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Abstract
Acolloidal particle is a prominent example of a stochastic system, and, if suspended in a simple viscous
liquid, very closely resembles the case of an ideal randomwalker. A variety of new phenomena have
been observedwhen such colloid is suspended in a viscoelasticfluid instead, for example pronounced
nonlinear responses when the viscoelastic bath is driven out of equilibrium.Here, using amicron-
sized particle in amicellar solution, we investigate in detail, how these nonlinear bath properties leave
theirfingerprints already in equilibriummeasurements, for the cases where the particle is unconfined
or trapped in a harmonic potential.We find that the coefficients in an effective linear (generalized)
Langevin equation show intriguing inter-dependencies, which can be shown to arise only in nonlinear
baths: for example, the frictionmemory can depend on the external potential that acts only on the
colloidal particle (as recently noted in simulations ofmolecular tracers inwater in (2017Phys. Rev. X 7
041065)), it can depend on themass of the colloid, or, in an overdamped setting, on its bare diffusivity.
These inter-dependencies, caused by so-called fluctuation renormalizations, are seen in an exact small
time expansion of the frictionmemory based onmicroscopic starting points. Using linear response
theory, they can be interpreted in terms ofmicrorheologicalmodes of force-controlled or velocity-
controlled driving. Thementioned nonlinearmarkers are observed in our experiments, which are
astonishingly well reproduced by a stochastic Prandtl–Tomlinsonmodelmimicking the nonlinear
viscoelastic bath. The pronounced nonlinearities seen in our experiments together with the good
understanding in a simple theoreticalmodelmake this system a promising candidate for exploration
of colloidalmotion in nonlinear stochastic environments.

1. Introduction

Almost anymatter consists of nonlinearly interacting components, giving rise to complex properties, as can be
observed in prominent experiments [1–5], or computer simulations [6–10]. This poses a serious and timely
challenge of understanding such nonlinear systems, both from an experimental or phenomenological viewpoint
aswell as theoretically: the theoretical treatment of nonlinear systems typically requires approximations, and
various schemes have been developed [11–15]. These schemes involve, inter alia, linearization techniques [13],
perturbation theory [16], or projection-operatormethods [17]. In particular nonlinear stochastic systems have
proven useful in physics, chemistry, and biology, as, for instance, in describing transition phenomena [18, 19],
kinetics of phase separation [20, 21], non-equilibrium thermodynamics [22, 23], or nonlinear fluctuational-
electrodynamics [24]. Regarding fluids, a variety of formal approaches exist [25–27]. These approaches
encompass, for example, (phenomenological) Langevin equations [17, 28, 29], microscopicmodels [30–32],
density functional theory [33, 34], ormode coupling theory [35–37]. Systems near equilibrium can generally be
captured by linear (stochastic) equations, with linear coefficients renormalized by the underlying nonlinear
interactions, as, e.g. exemplified by projection operator techniques [38, 39].
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The renormalization of linear coefficients is widely known, for example regarding the linear optical response
given by the permeability ε [40]; for a typical solid, ε is a function of temperature, one reason for it being the
mentioned underlying nonlinear interactions of atoms. Despite the presence of such examples, it appears that
understanding of these effects in explicit experimental systems is still rare. Detecting and describing such
nonlinear properties is especially important for non-equilibrium systems, as nonlinear properties also dictate
the far-from-equilibriumbehavior which is typically even less understood.

In this paper, we experimentally and theoretically investigate the clean and rich systemof a Brownian
particle suspended in a complex, viscoelastic bath, a systemwhich has in various forms been addressed before [5,
41–44], andwhich indeed shows unexplained non-equilibriumproperties [45, 46]. For example, the (transient)
dynamics of a probe particle that has strongly perturbed its surrounding requires a theoretical description to
account correctly for the stress release in the strained fluid, which is not avaliable.

In particular, we investigate how the nonlinear character of the bathmanifests itself in equilibrium
measurements, performed in presence or absence of a harmonic trapping potential,finding strong effects which
can only be present in nonlinear baths. These investigations are supported by an analytical analysis within the
framework of projection operator formalism: starting from eitherNewtonian or overdamped dynamics, we
demonstrate howmicroscopic interactions give rise to nontrivial dependencies (‘fluctuation renormalizations’
[17]) of linear coefficients; for example the dependence of the friction kernel on the external potential, which has
recently been observed for solutes inwater [47]. These dependencies are theoretically analyzed in several
theoreticalmodels which couple the colloidal particle to a single bath particle, finding that a stochastic Prandtl–
Tomlinsonmodel canwell describe our experiments.Wefinally connect the equilibrium analysis to
microrheology also discussing the limiting cases of weak and strong external confinement [31].

