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Abstract

We study the number Nk of length-k word matches between pairs of evolutionarily related

DNA sequences, as a function of k. We show that the Jukes-Cantor distance between two

genome sequences—i.e. the number of substitutions per site that occurred since they

evolved from their last common ancestor—can be estimated from the slope of a function F

that depends on Nk and that is affine-linear within a certain range of k. Integers kmin and kmax

can be calculated depending on the length of the input sequences, such that the slope of F

in the relevant range can be estimated from the values F(kmin) and F(kmax). This approach

can be generalized to so-called Spaced-word Matches (SpaM), where mismatches are

allowed at positions specified by a user-defined binary pattern. Based on these theoretical

results, we implemented a prototype software program for alignment-free sequence com-

parison called Slope-SpaM. Test runs on real and simulated sequence data show that

Slope-SpaM can accurately estimate phylogenetic distances for distances up to around 0.5

substitutions per position. The statistical stability of our results is improved if spaced words

are used instead of contiguous words. Unlike previous alignment-free methods that are

based on the number of (spaced) word matches, Slope-SpaM produces accurate results,

even if sequences share only local homologies.

Introduction

Phylogeny reconstruction is a fundamental task in computational biology [1]. Here, a basic

step is to estimate pairwise evolutionary distances between protein or nucleic-acid sequences.

Under the Jukes-Cantor model of evolution [2], the distance between two evolutionarily

related DNA sequences can be defined as the number of nucleotide substitutions per site

that have occurred since the two sequences have evolved from their last common ancestor.
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Traditionally, phylogenetic distances are inferred from pairwise or multiple sequence align-

ments. For the huge amounts of sequence data that are now available, however, sequence

alignment has become too slow. Therefore, considerable efforts have been made in recent

years, to develop fast alignment-free approaches that can estimate phylogenetic distances with-

out the need to calculate full alignments of the input sequences, see [3–7] for recent review

articles. Alignment-free approaches are not only used in phylogeny reconstruction, but are

also important in metagenomics [8–10], to find genome rearrangements [11] and in epidemi-

ology [12] and other medical applications, for example to identify drug-resistant bacteria [13]

or to classify viruses [14, 15]. In all these applications, it is crucial to rapidly estimate pairwise

similarity or dissimilarity values in large sets of sequence data.

Some alignment-free approaches are based on word frequencies [16, 17] or on the length of

common substrings [18–20]. Other methods use variants of the D2 distance which is defined

as the number of word matches of a pre-defined length between two sequences [15, 21–23]; a

review focusing on these methods is given in [24]. kWIP [25] is a further development of this

concept that uses information-theoretical weighting. Most of these approaches calculate heu-

ristic measures of sequence (dis-)similarity that are difficult to interpret. At the same time,

alignment-free methods have been proposed that can accurately estimate phylogenetic dis-

tances between sequences based on stochastic models of DNA or protein evolution, using the

length of common substrings [26, 27] or so-called micro alignments [28–33].

Several authors have proposed to estimate phylogenetic distances from the number of k-

mer matches between two sequences. The tools Cnidaria [34] and AAF [35] use the Jaccard
index between sets of k-mers from two—assembled or unassembled—genomes to estimate the

distance between them. In Mash [9], the MinHash [36] approach is used to reduce the input

sequences to small ‘sketches’ which can be used to rapidly approximate the Jaccard index.

Skmer [37] is a further improvement of this approach. In a previous paper, we proposed

another way to infer evolutionary distances between DNA sequences based on the number of

word matches between them, and we generalized this to so-called spaced-word matches [38].

Here, a spaced-word match is a pair of words from two sequences that are identical at certain

positions, specified by a pre-defined binary pattern of match and don’t-care positions, see [39]

for a short review of alignment-free approaches based on spaced-word matches.

The distance function proposed in [38] is now used by default in the program Spaced
[40]. Theoretically, this distance measure is based on a simple model of molecular evolution

without insertions or deletions. In particular, we assumed in this previous paper that the

compared sequences are homologous to each other over their entire length. In practice, the

derived distance values are still reasonably accurate if a limited number of insertions and

deletions is allowed, and phylogenetic trees could be obtained from these distance values that

are similar to trees obtained with more traditional approaches. Like other methods that are

based on the number of common k-mers, however, our previous approach can no longer

produce accurate results if sequences share only local regions of homology. This is a serious

limitation of these methods, since many distantly related genomes share only locally limited

homologies, see [41].

