptotic level 𝛼 test of H0 is obtained by rejecting H0 when
the Wald statistic TW is larger than the (1 − 𝛼)-quantile 𝜒2

1,1−𝛼 of a 𝜒2 distribution with one degree of freedom. It is worth-
while noting that the asymptotic distribution of the maximum likelihood estimators and the Wald statistic hold only
conditioned on the explanatory variables.

We defined the test statistic such that it is asymptotically 𝜒2 distributed. However, the test statistic can also be defined
such that it is asymptotically standard normally distributed. Since a squared standard normal distribution corresponds to
a 𝜒2 distribution, the two definitions are equivalent for testing H0. Furthermore, defining the test statistic such that it is
standard normally distributed would also allow for one-sided testing of H0, whereas the tests based on the 𝜒2 distribution
are inherently two-sided.

3.2.2 LR test

Let Ω = Rp × R>0 be the parameter space associated with the parameter vector (𝜷, 𝜂). The parameter space Ω0 ⊂ Ω of the
null hypothesis H0 is equal to R × {𝛿} × Rp−2 × R>0, that is, it is obtained by imposing the null hypothesis 𝜃 = 𝛿 to the
parameter space. Then, the LR statistic is defined by

TLR = −2 log
( supΩ0

 (𝜷, 𝜂|Y1,… ,Yn,X1,… ,Xn)
supΩ (𝜷, 𝜂|Y1,… ,Yn,X1,… ,Xn)

)
,

where (⋅, ⋅|Y1,… ,Yn,X1,… ,Xn) denotes the likelihood function of the negative binomial regression model.37 Under
the null hypothesis H0 and conditional on the explanatory variables, the LR statistic TLR is asymptotically 𝜒2 distributed
with one degree of freedom.38 Thus, an asymptotic level 𝛼 test of the null hypothesis H0 is obtained by rejecting the null
hypothesis of the LR statistic TLR that is larger than the (1 − 𝛼)-quantile 𝜒2

1,1−𝛼 .

3.3 Power and sample size calculation

An integral step in the planning of a clinical trial is the determination of the sample size. When covariates are to be
incorporated in the analysis, it is important to consider them in the sample size determination, even though they are
not known prior to the trial, since they can affect the statistical power of the trial. There are two common approaches to
define the power and the respective sample size to account for covariates in sample size planning, a conditional and an
unconditional approach. The conditional power is the power of the statistical test for a given set of the explanatory variable
and the unconditional power is the expected value of the conditional power over the distribution of the explanatory
variable.39 In practice, the unconditional power is of greater interest than the conditional power. However, versions of the
conditional power can be used to approximate the unconditional power as we will see below.

For both the conditional and unconditional approaches, we need to approximate the distribution of the test statistic
under the alternative. Therefore, we start with approximating the distribution of the Wald statistic TW and the LR statistic
TLR for a parameter 𝜃1 ≠ 𝛿, conditional on the covariates. Let 𝜷H1

be the parameter vector with 𝜃1 as a second entry. Under
the alternative hypothesis, the distribution of the Wald statistic TW can be approximated by a noncentral 𝜒2 distribution
with one degree of freedom and noncentrality parameter

𝜆W = n(𝛿 − 𝜃1)2

c⊤I𝜷(𝜷H1
, 𝜂)−1c

.
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The distribution of the LR statistic TLR under the alternative hypothesis can be approximated by a noncentral 𝜒2

distribution with one degree of freedom and noncentrality parameter

𝜆LR = −2
(
log0

(
𝜷H1

, 𝜂|Y1,… ,Yn,X1,… ,Xn
)
− log (

𝜷H1
, 𝜂|Y1,… ,Yn,X1,… ,Xn

))
,

where 0 denotes the likelihood function restricted to the null hypothesis.
In the following, we present two approaches for approximating the unconditional power based on which the sample

size can be calculated using iterative methods.

3.3.1 Expanded dataset

Lyles et al5 proposed to approximate the unconditional power by a conditional power for a given set of explanatory vari-
ables x1,… , xn on the basis of an expanded dataset (ED). In the following, we briefly recapitulate this approach for the
negative binomial regression model. We assume the parameters 𝜷 and 𝜂 to have certain values under the planning alterna-
tive and denote these as 𝜷H1

and 𝜂H1 . An ED is created with J entries for each fictitious explanatory variable xi (i = 1,… ,n)
where for each value j = 1,… , J the weights

wij = P
(

Yi = yj|Xi = xi
)

are calculated assuming 𝜷H1
and 𝜂H1 are true. The parameter J is chosen sufficiently large such that the weights sum up

to approximately one for each i = 1,… ,n:

J∑
j=1

wij =
J∑

j=1
P
(

Yi = yj|Xi = xi
)
≈ 1. (2)

For example, one might select J such that the above sum is no smaller than a fixed threshold 𝜏, for example, 𝜏 = 0.999.
The ED consists of n × J tuples (yj, xi,wij) with i = 1,… ,n and j = 1,… , J.