2. Experiment: non-Gaussian displacements

The experimental analysis is performed in an equimolar solution of surfactant, cetylpyridinium chloride
monohydrate (CPyCl) and sodium salicylate (NaSal) in deionisedwater at a concentration of 7 mM and at room
temperature, = T 298 0.2K. After overnightmixing, worm-likemicelles form and deformdynamically in
such solvents [48]. They build a highly dynamical entangled viscoelastic networkwhich exhibits a comparatively
large structural relaxation time of t = 2.5 0.2 ss determined by a recoil experiment [45] and
macrorheologicalmeasurements, thereby giving rise to highly non-Newtonian properties [45, 46]. The length of
wormlikemicelles is typically found between 100 and 1000 nm [49], and the characteristicmesh size is on the
order of 30 nm [50].We examine the thermal equilibrium fluctuations of a singlemesoscopic silica particle of
diameter m=R2 2.73 m.While the particle naturally lives in a three dimensional surrounding, far from any
boundaries, we concentrate on its x-component. The particle is trapped by a highly focused laser beam,which
creates a static parabolic potential k=V xext

1

2
2, with x the spatial coordinate relative to the potentialminimum,

see figure 1. The focal plane is adjusted to themiddle of the sample cell, so that the trap position ismore than
m40 m away from anywalls and hydrodynamic interactions withwalls can be ruled out. x t( ) is recorded at rates

of at least 100 fps.
Asmentioned, this systemdisplays highly nonlinear properties when driven out of equilibrium [45, 46],

which triggers the questionwhether and how these nonlinear properties can already be detected in equilibrium,
where the particle positions follow the Boltzmann distribution as shown infigure 2, µ -P x e V x k TB( ) ( ) , with

Figure 1.Experimental setup of a colloidal particle in amicellar solution subjected to a harmonic confinement potential. The
micrometer-sized particle performs a typical randomwalk in the limited configurational space in thermal equilibrium.
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Boltzmann constant kB (P(x) thus allows determination of the value ofκ). In order to address this, we start with
the caseκ=0, and investigating the particle’s free diffusion (again regarding the x coordinate). Awell-known
measure of nonlinearity is then given by the incoherent dynamic structure factor [51]

º á - ñ º -S k t k x x t D k t k t, exp i 0 exp , . 1s
2( ) ( ( ( ) ( ))) ( ( ) ) ( )

The right-hand side of equation (1) defines the diffusion coefficientD(k, t), which depends in general on
wavevector k and time t (and has recently attracted a lot of interest [52–54]). As evident from equation (1), a
Gaussian process, as found in purely linear systems, shows no k-dependence inD, so that such k-dependence is a
direct indicator for a non-Gaussian and nonlinear process.

Figure 3 shows the long-time limit ofD(k, t), obtained as

= - á - ñ
¥ ¥

D k t
k t

k x x tlim , lim
1

log exp i 0 , 2
t t 2

( ) ( ( ( ( ) ( ))) ) ( )

for a viscoelastic bath (wormlikemicellar solution) and aNewtonian bath (water-glycerolmixture). The
curves are normalized on their respective values atminimum resolvablewavenumber m= -k 6.31 mmin

1,
 ¥ = -D k t, 204.8 nm smin

2 1( ) and  ¥ = -D k t, 1 539.9 nm smin
2 1( ) , respectively. Thefigure shows

that in the viscoelastic caseD indeed depends on k, starting to decrease at awavenumber around k≈107 m−1.

Figure 2.Main graph: probability distribution P(x) for a harmonically trapped particle, which is well described by the Boltzmann
distribution shown as a red line. Inset:measured trap potential (symbols) and a parabolic fit (solid line), fromwhich the trap stiffnessκ
is extracted.

Figure 3.Main graph: normalized wavenumber-dependent long-time diffusion coefficient  ¥D k t,( ) extracted from a long-time
2D free diffusionmeasurement of a tracer particle in amicellar bath and from a 3D free diffusionmeasurement in awater-glycerol
mixture. Error bars show the statistical error estimated frompartitioning themeasured trajectory into two pieces. Inset: recorded
experimental trajectory (x(t), y(t)) over a time period of 1800 s.
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This value is connected to a length scale 2π/k of roughly 600 nm,which is indeed a good estimate for a typical
length ofmicellar particles [50].We note that for themicellar system theremay be another increase of

 ¥D k t,( ) for even smaller k-values (currently not resolvable) as a comparisonwith the value obtained from
afit of themean-square displacement seems to suggest [46].

As the particle is probing length scales comparable to the length scale of (nonlinear) interactionwith the bath
(recall that the length of worm-likemicelles is between 100 and 1000 nm [49], and the typicalmesh size is on the
order of 30 nm [50]), it apparently experiences a greater resistancewhich is reflected in a decrease of the
diffusion coefficient. In the opposite regime of small wavenumbers, k→0, the continuous properties of the
bulk system enter and the diffusion coefficient reaches its plateau valueD0. Note that resolving the long-time
diffusion coefficient for high k becomesmore andmore difficult due to afinite spatial accuracy of 4 nm in the
experiment [55], and a sharper decay of the average in equation (2) over time.