Recently, Bromberg et al. published an interesting new approach to alignment-free protein

sequence comparison that they called Slope Tree [42]. They defined a distance measure using

the decay of the number of k-mer matches between two sequences, as a function of k. Trees

reconstructed with this distance measure were in accordance to known phylogenetic trees for

various sets of prokaryotes. Slope Tree can also correct for horizontal gene transfer and can

deal with composition variation and low complexity sequences. From a theoretical point-of-

view, however, it is not clear whether the distance measure used in Slope Tree is an accurate

estimator of evolutionary distances.

The number of k-mer matches between two DNA sequences as a function of k
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In the present paper, we study the number Nk of word or spaced-word matches between

two DNA sequences, where k is the word length or the number of match positions of the

underlying pattern for spaced words, respectively. Inspired by Bromberg’s Slope Tree
approach, we study the decay of Nk as a function of k. More precisely, we define a function

F(k) that depends on Nk and that can be approximated—under a simple probabilistic model of

DNA evolution, and for a certain range of k—by an affine-linear function of k. The distance

between two sequences—defined as the number of substitutions per site—can be estimated

from the slope of F in this range, we therefore call our approach Slope-SpaM, where SpaM
stands for Spaced-Word Matches. In an earlier implementation, we calculated Nk and F(k)

for many values of k, in order to find the relevant affine-linear range of F and its slope therein

[43]. In the present paper, we show how two values kmin and kmax can be calculated within this

range such that the evolutionary distance between the compared sequences can be estimated

from the values F(kmin) and F(kmax). Since it suffices to calculate the number Nk of (spaced)

word matches for only two values k = kmin and k = kmax, this new implementation is much

faster than the previous version of Slope-SpaM.

Using simulated DNA sequences, we show that Slope-SpaM can accurately estimate phylo-

genetic distances. In contrast to other methods that are based on the number of (spaced) word

matches, Slope-SpaM produces still accurate results if the compared sequences contain only

local homologies. In addition, we applied Slope-SpaM to infer phylogenetic trees based on

genome sequences from the benchmarking project AFproject [44].

Design and implementation

The number of k-mer matches as a function of k
We are using standard notation from stringology as used, for example, in [45]. For a string or

sequence S over an alphabet A, |S| denotes the length of S, and S(i) is the i-th character of S,

1� i� |S|. S [i‥j] is the (contiguous) substring of S from i to j. We consider a pair of DNA

sequences S1 and S2 that have evolved under the Jukes-Cantor substitution model [2] from

some unknown ancestral sequence. That is, we assume that substitution rates are equal for all

nucleotides and sequence positions, and that substitution events at different positions are inde-

pendent of each other. For simplicity, we first assume that there are no insertions and deletions

(indels). We call a pair of positions or k-mers from S1 and S2, respectively, homologous if they

go back to the same position or k-mer in the ancestral sequence. In our model, we have a

nucleotide match probability p for homologous positions and a background match probability

q for non-homologous nucleotides; the probability of two homologous k-mers to match exactly

is therefore pk.
In our indel-free model, S1 and S2 must have the same length L = |S1| = |S2|, and positions i1

and i2 in S1 and S2, respectively, are homologous if and only if i1 = i2. Note that, under this

model, a pair of k-mers from S1 and S2 is either homologous—if the k-mers start at the same

respective positions in the sequences—or completely non-homologous, in the sense that none
of the corresponding pairs of positions is homologous. For a pair of non-homologous k-mers

from S1 and S2, the probability of an exact match is qk.
Let the random variable Xk be defined as the number of k-mer matches between S1 and S2.