After setting up the ED, the weighted log-likelihood

n∑
i=1

J∑
j=1

wij log
(
P
(

Yi = yj|Xi = xi
))

is maximized with respect to 𝜷 and 𝜂. We denote the resulting maximum likelihood estimators by �̂�ED, �̂�ED, and the effect
size, equal to the second entry of �̂�ED, by �̂�ED. As stated in section 2.2 in Lyles et al,5 the maximum likelihood estimators are
equal to the assumed parameters 𝜷H1

and 𝜂H1 and, more importantly, the inverse observed FI I𝜷(�̂�ED, �̂�ED|X)−1, calculated
from the ED, can be used as an estimator for the matrix Var(�̂�ED). Specifically of interest for us is the variance of the
effect size, that is, Var

(
�̂�ED

)
, which is estimated by taking the corresponding entry from the inverse observed FI, that is,

V̂ar
(
�̂�ED

)
= c⊤I𝜷(�̂�ED, �̂�ED|X)−1c. Plugging in the estimate V̂ar

(
�̂�ED

)
for its true value, the approximated noncentrality

parameter 𝜆W,ED for the distribution of the Wald statistic under the alternative is given by:

�̂�W,ED = n(𝛿 − 𝜃1)2

V̂ar(�̂�ED)
,

and the approximated statistical power of the Wald test (WT) is given by

P
(
𝜒2

1 (�̂�W,ED) ≥ 𝜒2
1,1−𝛼

)
, (3)

where 𝜒2
1 (�̂�W,ED) denotes a random variable following a noncentral 𝜒2 distribution with one degree of freedom and non-

centrality parameter �̂�W,ED. Since the ED and, consequently, the corresponding approximate statistical power depend on
the sample size n used for creating the ED, the sample size required to obtain a prespecified target power for the WT must
be determined iteratively, for example, by using the bisection method. When determining the sample size required for
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the LR test, one would proceed similarily by approximating the noncentrality parameter 𝜆LR through the −2 weighted
log-likelihood values from the unrestricted fit and the fit restricted to the null hypothesis.

The performance of this procedure relies on sufficiently large J to be obtained.5 However, in some situations, J can
become very large to reach the threshold 𝜏, resulting in a large ED and high computation times. To reduce required
computational resources, we replace wij by w̃ij = P

(
Yi ∈ {yj1 ,… , yjc(i,j) }|Xi = xi

)
, where an individual value yj is replaced

by a set of c(i, j) values. For instance, c(i, j) is chosen such that w̃ij is larger than a set value, for example, 0.001. In the ED, we
replace yj by ỹj, where ỹj is a representative of the set {yj1 ,… , yjc(i,j) }, for example, the median or the value associated with
the largest wij. We refer to this procedure as the binning procedure. For a numerical implementation of this algorithm,
we refer to the R-code submitted as supplementary material.

3.3.2 Expected information

For a given set of explanatory variables x1,… , xn, the sample size of the WT and the LR test in the negative binomial
regression model can be expressed in dependency of the FI matrix I𝜷(𝜷, 𝜂|X). Fisher's information matrix I𝜷(𝜷, 𝜂|X) is
defined conditional on the explanatory variable, which we will emphasize by referring to it as the conditional informa-
tion. In the following, we provide the sample size formula for the negative binomial regression based on the conditional
information. Then, we illustrate how the unconditional power can be attained by numerical approximation.

For conditional power, assuming given parameters 𝜷H1
and 𝜂H1 in the alternative H1 and a given set of explanatory

variables x1,… , xn, under the normal approximation of the Wald statistic TW from Equation (1), the total sample size of
the WT in the negative binomial regression model to yield a power of 1 − 𝛽 can be approximated by

n =
(q1−𝛼∕2 + q1−𝛽)2

(𝜃1 − 𝛿)2 c⊤I𝜷(𝜷H1
, 𝜂H1 |X)−1c.