Having obtained afirst indication of the pronounced nonlinear properties of themicellar bathwithout
confinement, we next develop a theoretical understanding of nonlinearmarkers in the presence of a confining
potential.

3. Theory: hownonlinear interactions enter linear coefficients

In this sectionwe aim to analyze hownonlinear interactions canmodify or enter linear coefficients. Using the
well-knownZwanzigMori projection operator technique, we obtain a linearized equation ofmotion for a single
(the colloidal) degree of freedom, coupled to bath particlesmaking up the viscoelasticmedium. This analysis will
be performed in the two cases ofHamilton dynamics aswell as overdamped dynamics.

3.1.Hamilton dynamics
As discovered byMori in 1965 using projection operator techniques, the Liouville equation [28], describing the
dynamics of aHamiltonian system, can be transformed into a linear equation for an observableA of interest
(which can be vector in space of observables) [56, 57]

òW¶
¶

= - - +
t

A t A t s s A t s F tMi d , 3
t

0
( ) · ( ) ( ) · ( ) ( ) ( )

with thematrices (in space of observables)W andM given by

W = -A A A Ai , , , 41( ) · ( ) ( )

= -t F t F A AM , 0 , . 51( ) ( ( ) ( )) · ( ) ( )
 is the Liouville operator and the parentheses (·, ·) specify an inner product weightedwith the equilibrium
distribution function feq

ò= = á ñA B Xf X A X B X AB, d . 6eq eq* *( ) ( ) ( ) ( ) ( )

Note that the asterisk denotes the complex conjugate. The integral over º p qX ,( ) ismeant to be over all phase
space variables (here position andmomentumdegrees of freedom q and p). The process of integrating out
degrees of freedom to arrive at equation (3) renders it non-Markovian, and also gives rise to a random force
(noise) F(t) . It is given by the projected dynamics

= --  PF t A1e , 7Pt 1( ) ( ) ( )( )

where the projector P , projecting onA, has been introduced. Its action on a variableB is

= -PB B A A A A, , . 81( ) · ( ) · ( )
Notably, equation (5)may be identifiedwith thefluctuation-dissipation theorem, linking thememorymatrix
M(t) to the equilibriumnoise correlator.

Applying this to the case of a colloidal particle in a complex bath, we start from the followingmicroscopic
Hamiltonian

å x= + + +
=

H
p

m
V x

p

m
V

2 2
. 9

j

N
j

j
j

2

ext
1

2

int( ) ({ }) ( )

Here,m is themass of the colloid, andVext(x) is an external potential acting on it, e.g. imposed by optical forces as
mentioned above.mj are themasses of theN-bath particles. p and pj are correspondingmomenta. The potential

xV jint ({ }) is the interaction potential of theN+1 particles involved, which is not necessarily pairwise additive.
Since xV jint ({ }) is invariant under displacing all particles by the same vector, it can be given in terms of {ξj},
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where x º -q xj j is the distance between tracer and bath particle j. For simplicity, we consider a one-
dimensional system, expecting the qualitative discussion to be equivalent in other dimensions.

Aiming to describe the dynamics of the colloid, we naturally choose =A x p, T( ) , i.e. the vector formed by its
position andmomentum.Using = á ñá ñ + á ñá ñ- -PB Bx x x Bp p p2 1 2 1 , we obtain from equation (3) the explicit
result [17]

=x t p t m, 10( ) ( ) ( )

òk= - - G - +mx t x t s s x t s F td . 11
t

0
̈ ( ) ( ) ( ) ( ) ( ) ( )

While the applied technique is well known, it is worth reminding that despite the fact that theHamiltonian in
equation (9) contains nonlinear interactionsVext andVint, the resulting equation (11) is linear in p and x. Indeed,
the nonlinear character ofVext andVint finds its way into the linear coefficients appearing in equation (11). First,
an effective spring constantκ appears [17]

k =
á ñ
k T

x
12B

2 eq
( )

which depends onVext (via the equilibriumdistribution feq) and thermal energy kBT. It is however independent
ofVint. The so-calledmemory kernelΓ(t) reads

G = -- -  Pt m p p p p1e , , . 13Pt 1 1( ) ( ( ) )( ) ( )( )

Compared toκ in equation (12), the formofΓ in equation (13) ismore involved, containing the projected
dynamics, and no closed form for it is known.However, the series expansion in time t can be given, in principle,
to any order, yieldingmore insight.Writing this expansion

åG =
G

=

¥

t
n

t
2

, 14
n

n
n

0

2
2( )

( )!
( )