More precisely, Xk is defined as the number of pairs (i1, i2) for which

S1½i1::i1 þ k � 1� ¼ S2½i2::i2 þ k � 1�

holds. There are (L − k + 1) possible homologous and (L − k + 1) � (L − k) possible background

The number of k-mer matches between two DNA sequences as a function of k
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k-mer matches. The expected total number of k-mer matches is therefore

EðXkÞ ¼ ðL � kþ 1Þ � pk þ ðL � kþ 1Þ � ðL � kÞ � qk: ð1Þ

In [38], we used this equation to estimate the match probability p for two observed sequences

using a moment-based approach, by replacing the expected number E(Xk) by the empirical

number Nk of word matches or spaced-word matches, respectively. Although in Eq (1), an

indel-free model is assumed, we could show in our previous paper, that this approach gives

still reasonable estimates of p for sequences with insertions and deletions, as long as the

sequences are globally related, i.e. as long as the insertions and deletions are small compared to

the length of the sequences. It is clear, however, that this estimate will become inaccurate in

the presence of large insertions and deletions, i.e. if sequences are only locally related.

Herein, we propose a different approach to estimate evolutionary distances from the num-

ber Nk of k-mer matches, by considering the decay of Nk if k increases. For simplicity, we first

consider an indel-free model as above. From Eq (1), we obtain

ln p � kþ lnðL � kþ 1Þ ¼ ln ðEðXkÞ � ðL � kþ 1Þ � ðL � kÞ � qkÞ ð2Þ

which—for a suitable range of k—is an approximately affine-linear function of k with slope ln

p. Substituting the expected value E(Xk) in the right-hand side of (2) with the corresponding

empirical number Nk of k-mer matches for two observed sequences, we define

FðkÞ ¼ ln ðNk � ðL � kþ 1Þ � ðL � kÞ � qkÞ: ð3Þ

In principle, we can now estimate p as the exponential of the slope of F, as long as we restrict

ourselves to a certain range of k. If k is too small, however, Nk will be dominated by back-

ground word matches, if k is too large, no word matches will be found at all. The range where

we can use the slope of the function F to estimate the match probability p is discussed below.

The above considerations can be generalized to a model of DNA evolution with insertions

and deletions and to sequences that share only local homologies. Let us consider two DNA
sequences S1 and S2 of different lengths L1 and L2, respectively, that have evolved from a com-

mon ancestor under the Jukes-Cantor model, this time with insertions and deletions, and pos-

sibly including additional non-homologous parts of the sequences. Note that, unlike with the

indel-free model with global homology, it is now possible that a k-mer match involves homolo-

gous as well as background nucleotide matches. Instead of deriving exact equations like (1)

and (2), we therefore make some simplifications and approximations.

We can decompose S1 and S2 into indel-free pairs of ‘homologous’ substrings that are sepa-

rated by non-homologous segments of the sequences. Let LH be the—unknown—total length

of the homologous substring pairs in each sequence. As above, we define the random variable

Xk as the number of k-mer matches between the two sequences, and p and q are, again, the

homologous and background nucleotide match probabilities. For realistic data, we also have to

take into account homologies between one sequence and the reverse complement of the other

sequence. We therefore have twice as many background k-mer matches than in our above sim-

plified model. All in all, the expected number of k-mer matches can be roughly estimated as

EðXkÞ � LH � pk þ 2 � L1 � L2 � qk ð4Þ

and we obtain

ln p � kþ ln LH � ln ðEðXkÞ � 2 � L1 � L2 � qkÞ: ð5Þ

The number of k-mer matches between two DNA sequences as a function of k
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Similar as in the indel-free case, we define

FðkÞ ¼ ln ðNk � 2 � L1 � L2 � qkÞ; ð6Þ

where Nk is, again, the empirical number of k-mer matches. As above, we can estimate p as the

exponential of the slope of F.

An important point is that these considerations remain valid if LH is small compared to L1

and L2, since LH appears only in an additive constant on the left-hand side of (5). Thus, while

the absolute values F(k) do depend on the extent LH of the homology between S1 and S2, the

slope of F only depends on p, q, L1 and L2, but not on LH.

The number of spaced-word matches

In many fields of biological sequence analysis, k-mers and k-mer matches have been replaced

by spaced words or spaced-word matches, respectively. Let us consider a fixed word P over

{0, 1} representing match positions (‘1’) and don’t-care positions (‘0’). We call such a word a

pattern; the number of match positions in P is called its weight. In most applications, the first

and the last symbol of a pattern P are assumed to be match positions. A spaced word with

respect to P is defined as a string W over the alphabet {A, C, G, T, �} of the same length as P
with W(i) = � if and only if P(i) = 0, i.e. if and only if i is a don’t-care position of P. Here, ‘�’ is

interpreted as a wildcard symbol. We say that a spaced word W w.r.t P occurs in a sequence S
at some position i if W(m) = S(i + m − 1) for all match positions m of P.