The explanatory variables x1,… , xn, which include baseline covariates, are not available when planning a clinical
trial, and therefore, it is not possible to calculate I𝜷(𝜷H1

, 𝜂H1 |X)−1 at the planning stage of the clinical trial. Instead, we
focus on calculating a sample size n for which the unconditional power holds. Using the normal approximation of TW , it
follows that the unconditional power is equal to

∫ P
(

TW ≥ q1−𝛼∕2|X)
dP

(X1,…,Xn) = ∫ Φ
⎛⎜⎜⎜⎝
−q1−𝛼∕2 +

√
n ⋅

𝜃1 − 𝛿√
c⊤I𝜷(𝜷H1

, 𝜂H1 |X)−1c

⎞⎟⎟⎟⎠
dP

(X1,…,Xn).

As only the FI depends on X, we suggest to approximate the integral by replacing I𝜷(𝜷H1
, 𝜂H1 |X) by its expectation,

that is,

Ĩ𝛽(𝜷H1
, 𝜂H1) = EX

[
I𝜷(𝜷H1

, 𝜂H1 |X)
]
= ∫ I𝜷(𝜷H1

, 𝜂H1 |X)dP
(X1,…,Xn).

Thus, the approximate sample size required to yield an unconditional power of 1 − 𝛽 with the WT in the negative
binomial regression model is given by

ñ =
(q1−𝛼∕2 + q1−𝛽)2

(𝜃1 − 𝛿)2 c′Ĩ𝛽(𝜷H1
, 𝜂H1)

−1c. (4)

4 PROPOSED PROCEDURE FOR BSSR

To test the null hypothesis H0 ∶ 𝜃 = 𝛿, we introduced two tests, namely, a WT (Section 3.2.1) and an LR test (Section 3.2.2).
For approximating the unconditional power of these tests under a given alternative, we also introduced two approaches,
using the ED (Section 3.3.1) and using the expected information (Section 3.3.2) . One possibility, described in Section 3.3.1,
is given by creating an ED. This approach requires prior information on nuisance parameters 𝜷 and 𝜂, as well as the
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support of the covariates, to create an ED, from which the power of the WT or LR test can be calculated for a given sample
size. Calculating the sample size for a specific power is then possible by iterating the sample size until the target power is
met. We will refer to these sample size calculation methods for the WT and LR test, using the ED, as WT-ED and LR-ED,
respectively. The second possibility for calculating the power or sample size, as described in Section 3.3.2, is given by
calculating the expected FI matrix. Based on assumption on 𝜷 and 𝜂, as well as the distribution of the covariates, the
expected FI can be calculated numerically and plugged into the sample size formula (1). This approach is applicable to
the described WT. We will refer to this sample size calculation method as WT-FI. The aim of this section is to demonstrate
how these three methods for sample size calculation can be applied to construct BSSR procedures.

Assume we have carefully considered a suitable time point for the sample size review. At this time point, the gathered
data are still blinded to maintain trial integrity. We therefore observe outcomes y1,… , ym with corresponding explanatory
variables x1,… , xm. As the trial is still running, follow-up times t1,… , tm are likely to vary as recruitment is usually gradual
over time. It is likely that some patients have not completed follow-up, and therefore, only partial follow-up information
is available for these patients. However, these incomplete observations should be included in the sample size review, as
the resulting sample size is expected to be less variable.21,40

All three sample size estimation methods, WT-ED, LR-ED, and WT-FI, are based on assumptions on the nuisance
parameters 𝜷 and 𝜂. Therefore, for a BSSR of the sample size, we estimate these nuisance parameters from the blinded
data. Further relevant information required for the estimation of nuisance parameters is the intended length of the study
T and the allocation ratio r = nE∕nC, where nE and nC denote the initial sample sizes of the experimental treatment and
control group, respectively. As the group allocation is unknown, an observation from the blinded dataset follows a mixture
distribution of two negative binomial distributions. Assuming that the true treatment effect 𝜃1 holds, a blinded estimator
of 𝜷(𝜃1) = (𝛽1, 𝜃1, 𝛽3,… , 𝛽p)⊤ (regression coefficients with fixed effect size 𝜃1) and 𝜂 is given by maximizing the likelihood
of a mixture distribution of two negative binomial distributions, with known weight r, which is given by

m∑
i=1

log
( r

r + 1
⋅ PNB

(
yi, exp

(
(xi1, 1, xi3,… , xip)𝜷(𝜃1)

)
⋅

ti

T
, 𝜂

ti

T

)
(5)

+ 1
r + 1

⋅ PNB
(

yi, exp
(
(xi1, 0, xi3,… , xip)𝜷(𝜃1)

)
⋅

ti

T
, 𝜂

ti

T

))
.