( )

wenote that only even powers of t contribute due to the intrinsic time reversal symmetryΓ(t)=Γ(−t) seen in
equation (5). By expanding the operator exponential in equation (13), and using the anti-Hermitian property of
the Liouville operator, = - †, the Taylor coefficients in equation (14) are found to be given by the quadratic
form

G = - á ñ á - ñ- +Pm p p11 . 15n n n2 2
eq

1 1 2
eq( ) [( ) ] ] ( )( )

For simplicity, we shall in the following consider the case of k=V x xext
1

2
2( ) .Wefind for thefirst two coefficients

(where b = -k TB
1( ) )

bG = á ñF , 160
int
2

eq ( )( )

å åG = - á¶ ¶ ñ - á ¶ ñ
m

F F
m

F
1

;
1

. 17
j k

j k
j j

j
2

,
int int eq int

2
eq( ) ( )( )

Weintroduced the covariance á ñ = á ñ - á ñá ñA B AB A B; in equation (17), anddenote x x= å ¶F Vj j j jint int({ }) ({ }),
the force actingon the tracer particle due to interactionswith thebathparticles.While the leading term for short times,
equation (16), dependson this interactionpotential in an expectedmanner, already the second term, equation (17), is
more interesting:Thefirst termon the right-hand sideof equation (17)dependson themassmof the colloidal particle.
Thepresenceof this term isworthnoting, as it goes against anaive expectation that the frictionkernel shouldonly
dependonproperties of thebath, andbe independentof tracermass. Indeed, this termcarries the covarianceof force
gradients as aprefactor, and is thus absent forharmonic couplings, as e.g.employed in themodels byCaldeira–Leggett
[58]. Suchdependenceon the tracermass is hence a signatureofnonlinear coupling to thebath.Goingone term
further,wehave

åk
kG = á¶ ¶ ñ + 

m
F F; . 18

j k
j k

4
2

,
int int eq

0( ) ( )( )

This term shows the emergence of another interesting dependence: the friction kernel does not only depend on
the properties of bath and tracer, but also on the stiffnessκ of the surrounding potential. (Let us be reminded
that this potential does not act on the bath particles in equation (9), in contrast to the analysis provided in [59]).
This dependence has indeed been observed in computer simulations ofmolecular solutes inwater in [47].
Notably, that termdoes also depend on themass of the tracer particle, and it vanishes for harmonic tracer-bath
coupling. It is thus anothermarker for nonlinear interactions, being absent in linear processes. This can be seen
also in the higher-order terms in t, which take the form,
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åk
kG = - á¶ ¶ ñ +

-
-

m
F F1 ; . 19n n

n

n
j k

j k
n2

1

,
int int eq

2( ) ( ) ( )( )

3.2.Overdamped dynamics
A similar analysis as done in the previous subsection is feasible for the case of overdamped dynamics, where a
simplemodel consists of two coupled Brownian particles, i.e.

g
g

=- ¢ - - ¶ +

= ¢ - +

x t V x q V x t F t

q t V x q F t

,

. 20

x

b b

int ext

int

( ) ( ) ( ( )) ( )
( ) ( ) ( ) ( )



Here the position of the tracer particle x(t) (the colloid) is confined by a potential, which, as above, we take
harmonic, k=V xext

1

2
2, and it interacts via an arbitrary interaction potential -V x qint ( )with the second

Brownian particle (the bath particle). The noise sources of tracer and bath particles are assumed to bewhite,
Gaussian, and independent ((i, j)ä {F, Fb})

d g dá ñ = á ¢ ñ = - ¢F t F t F t k T t t0, 2 . 21i i j ij B ieq eq( ) ( ) ( ) ( ) ( )

Similarly to the above, onemay obtain a linearized equation ofmotion for the position of the tracer particle,
which reads

òk= - - G - +x t s s x t s F t0 d . 22
t

0
( ) ( ) ( ) ˜( ) ( )

In this case, thememory kernel takes on the following expansion

ågdG = +
G

=

¥

t t
n

t , 23
n

n
n

0

( ) ( )
!

( )
( )

which differs from equation (14): in the overdamped case,Γ(t) is a nonanalytic function of time, carrying an
instantaneous response∼δ(t), and, despite its time-symmetry, even and odd powers of t. A straightforward
calculation then yields the coefficients in equation (23)

bG = á ñF , 240
int
2

eq ( )( )

g g
bG = - á ñ + á ñ + á ñF F F F F F

1
;

1
, 25

b

1
int
1

int
1

eq int
2

int
1

eq int int
2

eq( ) ( )( ) ( ) ( ) ( ) ( )

k
g

kG = á ñ + F F; , 262
2 int

1
int
1

eq
0( ) ( )( ) ( ) ( )

k
g

kG = - á ñ +
-

-F F1 ; . 27n n
n

n
n

1

int
1

int
1

eq
2( ) ( ) ( )( ) ( ) ( )



The noted dependence on colloidalmassm in, e.g. Equation (17) is here, in the overdamped case,mirrored by
the dependence on γ in equation (25): it is worth noting that thememory kernel depends on the bare tracer
friction γ (and not only on bath properties). As is the case in equation (17), the term involves the force variance,
i.e. it vanishes for harmonic tracer-bath couplings. Also the appearance ofκ in equation (26) is similar as in
equation (18), with themass replaced by the bare friction coefficient. Again, in any higher order in t,κ and γ
appear, in combinationwith the covariance of the derivative of the interaction force.