We say that there is a spaced-word match between sequences S1 and S2 at (i, j) if the same

spaced word occurs at position i in S1 and at position j in S2, see Fig 1 for an example. A

spaced-word match can therefore be seen as a gap-free alignment of length |P| with matching

characters at the match positions and possible mismatches a the don’t-care positions. Spaced-
word matches or spaced seeds have been introduced in database searching as an alternative to

exact k-mer matches [46–48]. The main advantage of spaced words compared to contiguous

k-mers is the fact that results based on spaced words are statistically more stable than results

based on k-mers [8, 38, 49–52]. In short, neighbouring spaced-word matches are statistically

less dependent from each other than neighbouring word matches; this is also the reason why

spaced seeds lead to more sensitive results in database searching [53], compared with seeds

that are defined as exact word matches as used, for example, in the original version of BLAST
[54].

Quite obviously, approximations (4) and (5) remain valid if we define Xk to be the number

of spaced-word matches for a given pattern P of weight k, and we can generalize the definition

of F(k) accordingly: if we consider a maximum pattern weight K and a given set of patterns

{Pk, 1� k� K} where k is the weight of pattern Pk, then we can define Nk as the empirical

number of spaced-word matches with respect to pattern Pk between two observed DNA

sequences. F(k) can then be defined exactly as in (6), and we can estimate the nucleotide match

probability p as the exponential of the slope of F.

Fig 1. Spaced-word match between two DNA sequences S1 and S2 at (2,3) with respect to a pattern P = 1100101

representing match positions (‘1’) and don’t-care positions (‘0’). The same spaced word TA��A�C occurs at position 2

in S1 and at position 3 in S2.

https://doi.org/10.1371/journal.pone.0228070.g001
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The relevant affine-linear range of F
For simplicity, let us first assume that the two compared sequences have the same length L,

and that they are homologous over their entire length. If, for a factor α, we want there to be

at least α times more homologous than background word matches, we have to require L � pk�
α � 2 � L2 � qk. We therefore obtain a lower bound for k as

ln Lþ ln 2þ ln a
ln p � ln q

� k: ð7Þ

If, on the other hand, we want to have at least β expected word matches, we have to require

L � pk� β, so k would be upper-bounded by

k �
ln b � ln L

ln p
: ð8Þ

Therefore, in order to ensure that the lower bound given by (7) is smaller than the upper

bound in (8), we must require

ln Lþ ln 2þ ln a
ln p � ln q

�
ln b � ln L

ln p
: ð9Þ

It follows that the match probability p must be large enough for our approach to work. More

specifically, a simple transformation of (9) shows that we have to require

p � exp
ln q � ðln L � ln bÞ

2 � ln Lþ ln 2þ ln a � ln b

� �

: ð10Þ

As an example, with a sequence length of 1Gb, a background match probability q = 1/4 and

parameters α = β = 10, we would need p> 0.57, corresponding to a Jukes-Cantor distance of

around 0.64 substitutions per position in order to satisfy (9) and (10), respectively.

The inequalities derived in this subsection can be easily generalized to the situation where

sequences share only a local region of homology of unknown length LH—as long as we can

assume that the ratio between LH and the total sequence length is lower-bounded by some

known constant.

Implementation

It is well known that the set of all k-mer matches between two sequences can be calculated effi-

ciently by lexicographically sorting the list of all k-mers from both sequences, such that identi-

cal k-mers appear as contiguous blocks in this list. This standard procedure can be directly

generalized to spaced-word matches.

To estimate the slope of F, one has to take into account that the values F(k) can be used only

within a certain range of k, as explained above. If k is too small, Nk and F(k) are dominated by

the number of background (spaced) word matches. If k is too large, on the other hand, the

number of homologous (spaced) word matches becomes small, and for Nk< 2 � L1 � L2 � qk, the

value F(k) is not even defined. For two input sequences, we therefore need to identify a range

kmin, . . ., kmax in which F is approximately affine linear. To find such a range, we want to use

inequalities (7) and (8).