By maximizing the likelihood (0), blinded estimates �̂�blind and �̂�blind for the nuisance parameters 𝜷(𝜃1) and 𝜂 are
obtained. These are then used to recalculate the sample size by plugging in �̂�blind for 𝜷 and �̂�blind for 𝜂 in the correspond-
ing sample size calculation method. For the methods WT-ED and LR-ED, the required sample size to yield the target
power, given the blinded estimates, is calculated iteratively. Using the bisection method, for example, the following steps
are necessary to obtain the reestimated sample size.

1. Choose an initial maximum total sample size nmax and minimal total sample size nmin.
2. Set n = (nmax + nmin)∕2 and create an ED plugging in �̂�blind and �̂�blind for 𝜷 and 𝜂 to calculate weights 𝜔ij.
3. From the ED, attain maximum likelihood estimators �̂�ED, �̂�ED, �̂�ED, and V̂ar(𝜃ED) to calculate the noncentrality

parameters 𝜆W,ED or 𝜆LR, depending on the desired test.
4. Calculate the power of the WT or LR test for n subjects, using the noncentrality parameter 𝜆W,ED for the WT or 𝜆LR

for the log-ratio test.
5. If the calculated power is higher than the desired power, set nmax ∶= n, else set nmin ∶= n.
6. Iterate steps 2-5 until the calculated power is approximately equal to the desired power.

For the method WT-FI, the calculation of the reestimated sample size is computationally less expensive and can be
summarized in the following steps:

1. Calculate the expected FI Ĩ𝜷(𝜷, 𝜂) plugging in �̂�blind and �̂�blind for 𝜷 and 𝜂.
2. Plug in the calculated expected FI Ĩ𝜷(𝜷blind, 𝜂blind) for the true FI I𝜷(𝜷H1

, 𝜂H1) into the sample size formula (4) to
attain n.

Having followed these steps, the total sample size in the study can now be adjusted to be n, where the group specific
sample sizes are nE = n⋅r

1+r
for the treatment group and nC = n

1+r
for the control group. When calculating the expected

FI, the covariates distribution is also required. However, because the covariates distribution is assumed to be equal over
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Parameters Assumed value True values

Intercept log rate 𝛽1 0 −1, −0.8, … , 1

Log rate ratio 𝛽2 −0.2 0

Covariate rate 𝛽3 2.5 0, 0.5, … , 5

Shape parameter 𝜂 3 2, 2.2, … , 4

T A B L E 1 Simulation settings for the comparison of
type I error rates between the fixed design and the blinded
sample size reestimation procedures

all treatment groups, a maximum likelihood estimation of the parameters of the covariates distribution on the blinded
data is possible and sufficient. The reestimated sample size should maintain the power even when initial assumptions on
nuisance parameters prove to be wrong. This is shown in the following section.

5 OPERATING CHARACTERISTICS OF THE BSSR PROCEDURES

In this section, we investigate the influence of a BSSR on type I error rate, as a regulatory requirement of adaptive designs
is the control of the type I error rate, and study the power to see if the BSSR methods can mitigate overpowering and
underpowering when the nuisance parameters are misspecified. The binning procedure, described in Section 3.3.1, is
only applied in selected settings, that is, Appendix A.1.

5.1 Type I error rate

Statistical analyses performed within a running trial, which may result in changes to the trial design, can impact the
type I error rate. To investigate whether the BSSR procedures influence the type I error rate, we conducted a simulation
study including all three reestimation methods introduced in Section 4, under a variety of simulation settings displayed
in Table 1. All simulations are conducted with one normally distributed covariate, which is standardized for the BSSR
using sample mean and standard deviation (SD). Group sizes are assumed to be equal and total observation time is one,
that is, r = 1 and T = 1.

For calculating the sample size of the fixed design, the assumed values from Table 1 were considered. The required
sample size for rejecting the null hypothesis H0 ∶ 𝜃 = 0 under the alternative 𝜃1 = 𝛽2 = −0.2 with a power of 80% at level
𝛼 = 5% for each of the three methods is nWT-FI = 379, nWT-ED = 381, and nLR-ED = 383, per group.

Data were then simulated with values differing from the ones assumed for the sample size planning. First, covariates
of the first half of the planned sample were generated from a standard normal distribution. Then, 25% of the initial sample
sizes observations were generated as complete observations, before a further 25% of the initial sample sizes observations
were generated with random follow-up times ti, uniformly distributed on [0,T], to simulate varying follow-up times. The
generated data were then taken to calculate n̂WT-FI, n̂WT-ED, and n̂LR-ED. Having calculated the reestimated sample size,
the 25% data with incomplete follow-up times were completed and further observations were generated accordingly.