4. Exploring different tracer-bath couplings

4.1.Model
Section 3 explicitly described the dependencies of the coefficients arising in a linearized equation; the friction
memory of the bathmay depend on themass or the bare friction of the tracer, or the potential that the tracer is
subjected to.Here we aim to study these using specific forms ofVint in equation (20), employing themodel
sketched infigure 4: the (overdamped) colloidal particle is subject to a harmonic potential k=V x xext

1

2
2( ) .

Additionally, the colloid is coupled to another overdamped particle, accounting for the bath. Thismodel is thus
given by equation (20), and is designed tomimic our experimental setup.

To compute the correlation function from simulated trajectories we deploy a stochastic Runge–Kutta
method ofweak convergence order three [60]. A high convergence order algorithm in combinationwith
sufficient statistics is essential for our analysis, as will be demonstrated in section 4.2.

While, from equations (25) and (26), interesting behavior of the friction kernel upon varying the colloidal
bare friction γ orκ is expected, wewill restrict ourselves to varyingκ, as this is easily done in our experiments,
and also allows comparison to results of [47].
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In the following, we set the friction coefficients of tracer and bath particle to be γ=1 and γb=10,
respectively. Further, we consider inverse temperatureβ=1 and also all parameters appearing in the
interaction potentialVint to unity.κ can thus be thought of being given in units of k T dB 0

2 (see e.g. equation (33)
below for d0), so that the length ká ñ =x k TB

2
eq is compared to the length scale d0 appearing in the

interaction potential. The table of parameters used in this section are provided in appendix B.

4.2.Harmonic coupling
We start with the simplest case of a harmonic coupling, i.e. x k x=V lint

1

2
2( ) , which can be treated analytically

[17, 25, 58]. One obtains the following linear equation for the colloidal particle

ò kG - = - +
-¥

s t s x s x t F td . 28
t

( ) ( ) ( ) ˜( ) ( )

The kernel and noise are

gd kG = + - k
gt t2 e , 29l

tl
b( ) ( ) ( )

ò
k
g

= +
-¥

- -k
gF t F t s F sd e . 30l

b

t
t s

b
l
b˜( ) ( ) ( ) ( )( )

As expected from section 3 and literature [17, 25, 58], the kernelΓ(t) in equation (29), apart from the trivial term
2γδ(t)depends only on bath properties, i.e. γb and the interaction strengthκl.

The harmonic coupling allows to test the quality of numerical simulations, applied to equations (20). These
are used to create particle trajectories, fromwhich the correlation function = á ñC t x t x 0xx eq( ) ( ) ( ) is computed.
Aiming to extractΓ(t), we turn to Laplace space, where equation (28) reads

k
G =

-
k

s
C s

C s s
31xx

k T
xx

B

ˆ ( )
ˆ ( )

ˆ ( )
( )

with Laplace transforms ò=
¥ -h s t h td e st

0
ˆ ( ) ( ). Note that we used in this derivation the equal time correlation

function to be given by = á ñ =
k

C x0xx
k T2

eq
B( ) , i.e. the bath is prepared in thermal equilibrium at t=0.

Figure 5 shows the results for different values ofκ. The data points forΓ(s) (main graph) andCxx(t) (inset)
followwell the analytical forms (solid lines). For values ofκ spanning five orders ofmagnitude,Γ(s), as found
from simulations, takes identical forms This requires high numerical accuracy, asmay be illustrated by
regarding the case ofκ=103: here, the correlator quickly decays to a very small value of∼10−3, reaching a
plateau value there. This plateau, which is easily overlooked, is however essential to obtain the correct value of
Cxx(s) as s→0. In the limit of largeκ, the relaxation time scales set by the trap and the bath arewell separated
and the latter is decisive for the Laplace transformof the correlation function.Note that in the limit of large s
(small times) the particle diffuses freely, i.e. we have gG =¥ slims

ˆ ( ) , while for small s (large times)
g gG = = +s 0 b

ˆ ( ) due to the bounded potential.