There seems to be a certain difficulty in this approach, since the inequalities that we want to

use to estimate the match probability p depend not only on the length of the sequences and the

background match probability q, but also on the probability p that we want to estimate. It is

easy to see, however, that the left-hand side of (7) is monotonically decreasing as a function of

The number of k-mer matches between two DNA sequences as a function of k
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p, while the right-hand side of (8) is monotonically increasing. We can therefore calculate kmin

and kmax for a fixed small probability p0 and obtain values kmin and kmax that work for any

match probability p> p0, since these values are guaranteed to be within the affine-linear region

that we want to use to estimate p. For a suitable small match probability p0, we therefore define

kmin ¼
ln Lþ ln 2þ ln a

ln p0 � ln q

� �

ð11Þ

and

kmax ¼
ln b � ln L

ln p0

� �

ð12Þ

and estimate the slope of F as

FðkmaxÞ � FðkminÞ

kmax � kmin
: ð13Þ

The match probability p can then be estimated as the exponential of this slope, provided that p
� p0 holds.

In our test runs, we obtained good results with parameter values α = β = 1 and with two dif-

ferent values for p0, namely of p0 = 0.6 in (11) and p0 = 0.53 in (12), so are using these values by

default. With a background match probability of q = 0.25, we therefore obtain default values of

kmin ¼
ln Lþ ln 2

ln
0:6

0:25

2

6
6
6
6

3

7
7
7
7

¼
ln Lþ 0:69

0:875

� �

ð14Þ

and

kmax ¼ �
ln L

ln 0:53

� �

¼
ln L

0:634

� �

: ð15Þ

where L is the average length of the compared sequences. With these values, we then estimate

p as

p̂ ¼ exp
FðkmaxÞ � FðkminÞ

kmax � kmin

� �

ð16Þ

with the function F defined as in (3). Finally, we apply the usual Jukes-Cantor correction to

the estimated match probability p̂, in order to estimate the Jukes-Cantor distance between the

sequences, e.g. the number of substitutions per position that have occurred since they diverged

from their last common ancestor.

As a numerical example, to illustrate how our approach works, we applied our approach

to the genomes of Shigella dysenteriae 1 197 (4.44 Mb) and E. coli strain UTI89 (5.15 Mb). In

Fig 2, F(k) is plotted against the word length k for contiguous words. By inserting the average

sequence length L into (14) and (15), we obtain kmin = 19 and kmax = 24. With these values, we

can calculate the slope of F in the relevant range as

FðkmaxÞ � FðkminÞ

kmax � kmin
¼

15:81 � 15:92

24 � 19
¼ � 0:022

and we obtain an estimated match probability of p̂ ¼ e� 0:022 ¼ 0:978. This corresponds to an

average number of 0.022 substitution per position according to the Jukes-Cantor correction.

The number of k-mer matches between two DNA sequences as a function of k
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With Filtered Spaced Word Matches (FSWM), as a comparison, we obtained a distance of 0.023

substitutions per position for this pair of genomes.

Results

Distances between simulated DNA sequences

For a systematic evaluation of the distance values computed by Slope-SpaM, we generated sim-

ulated pairs of DNA sequences with Jukes-Cantor distances d between 0.05 and 1.0 substitu-

tions per sequence position. For each value of d, we first generated 20,000 sequence pairs of

Fig 2. Test run on Shigella dysenteriae 1 197 (4.44 Mb) and E. coli strain UTI89 (5.15 Mb). F(k), as defined in (3), is plotted against the word length k for

contiguous words. From the length of the sequences, the values of kmin and kmax are calculated with (14) and (15) as kmin = 19 and kmax = 24.

https://doi.org/10.1371/journal.pone.0228070.g002
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length L = 100, 000 each, and we estimated their distances with Slope-SpaM. Here, we ran the

program (a) with k-mers and (b) with spaced words based on randomly generated patterns

with a probability of 0.5 for match positions. In Fig 3, the average estimated distances are plot-

ted against the real distances; standard deviations are represented as error bars. Our estimates

Fig 3. For distance values d between 0.05 and 1.0, we generated pairs of simulated DNA sequences of length L = 100 kb with a Jukes-Cantor distance d, i.e.

with an average of d substitutions per sequence position. Distances between the sequences were estimated with Slope-SpaM, (a) based on k-mers and (b) based

on spaced words with random patterns with a probability of 0.5 for a match position at each position. For each value of d, 20,000 sequence pairs were generated,

their average estimated distances are plotted against the real distances. Standard deviations are shown as error bars.

https://doi.org/10.1371/journal.pone.0228070.g003
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are fairly accurate for distances up to around 0.5 substitutions per site, but become statistically

less stable for larger distances. We did the same test runs with simulated sequences of length

L = 1, 000, 000; the results of these runs are shown in Fig 4. In both cases, the results were

more accurate and statistically more stable when spaced words were used instead of contigu-

ous k-mers.