Inference was then performed on nWT-FI, nWT-ED, and nLR-ED observations per group for the fixed design and n̂WT-FI,
n̂WT-ED, and n̂LR-ED observations per group for the designs with BSSR. The results are visualized in Figure 2.

The mean and median type I error rate in the three methods, summarized over all settings depicted in Figure 2, were
0.046 and 0.050, respectively. SD of the type I error rate was 0.015 in all three methods. These summary results were equal
compared between the fixed design and the BSSR procedure, up to the third decimal. Therefore, we conclude that the
BSSR does not inflate the type I error rate and can be used without the need of a type I error rate adjustment.

5.2 Power

To demonstrate the benefits of a BSSR, we conduct a simulation study that compares the power of the fixed design and
the power of a sample size adjustment, under the settings displayed in Table 1, with the only difference being that the true
log rate ratio is equal to the assumed log rate ratio. The observed covariate is assumed to be from a normal distribution
and standardized prior to the statistical analysis. Assumptions on the duration of the trial, sample size allocation, and
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F I G U R E 2 Type I error rates of the three blinded sample
size reestimation procedures plotted against the type I error rate
of the corresponding fixed design. Every combination of true
values from Table 1 corresponds to one simulation setting
resulting in a total of 175 distinct settings. For each setting,
10 000 trials were simulated

F I G U R E 3 Power comparison of
the fixed design and blinded sample size
reestimation for the method WT-FI.
Nuisance parameter altered sequentially,
one at a time. Mean sample size
reestimates with 5%- and 95%-quantiles
are additionally displayed. Tabular
results are given in Appendix A.2
[Colour figure can be viewed at
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covariate distribution are the same as in Section 5.1. Therefore, the sample sizes for the fixed design are also equal, that
is, nWT-FI = 379, nWT-ED = 381, and nLR-ED = 383 per group. The data of the simulation study are generated analogously as
described in Section 5.1. The results of the comparison of the fixed design with BSSR procedures are shown in Figure 3.

Figure 3 compares the sample size and implied power of the fixed design and BSSR for the WT-FI procedure.
Apart from a small set of simulation settings, the results from WT-ED and LR-ED are very similar and therefore dis-
played in Figures A1 and A2 within the Appendix. We can conclude that BSSR corrects the sample size when the true
parameters differ from the assumed and the reestimated sample size maintains 80% power, while the sample size from
the fixed design does not achieve the desired power when true parameters are different from the assumed. In the
regarded settings, these changes are visible for misspecifications of the intercept rate 𝛽1, covariate rate 𝛽3, and shape
parameter 𝜂. However, the impact of these parameters is specific to the setting and may be different for other param-
eter combinations. In addition to changes of the nuisance parameters, the effect size may also be misspecified in the
BSSR. While the presented BSSR procedure does not correct the sample size due to a misspecified effect size, a pos-
sible misspecification did not result in any relevant influence on the sample size. Simulation results are reported in
Appendix A.3.

http://wileyonlinelibrary.com
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T A B L E 2 Results of the negative binomial regression for the example study from Leppik et al34

Without covariate (AIC=538.2) With covariates (AIC=472.3)

Parameter Estimate Standard error p-value Estimate Standard error p-value

Intercept 𝛽1 3.5389 0.1820 < 0.001 3.2323 0.1280 < 0.001

Treatment 𝛽2 −0.0772 0.2512 0.759 −0.2677 0.1483 0.071

Baseline seizures 𝛽3 — 0.7668 0.0755 <0.001

Age category 𝛽4 — 0.1374 0.1496 0.358

Shape parameter 𝜂 1.114 0.193 3.691 0.798

Parameter Blinded estimates

Intercept 𝛽1 = 3.1849

Baseline seizures 𝛽3 = 0.7500, �̂� = 0, �̂� = 1

Age Category 𝛽4 = 0.1590, p̂ = 0.4406

Shape parameter �̂� = 3.6455

Notes: Note that the relevant treatment effect 𝛽2 is not estimated
from the data, but defined by the user.