4.3.Double-well interaction potential
Going one step beyond section 4.2, we consider a nonlinear interaction potential. A useful choice for such
nonlinear potential is a symmetric doublewell

Figure 4.Model of tracer and bath. The tracer particle (coordinate x) is confined by a potential k=V x xext
1

2
2( ) , tracer and bath are

coupled via an interaction potential -V x qint ( ), where q is the coordinate of the bath particle.
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x x x= - +V
V

d
d d , 32int

0

0
4 0

2
0

2( ) ( ) ( ) ( )

whereV0 is the height of the potential barrier between thewells, and d0 is half the distance between theirminima.
Note that for a single particlemoving in such a potential interesting barrier-crossing kinetics were found for a
Langevin equationwith bi-exponentialmemory only recently [61].

The results for theLaplace transformedmemory kernel G sˆ ( ) are illustrated infigure 6. In contrast to the caseof
harmonic coupling, thememorykernel shows indeed, as expected fromequation (26), a dependenceon the external
trap stiffnessκ forfinite values of s.However, for small and large values of s, G sˆ ( ) takes the same limiting values as for
theharmonic coupling, shown infigure 5. For large s, the colloid, as before, doesnot notice thepresence of the bath.
For small s, the twoparticles behave as a composite particle,with the sumofbare friction coefficients. This is because
the twoparticles are coupledby aboundpotential, so that on large time scales, theymove together.

4.4. Stochastic Prandtl–Tomlinsonmodel
Given the observation of section 4.3, we now look for amodel where colloid and bath particle are not bound,
which brings us to the so called Prandtl–Tomlinson (PT)model. Thismodel is popular in the field of frictional
processes on the atomic scale, andwas introduced by Prandtl to describe plastic deformations in crystals as well
as dry friction [62]. Themodel consists of a particle in a periodic potential that is damped by a frictional force

Figure 5.Main graph:memory kernel gG -sˆ ( ) for harmonic coupling, in Laplace space, as obtained in numerical simulations, for
different values ofκ. The black line represents the analytical solution given in equation (29). Inset: simulated correlation function
á ñx t x 0( ) ( ) plotted against the analytical solution. The simulation parameters are provided in table B1.

Figure 6.Main graph:memory kernel gG -sˆ ( ) for a doublewell coupling, in Laplace space, as obtained in numerical simulations, for
various values ofκ. Inset: simulated correlation function á ñx t x 0( ) ( ) . The simulation parameters are provided in table B2.
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and harmonically coupled to a host solid. The theoretical framework derived by Prandtl has been extensively
deployed andmodified to be applicable to awide range of physical applications [63].Most prominently it well
describes the dampedmotion of a nanotip of an atomic forcemicroscope driven over a (corrugated) surface
[64–66]. The principal idea of the PTmodel—which has not been used so far for complex fluids—is applied here
to effectively describe the interaction between a viscoelastic bath and a colloidal probe particle.

Using

x
p
x=V V

d
cos

2
, 33int 0

0

( ) ( ) ( )

with awavelength d0 and amplitudeV0, with equation (20) yields an extension of the PTmodel: it is a PTmodel
where the sinusoidal potential is notfixed in space, but is the interaction potential with a bath particle, which by
itself is stochastic withfinite friction and diffusion coefficients (given through γb). The physical intuition is that
themicellar bath of our experiments is indeed a non-static backgroundwith afinite relaxation time.

In contrast to section4.3,Vint in equation (33) is unbounded. Figure 7 shows the results obtained from
simulations of the stochasticPTmodel for different values ofκ. As expected, G sˆ ( ) does strongly dependonκ, and, as
thepotential is unbound, also in the limit of s→0.The value of G =s 0ˆ ( ) differs bymore thana factor of three
between very large andvery small values ofκ (a ratiowhich canof course be tunedby varying themodel parameters).

Can the stochastic PTmodel describe our experiments? Before addressing this question quantitatively in
section 5 below,we first study the diffusion coefficientD(k, t), obtained as infigure 3, but here from simulation
trajectories performed atκ=0. Figure 8 shows the resulting values as a function of wavevector k (see
equation (2)). Aswas observed in figure 3, the data points figure 8 decrease with increasing k, while they
approach limiting values for both large and small k.While infigure 3 the characteristic wavevector was identified
with the size ofmicellar particles, it is here related to the chosen value of d0 (which is unity).

Encouraged by the qualitative agreement between our experiments and the stochastic PRmodel, we
continuewith a detailed and quantitative comparison in the next section.

5. Stochastic Prandtl–Tomlinsonmodel and experiments

Having discussed several signatures of bath-nonlinearity in equilibrium systems, we now aim to discuss these in
quantitative detail for our experiments, in comparisonwith the stochastic PTmodel.

Starting with the diffusion coefficients, figure 9 shows the experimental data offigure 3 together with those
obtained from the SPTmodel, showing good agreement. Thefit parameters of themodel are provided in table 1.