Fig 4. Estimated vs. real distances for pairs of simulated sequences as in Fig 3, but with sequences of length L = 1Mb.

https://doi.org/10.1371/journal.pone.0228070.g004
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Distances between sequences with local homologies

As shown theoretically in the section Design and Implementation, our distance estimator is

still applicable if the compared sequences share only local regions of homology, in contrast to

other approaches that estimate phylogenetic distances from the number of word or spaced-

word matches. To verify this empirically, we generated pairs of semi-artificial sequences con-

sisting of local homologies, embedded in non-related random sequences. In each test run, the

random sequences that we added to the homologous sequences had the same length in both

sequences, but we carried out test runs with random sequences of varying length. We then esti-

mated phylogenetic distances between these sequences with Slope-SpaM, as well as with Mash,
Skmer and Spaced, three other alignment-free methods that are also based on the number of

word or spaced-word matches. To see how these tools are affected by the presence of non-

homologous sequence regions, we compared the distance values estimated from the semi-arti-

ficial sequences to the distances estimated from the original sequences by the same tool.

To generate these sequence sets, we started with a set of 19 homologous genomic sequences

from different strains of the bacterium Wolbachia from Gerth et al. [55]. These sequences con-

tain 252 genes; the length of the sequences varies between 165kb and 175kb in the different

strains. We then generated 9 additional data sets by adding unrelated i.i.d. random sequences

of varying length to the left and to the right of each of the homologous genome sequences.

This way, we generated 10 sets of sequences where the proportion of homology was 1.0 in the

first set—the original sequences without added random sequences—, 0.9 in the second set, 0.8

in the third set, . . ., and 0.1 in the 10th set. Within each of these 10 sequence sets, we estimated

all 19

2

� �
¼ 171 pairwise distances with the four programs that we evaluated. To find out to

which extent these programs are affected by adding the non-related random sequences, we cal-

culated for each data set and for each sequence pair the ratio between the estimated distance

value and the distance estimated for the respective original, fully homologous sequence pair.

The average ratio of these two distance values over all 171 sequence pairs is plotted against the

proportion of homology in the semi-artificial sequences in Fig 5.

As can be seen, distances calculated with Mash are heavily affected by including random

sequences to the original homologous sequences. For the 10th data set, where the original

homologous gene sequences account for only 10% of the generated sequences, and 90% of the

sequences are unrelated random sequences, the distances calculated by Mash are, on average,

more than 50 times as high as for the original gene sequences that are homologous over their

entire length. Skmer and Spaced are also affected by the added random sequences, although to

a lesser extent. By contrast, Slope-SpaM was hardly affected at all by the presence of the non-

homologous sequences.

Phylogenetic tree reconstruction

In addition to the above artificial and semi-artificial sequence pairs, we used sets of real genome

sequences with known reference phylogenies from the as benchmark data for phylogeny recon-

struction AFproject [44]. AFproject is a collaborative project to systematically benchmark and

evaluate software tools for alignment-free sequence comparison in different application scenar-

ios. The web page of the project provides a variety benchmark sequence sets, and the output of

arbitrary alignment-free methods on these sequences can be uploaded to the server. This way,

the quality of these methods can be evaluated and compared to a large number of other align-

ment-free methods, among them the state-of-the-art methods.

To evaluate Slope-SpaM, we downloaded all data sets from the AFproject server that are rele-

vant for our study, namely five sets of full-genome sequences that are available in the categories
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genome-based phylogeny and horizontal gene transfer: (1) a set of 29 E.coli/Shigella genomes

[28], (2) a set of 14 plant genomes [56], (3) a set of 25 mitochondrial genomes from different

fish species of the suborder Labroidei [57], (4) another set of 27 E.coli/Shigella [58] and (5) a

set of 8 genomes of different strains of Yersinia [59]. These data sets have been used previously

by developers of alignment-free tools to benchmark their methods.