T A B L E 3 Nuisance parameters from blinded estimation

6 EXAMPLE STUDY REVISITED

The results of the negative binomial regression model applied to the double-blinded randomized study by Leppik et al,34

who compare proabide and placebo in patients with epilepsy, are displayed in Table 2. For illustration, we consider one
normally and one binomially distributed covariate. Ignoring the covariate effects (on the left hand side of the table), the
treatment effect is quite small (rate ratio equal to 0.93), resulting in a large corresponding p-value. When the baseline
seizure counts on the log-scale and the age category (< 30 years vs ≥ 30 years) are included in the model, it becomes
evident that the patient history has a large effect on outcomes. However, the treatment effect, which is now defined con-
ditional on the covariates, is also larger (rate ratio equal to 0.77), and the corresponding p-value becomes smaller. Taking
into account the standard errors of the treatment effect estimates, differences between the marginal and conditional treat-
ment effect are not as large anymore, as confidence intervals ([−0.569, 0.415] and [−0.558, 0.022], respectively) overlap.
The included covariates explain some of the variance, which is reflected on the one hand in a smaller AIC, which decreases
from 538.2 to 472.3, and on the other hand, in a larger shape parameter in the conditional model, which increases from
1.11 to 3.69. Leppik et al34 concluded that there was no statistically significant difference between proabide and placebo
regarding the seizure rates and that proabide is not a potent antiepileptic drug in the investigated population.

For illustrative purposes, let us assume that the example study is an IPS of a phase III trial and the collected data are
used for a BSSR. This means that we cannot conduct an unblinded analysis as the one presented in Table 2, as the data
would still be blinded. We merely have the number of seizure counts and pretreatment seizure counts for each patient
but not the treatment group allocations. Assuming a treatment effect of a log rate ratio of −0.2 (resulting in a rate ratio of
0.82), the nuisance parameters can be estimated in a blinded manner. Table 3 displays the estimated nuisance parameters
for all different methods.

With the nuisance parameter estimates from Table 3, a sample size of about 128 patients per group is estimated with
the WT-FI approach to prove the assumed effect with a power of 80% at two-sided level 𝛼 = 5%. Not considering covariates,
using the method from Friede and Schmidli,23 we would have required a sample size of about 353 patients per group.

7 DISCUSSION

Negative binomial regressions are popular to model count outcomes in clinical trials for various reasons including the
following. First, between-patient heterogeneity in the susceptibility to the event of interest is modeled through a Gamma
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mixture distribution of individual rates. Second, varying follow-up times can be accommodated by including the loga-
rithms of the follow-up times as an offset into the model. Third, baseline covariates can be easily included into the model
by linking the rates through the natural logarithm to a linear predictor.

Sample size calculations for trials with negative binomial regressions as primary analyses are often based on gues-
timates of the nuisance parameters, that is, control or overall rate, shape parameter, and regression parameters of the
covariates, as information on these parameters is often scarce in the design phase. This is partly due to poor reporting
of some of the relevant nuisance parameters.41,42 Here we suggested BSSR procedures based on different methodological
approaches. It turned out that these approaches lead to very similar results in practice. They all have in common (a) that
they did not inflate the type I error rate in any practically relevant way under the null hypothesis and (b) that their power
was close to the target under the planning alternative.

In the presented procedures, the blinded data are treated as observations from a mixture distribution, restricted to the
alternative hypothesis 𝛽2 = 𝜃1, and assuming that the allocation ratio r is known. This approach has been used before, for
example, by Asendorf et al40 and Schneider et al.22 The approach is an alternative to the so-called lumping approach,43

employed by Friede and Schmidli23,24 as well as Schneider et al.21 The latter treats the blinded data as if it were from one
common negative binomial distribution, which is also feasible by assuming the expected efficacy parameter holds. Both
approaches have been shown to differ only marginally.40 A discussion of the mixture and lumping approaches applied to
count data is also included in Friede et al.44

There were no notable differences between the three procedures, apart from a specific number of settings. For set-
tings in which the covariate parameter was large (𝛽1 = 0, 𝛽2 = −0.2, 𝛽3 ≥ 2.5, and 𝜂 = 3), the procedure by Lyles tended
to overestimate the sample size. This is due to computational limitations encountered with this procedure. During the
simulation procedure, it became evident that, to adequately calculate the power within these settings, J in Equation (2)
would need to be increased substantially, say from 1000 to 10 000 or even 50 000. This drawback was overcome by the
proposed binning procedure, which reduces the computational effort considerably and at the same time improves the
results. To further stabilize numerical calculations, we also considered standardizing the normally distributed covariate.
Leaving covariates on their original scale in theory will not change the results from the BSSR, but may lead to numerical
instability when inverting the expected FI in Equation (4), in particular when the parameter values are of different order.

The considered model and the proposed BSSR procedures could be extended in various ways. For instance,
time-varying rates are not uncommon; see, for example, Nicholas et al45 for an example in relapsing MS or Mütze et al46

for an example in paediatric MS. Furthermore, the assumption of a common shape parameter across treatment groups
is the default in standard software, but might need to be relaxed in some applications. Also, alternatives to including the
pre-trial event rate as covariate have been discussed.47
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APPENDIX A: SUPPLEMENTARY RESULTS

A.1 Power of the BSSR procedures WT-ED and LR-ED
In addition to the results for the procedure WT-FI, we present the results for WT-ED and LR-ED.