Notably, the SPTmodel can be used to link our experimental data of free diffusion to the cases with optical
trap present;figure 10 finally shows the experimental correlation functions á ñx t x 0 eq( ) ( ) for the trapped particle,
at three different values of trapping strengthκ (inset). Themain graph gives, in the samemanner as figures 5–7,
the extracted formof the frictionmemoryΓ(s).We restrict to the experimentally accessible range of s. Indeed,

Figure 7.Main graph:memory kernel gG -sˆ ( ) for the stochastic Prandtl–Tomlinsonmodel, in Laplace space, as obtained in
numerical simulations, for various values ofκ. Inset: simulated correlation function á ñx t x 0( ) ( ) . The limiting curves forκ→0 and
k  ¥ shown in themain graphwill be discussed in section 6. The simulation parameters are provided in table B3.
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our experiments also strongly show themarker of nonlinearity exhibited inΓ, as this function displays a
dependence on the givenκ.

The solid lines shown in figure 10 have been obtained from the SPTmodel, with parameters given in table 1.
The agreementwith the data is very good, underpinning our conclusion that the effects seen infigures 9 and 10
have the same physical origin: nonlinear interactions on themicellar length scale.

Ideally, one set of parameters of the SPTmodel should suffice todescribe all experimental data shown infigures 9
and10 (see appendixC).Wehave, however, slightly adjusted theparameters toobtainoptimal agreement.Additionally
to the circumstance that the stochasticPTmodel is a rather coarse representationof themicellar bath, there are also

Figure 8.Normalizedwavenumber-dependent long-time diffusion coefficient  ¥D k t,( ) extracted from a free particle simulation
of the stochastic PTmodel.

Figure 9.Normalizedwavenumber-dependent long-time diffusion coefficient  ¥D k t,( ) for amicellar bath, obtained from
experiments aswell as from the stochastic PTmodel. As infigure 3 above, bars show the statistical error estimated by partitioning the
measured trajectory into two pieces.

Table 1.Parameters of the stochastic PTmodel used for the curves shown in
figures 9 and 10.

κ [μN m−1] V0 [kB T] d0 [nm] γ [μNs m−1] γb [μNs m
−1]

0 2.1 98 0.16 148

1.89 1.9 210 0.18 66.7

2.81 2.11 210 0.168 68.2

7.29 1.4 120 0.189 148.3
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possibilities for systematic errors causing theseparameter variations: optical traps asused inour experiments are
usually optimized for trap stiffnesses that are smaller than the largest onesusedhere, so that studying thementioned
effects requires goingbeyond the typical regimeof stiffnesses. Thismay introduce local heating, promotionof ageing
effects, or a slight anharmonicity of trap shape; Indeed, the relative standard error forκ is roughly2%for its smallest
value and5%for the largest.Anestimateof the effect of local heatingbymeasuring the absorption spectrumof the
micellar solution seems to imply a small effect: the spectrumshows a localminimumof1.3%at the laserwavelengthof
1064 nm which is virtually identical to the valueobtained forwater.With these comments inmind, thequantitative
agreementbetween experimental data and the stochasticPTmodel is satisfactory andconvincing.

We also point out that the used version of SPTmodel cannot correctly account for the prefactor
 ¥D t0,( ) used to normalize the data infigure 9. Indeed,figure 9 shows only a small range of k, and processes

on other length scalesmay influence  ¥D t0,( ). The observation of themissmatch of  ¥D t0,( )
suggests the presence of other important length scales, which theoretically could be accounted for by adding
more bath particles with different values of d0. In the absence ofmore experimental evidence at present, we leave
this discussion for futurework.Wenote that adding another bath particle with a distinct length scale would not
change the curves shown infigure 10.

The simulation parameters provided in table 1may nowbe interpreted in terms of experimental scales. The
amplitudeV0 is a typically potential barrier formed bymicelles surrounding the tracer particle, and its value
being of order of kBT is thus reasonable. The length scale d0 sets the dominant length scale of (nonlinear)
interactions between tracer particle and bath. It is here of the order of a fewhundred nanometers, which is in
great agreementwith sizes ofmicellar particles [50]. The bare tracer friction γ allows for an estimate of the
solvent viscosity, the so-called infinite shear viscosity. At infinite frequency, the viscosity h »¥ 7 mPa s exceeds
the viscosity of water by a factor of seven, probably due to hydrodynamic interactions in themicellar solution.
Finally, the relaxation time of the bath for afixed tracer position can be estimated from γb and the curvature of
Vint at itsminimum. It is of the order of a few seconds (t = 4.17 s, 1.88 s, 1.92 s, 4.73 sb [ ] for the parameters of
table 1), matching the order ofmagnitude of themeasured structural relaxation time by a recoil experiment [45].
The STPmodel thus well describes our experiments, with physically plausible parameters.