We ran Slope-SpaM on the above sets of genomes and uploaded the obtained distance

matrices to the AFproject web server for evaluation. For these categories of benchmark data,

the AFproject server calculates phylogenetic trees from the produced distance matrices using

Neighbor Joining [60]. It then compares the obtained trees to trusted reference trees of the

respective data sets under the normalized Robinson-Foulds (nRF) metric. That is, the standard

Robinson-Foulds (RF) distance [61] that measures the dissimilarity between two tree topologies

is divided by the maximal possible RF distance of two trees with the respective number of

leaves; the nRF distances can therefore take values between 0 and 1. On the AFproject server,

the benchmark results are ranked in order of increasing nRF distance, i.e. in order of decreas-

ing quality. The results of our test runs with the AFproject benchmark sequences are shown in

Table 1.

It should be mentioned that the performance of the compared methods on the set of eight

Yersinia genomes is in stark contrast to their performance on the other four data sets. This has

also been observed for other methods evaluated in AFproject: methods that performed well on

Fig 5. Distances estimated by the alignment-free programs Mash [9], Skmer [37], Slope-Spam (this paper) and Spaced [40] between semi-artificial sequences

consisting of 252 homologous genes from 19 strains of Wolbachia, embedded in non-related random sequences. Ten data sets were generated by adding

random sequences of different lengths. The x-axis is the proportion of the homologous sequence within the semi-artificial sequences, the y-axis is the ratio between

the distance estimated from the semi-artificial sequences and the distances estimated from the original, homologous gene sequences, see the main text for more

details.

https://doi.org/10.1371/journal.pone.0228070.g005
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other data sets, performed badly on Yersinia and vice versa. It may therefore be advisable to

look at this data set and the reference phylogeny used in AFproject in more detail.

Program run time

Table 2 shows the run time of Slope-SpaM on three of the data sets from AFproject that we

used in the previous subsection. We used the set of 25 mitochondrial genomes from different

fish species (total size 412 kb), the set of 29 E. coli genomes (total size 138 Mb) and the set of 14

plant genomes (total size 4.58 Gb).

Availability and future directions

A number of alignment-free methods have been proposed in recent years that estimate the

nucleotide match probability p in an (unknown) alignment of two DNA sequences from the

number Nk of word or k-mer matches for a fixed word length k. This can be done by compar-

ing Nk to the total number of words in the compared sequences [9] or—equivalently—to the

length of the sequences [27]. A certain draw-back of these approaches is that they assume that

the compared sequences are homologous to each other over their entire length. Unfortunately,

these methods cannot be easily applied to sequences that share only local homologies with

each other. If two sequences share only a limited region of homology and are unrelated outside

Table 2. Runtime in seconds of Slope-SpaM (with spaced words) and six other alignment-free programs on three

different sets of genomes that were used as benchmark data in AFproject [44]. On the largest data set, the set of

plant genomes, co-phylog and kmacs were unable to produce results.

mtDNA E. coli Plants

# genomes 25 29 14

Total size 412 kb 138 Mb 4.58 Gb
Slope-SpaM 1 629 9,551

Mash 0.7 15 417

Skmer 6 938 3,224

FSWM 8 32,798 28,690,489

andi 3 325 13,813

co-phylog 9 533 –

kmacs 5 55,736 –

https://doi.org/10.1371/journal.pone.0228070.t002

Table 1. Test results on five sets of genome sequences from AFproject. Pairwise distance values calculated with different alignment-free methods were used as input for

Neighbor-Joining [60]; the table contains normalized Robinson-Foulds distances between the resulting trees and reference trees. Thus, the smaller the values are, the more

similar are the produced trees to the reference trees. The table also shows the median results from 74 methods evaluated in the AFproject study. Three of the best perform-

ing programs in this study are shown (all results, except for Slope-SpaM, are taken from [44]).