There were no notable differences between the three procedures, apart from specific number of settings. For settings
in which the covariate parameter was large (𝛽1 = 0, 𝛽2 = −0.2, 𝛽3 ≥ 2.5, and 𝜂 = 3), the procedure from Lyles tended
to overestimate the sample size. This was partially compensated for by raising the parameter J from Equation (2) to
J = 10 000 in order to maintain the specified precision, that is,

∑
jwij ≥ 0.999 (resulting in a small change in the fixed

sample size required). However, this was not sufficient for larger values of 𝛽3. The change observed in the required fixed
sample size in the center figure is due to increasing J from J = 1000 to J = 10 000. In settings where 𝛽3 = 4, 4.5, and 5,
the binning procedure outlined in Section 3.3.1 yields more appropriate sample sizes resulting in power values of 0.7835,
0.7895, and 0.7890 for WT-ED and 0.7841, 0.7932, and 0.7915 for LR-ED, respectively. Tabular results of Figures A1 and
A2 are displayed in Appendix A.2.

A.2 Tabular results of the BSSR procedures
In addition to the graphical representation, we list results of the power calculations from Figures 3, A1, and A2 for
improved readability. The power results for WT-FI, WT-ED and LR-ED are given in Tables A1, A2 and A3.
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F I G U R E A1 Power comparison of the fixed design and blinded sample size reestimation for the method WT-ED. The simulation
settings correspond to Table 1, where nuisance parameter altered sequentially, one at a time [Colour figure can be viewed at
wileyonlinelibrary.com]
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T A B L E A1 Power results for varying nuisance parameters using the method WT-FI

Intercept rate: 𝜷1 Covariate rate: 𝜷3 Shape parameter: 𝜼 BSSR-Power Fixed-Power

−1.0 2.5 3.0 0.7876 0.6371

−0.8 2.5 3.0 0.7849 0.6743

−0.6 2.5 3.0 0.7897 0.7053

−0.4 2.5 3.0 0.7908 0.7478

−0.2 2.5 3.0 0.7903 0.7755

0.0 2.5 3.0 0.7976 0.8091

0.2 2.5 3.0 0.7894 0.8235

0.4 2.5 3.0 0.7947 0.8491

0.6 2.5 3.0 0.7943 0.8748

0.8 2.5 3.0 0.7998 0.8926

1.0 2.5 3.0 0.7893 0.8991

0.0 0.0 3.0 0.7962 0.6312

0.0 0.5 3.0 0.7994 0.6454

0.0 1.0 3.0 0.8002 0.7012

0.0 1.5 3.0 0.7911 0.7389

0.0 2.0 3.0 0.7885 0.7687

0.0 2.5 3.0 0.7906 0.7954

0.0 3.0 3.0 0.7941 0.8236

0.0 3.5 3.0 0.7889 0.8344

0.0 4.0 3.0 0.7866 0.8417

0.0 4.5 3.0 0.7942 0.8491

0.0 5.0 3.0 0.7925 0.8645

0.0 2.5 2.0 0.7920 0.6909

0.0 2.5 2.2 0.7891 0.7160

0.0 2.5 2.4 0.7903 0.7410

0.0 2.5 2.6 0.7929 0.7641

0.0 2.5 2.8 0.7813 0.7753

0.0 2.5 3.0 0.7906 0.8033

0.0 2.5 3.2 0.7908 0.8214

0.0 2.5 3.4 0.7901 0.8287

0.0 2.5 3.6 0.7960 0.8520

0.0 2.5 3.8 0.7935 0.8561

0.0 2.5 4.0 0.7857 0.8705

Abbreviations: BSSR, blinded sample size reestimation; FI, Fisher information; WT, Wald test.
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T A B L E A2 Power results for varying nuisance parameters using the method WT-ED

Intercept rate: 𝜷1 Covariate rate: 𝜷3 Shape parameter: 𝜼 BSSR-Power Fixed-Power

−1.0 2.5 3.0 0.7855 0.6394

−0.8 2.5 3.0 0.7837 0.6746

−0.6 2.5 3.0 0.7903 0.7074

−0.4 2.5 3.0 0.7916 0.7511

−0.2 2.5 3.0 0.7917 0.7767

0.0 2.5 3.0 0.8000 0.8093

0.2 2.5 3.0 0.7921 0.8252

0.4 2.5 3.0 0.7956 0.8518

0.6 2.5 3.0 0.8018 0.8768

0.8 2.5 3.0 0.8053 0.8939

1.0 2.5 3.0 0.7973 0.8999

0.0 0.0 3.0 0.7932 0.6335

0.0 0.5 3.0 0.7932 0.6516

0.0 1.0 3.0 0.7974 0.7057

0.0 1.5 3.0 0.7878 0.7408

0.0 2.0 3.0 0.7829 0.7651

0.0 2.5 3.0 0.7879 0.7926

0.0 3.0 3.0 0.7925 0.8176

0.0 3.5 3.0 0.7893 0.8305

0.0 4.0 3.0 0.7940 0.8390

0.0 4.5 3.0 0.8067 0.8464

0.0 5.0 3.0 0.8256 0.8609

0.0 2.5 2.0 0.7916 0.6938

0.0 2.5 2.2 0.7909 0.7161

0.0 2.5 2.4 0.7937 0.7441

0.0 2.5 2.6 0.7980 0.7664

0.0 2.5 2.8 0.7838 0.7770

0.0 2.5 3.0 0.7900 0.8044

0.0 2.5 3.2 0.7954 0.8228

0.0 2.5 3.4 0.7913 0.8306

0.0 2.5 3.6 0.7978 0.8532

0.0 2.5 3.8 0.7944 0.8601

0.0 2.5 4.0 0.7870 0.8732

Abbreviations: BSSR, blinded sample size reestimation; ED, expanded dataset; WT, Wald test.
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T A B L E A3 Power results for varying nuisance parameters using the method LR-ED

Intercept rate: 𝜷1 Covariate rate: 𝜷3 Shape parameter: 𝜼 BSSR-Power Fixed-Power

−1.0 2.5 3.0 0.7880 0.6378

−0.8 2.5 3.0 0.7843 0.6770

−0.6 2.5 3.0 0.7900 0.7061

−0.4 2.5 3.0 0.7955 0.7509

−0.2 2.5 3.0 0.7943 0.7787

0.0 2.5 3.0 0.8027 0.8100

0.2 2.5 3.0 0.7901 0.8248

0.4 2.5 3.0 0.7983 0.8506

0.6 2.5 3.0 0.8024 0.8768

0.8 2.5 3.0 0.8055 0.8956

1.0 2.5 3.0 0.7990 0.9015

0.0 0.0 3.0 0.7933 0.6328

0.0 0.5 3.0 0.7933 0.6530

0.0 1.0 3.0 0.7978 0.7070

0.0 1.5 3.0 0.7877 0.7400

0.0 2.0 3.0 0.7878 0.7666

0.0 2.5 3.0 0.7885 0.7941

0.0 3.0 3.0 0.7953 0.8216

0.0 3.5 3.0 0.7936 0.8329

0.0 4.0 3.0 0.7941 0.8404

0.0 4.5 3.0 0.8073 0.8482

0.0 5.0 3.0 0.8285 0.8626

0.0 2.5 2.0 0.7969 0.6924

0.0 2.5 2.2 0.7924 0.7179

0.0 2.5 2.4 0.7953 0.7429

0.0 2.5 2.6 0.7977 0.7664

0.0 2.5 2.8 0.7842 0.7805

0.0 2.5 3.0 0.7926 0.8073

0.0 2.5 3.2 0.7999 0.8249

0.0 2.5 3.4 0.7954 0.8301

0.0 2.5 3.6 0.8002 0.8529

0.0 2.5 3.8 0.7966 0.8595

0.0 2.5 4.0 0.7884 0.8728

Abbreviations: BSSR, blinded sample size reestimation; ED, expanded dataset; LR, likelihood ratio.
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A.3 Misspecification of the effect size
An additional simulation study was conducted to investigated whether a misspecified effect size has an influence on the
reestimated sample size. The BSSR does not reestimate the effect size. Therefore, the BSSR procedure cannot be expected
to adjust the sample size to meet the predefined power. The results are given in Figure A3.

In Figure A3, we consider the same settings as described in Section 5.1. All nuisance parameters are equal to the
assumed nuisance parameters. The effect size, however, is different to that of the assumed effect size and ranges from
−0.3 to −0.1 in steps of 0.01. The simulation reveals that under a misspecfied treatment effect, the BSSR performs similar
to the fixed design. All settings were simulated 10 000 times.
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F I G U R E A3 Sample size comparison of the fixed design and blinded sample size reestimation for the methods WT-FI, WT-ED, and
LR-ED. The simulation settings correspond to Table 1, where nuisance parameters are kept equal to the expected but the effect size is altered
sequentially [Colour figure can be viewed at wileyonlinelibrary.com]
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