Genome-Based Phylogeny Horizontal Gene Transfer

# genomes mtDNA E. coli Plants E. coli Yersinia
25 29 14 27 8

Slope-SpaM (k-mers) 0.32 0.50 1.00 0.58 0.20

Slope-SpaM (spaced words) 0.09 0.35 0.64 0.50 0.80

median AFproject 0.09 0.54 0.64 0.50 0.00

FFP 0.09 0.23 0.43 0.21 0.80

co-phylog 0.09 0.12 0.23 0.08 0.80

Mash 0.05 0.15 0.14 0.12 0.80

Skmer 0.09 0.15 0.25 0.17 0.80

https://doi.org/10.1371/journal.pone.0228070.t001
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this region, a given number Nk of word matches could indicate a high match probability p in

an alignment of those homologous regions—while the same number of word matches would

correspond to a lower p if the homology would extend over the entire length of the sequences.

In the present paper, we introduced Slope-SpaM, an alternative approach to estimate the

match probability p between two DNA sequences—and thereby their Jukes-Cantor distance—

from the number of word matches. The main difference between Slope-SpaM and most other

word-based methods is that, instead of using only one single word length k, our program con-

siders a function F such that the values F(k) depend on the number Nk of word matches of

length k. We showed in that there is a certain range of k where F is affine-linear, and the nucle-

otide match probability p in an alignment of the input sequences can be estimated from the

slope of F. Further, we showed that one can calculate two values kmin and kmax within the

relevant affine-linear range, such that it suffices to calculated F(kmin) and F(kmax) in order to

calculate the slope of F in this range. The runtime of our program is therefore essentially deter-

mined by the time required to calculate the number of k-mer matches for only two values of k.

From the definition of F, it is easy to see that the slope of F, and therefore the estimated

match probability p, are not affected if the compared sequences share only local homologies.

This was confirmed in our test runs with semi-artificial sequences, obtained by adding non-

related random sequences to truly homologous sequences. We generalized this approach to

spaced-word matches, i.e. word matches with possible mismatches at pre-defined positions,

specified by a binary pattern of match and don’t-care positions.

To evaluate phylogenetic distances estimated by our approach, we used simulated DNA

sequences with known Jukes-Cantor distances. For these data, we could show that distance

estimates obtained with Slope-SpaM are highly accurate for distances up to around 0.5 substi-

tutions per sequence position. By using spaced words instead of contiguous k-mers, we could

improve the statistical stability of our results. To evaluate Slope-SpaM and other alignment-

free methods on phylogenetic tree reconstruction, we used all relevant data sets from the

benchmark project AFproject. As in the original AFproject study [44], we applied Neighbor
Joining to the distance matrices produced by the approaches that we evaluated, and we com-

pared the resulting phylogenetic tree topologies to the reference topologies that are available

from the AFproject web page. This is a common way of evaluating alignment-free methods.

As shown in Table 1, the performance of Slope-SpaM on these data was in the medium range,

compared to the other methods that have been evaluated in AFproject, if our program was

used with spaced words. We obtained better tree topologies with spaced words than with con-

tiguous words. In terms of topological accuracy of the produced trees, however, Slope-SpaM
was outperformed by some of the top methods evaluated in the AFproject study.

An advantage of Slope-SpaM, compared to most other alignment-free methods, is its high

speed. It may be possible to further improve the run time of the program by using sketching
techniques [62], to reduce the number of (spaced-)word matches that are to be considered.

Conversely, if the number of word matches is too small for short or distantly related sequences,

spaced-word matches based on multiple patterns may help to increase the range of sequences

where our method can be applied.

In the last few years, a number of alignment-free approaches have been proposed that are

able to use unassembled short sequencing reads as input [9, 28, 35, 37, 63, 64], as a basis for

sequence clustering [34], for phylogenetic tree reconstruction [65] or for phylogenetic place-

ment [64]. We are planning to evaluate systematically if Slope-SpaM can be used to find the

position of unassembled reads in existing phylogenies, or to estimate phylogenetic distances

between species based on sequencing reads instead of assembled genomes.

Since the approach implemented in Slope-SpaM is novel and rather different from existing

alignment-free approaches, improvements may be possible by systematically analyzing the
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influence of the parameters of the program. In particular, there may be more sophisticated

ways of finding suitable values of kmin and kmax to further improve the accuracy of Slope-
SpaM. Also, in our study we used the Jukes-Cantor model, the simplest possible model for

nucleotide substitutions. Using more sophisticated substitution models may also lead to

improvements in future versions of the program.

The source code of our software is freely available through GitHub under the GNU GPLv3
license: https://github.com/burkhard-morgenstern/Slope-SpaM.
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