6. Connection tomicro-rheology and limiting cases

In this section,we establish ties between the results fromprevious sections and the viscosity or friction coefficient
obtained frommicrorheology [37, 67–72]. Thiswill also allow tobetter understand the limiting curves ofΓ(s) for very
large and very small values ofκ, as e.g.shown infigure 7. The applicationof linear-response theory to the situationof
aprobeparticle in amoving trapoffinite trap stiffness appearsunknown in literature.

In a useful setting of (active)microrheology, the potential trapmoves at a constant velocity v0, switched on at
time t=0. The external potential is thus given by

Figure 10.Main graph:memory kernel G sˆ ( ) of amicellar system, in Laplace space, as obtained from experimental data, for three
values ofκ. Error bars show the statistical error obtained frompartitioning themeasured trajectories into two pieces. Inset: correlation
function á ñx t x 0 eq( ) ( ) from experimental data. In bothmain graph and inset, the solid black lines are obtained from the stochastic PT
model, with parameters given in table 1.
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k= -V x v t
1

2
. 34ext 0

2( ) ( )

Due to themotion of the trap, the colloidal particle is dragged through the bath, thereby giving rise to a friction
force. Themean force exerted by the particle on the external potential (or vice versa), k á ñ -x t v t0∣ ( ) ∣, is thus the
observable of interest. Division by v0 yields the time dependent friction coefficient γ(t). Using linear response
theory (see appendix E), γ(t)may be connected tofluctuations of the colloidmeasured at rest

òg
k

bkº
á ñ -

= ¢á ¢ ñt
x t v t

v
t x t xd 0 . 35

t
0

0

2

0
eq( )

∣ ( ) ∣
( ) ( ) ( )

Thederivation of this relation in the framework of linear-response theory appears novel in literature. Performing
a small s expansion of C sxx

ˆ ( ) in equation (31), wefind a connection between the long-time friction coefficient of
microrheology and thememory kernel defined in the generalized Langevin equation, given by

òg gº = G = ¢G ¢
¥

¥
t t tlim 0 d . 36

t
lt

0
( ) ˆ ( ) ( ) ( )

This relation provides an insightful connection: the previously discussed and analyzed formofΓ(s), i.e. its
dependence on parameters such as the colloidalmass or the trapping potential coefficientκ, thus translate to
microrheological observations. Indeed, it has been noticed before, that, e.g. the value of the trapping potential
coefficientκ can influence themeasuredmicrorheological viscosity [31, 73–75].

This insight becomes even strongerwhen discussing the limit of large and smallκ. Taking the limit of
k  ¥ allows neglecting the termon the left hand side of equation (28). Using this, as well as

bá ñ = G-f t f t0 eq
1( ) ( ) (∣ ∣) and equation (35), we obtain, in the limit k  ¥

gG =
k k¥ ¥

s s slim lim . 37ˆ ( ) ˆ ( ) ( )

Equation (37) is the extension of equation (36) for any s, valid for largeκ. Themicrorheological setup
corresponding to the limit k  ¥ is the casewhere the colloidal particle ismoving at constant velocity v0. The
dashed line infigure 7, giving the limit for largeκ, thus corresponds to themicrorheological case of driving at
constant velocity. In our simulations, we obtained it bymeasuring the correlator of forces acting on the tracer
held atfixed position.

In order to address the reverse limit of vanishing trap stiffness, i.e.κ→0, we introduce the particlemobility
μ(t) via the Einstein relation [28]

m
b

º á - ñt
t

x t x
2

d

d
0 . 382

eq( ) ( ( ) ( ) ( )

Expressing the right hand side in terms of the time derivative ofCxx(t), we obtain from equation (31) an equation
forμ(s)

m
k

k=
G +

=
G

+ s
s s s s

1 1
. 39ˆ ( ) ˆ ( ) ˆ ( )

( ) ( )

In the second equality we expanded for smallκ. (Note that the limits s→0 andκ→0 do not commute).We
thusfind [76, 77]

m
G =

k k 
s

s s
lim lim

1
. 40

0 0

ˆ ( )
ˆ ( )

( )

We thus connected the limit of vanishing trap stiffnessκ to themobilityμ of the particle in absence of the trap. In
the language ofmicrorheology, thismobility is found by applying a constant force to the tracer. The second
limiting curve infigure 7 corresponds thus to themicrorheologicalmobility of constant applied force. The curve
in the figurewas obtained bymeasuring the diffusion process of of the tracer in absence of external potential.

Expanding equation (2) for small k and comparing to equation (38) yields thewell-known relation [28]

b
G =

 ¥k D t
lim 0

1

0,
. 41

0

ˆ ( )
( )

( )

Figure 8, wherewe included the corresponding value taken from the limiting curve infigure 7 as a dashed line,
displays this relation.No such relation has been obtained in the opposite limit for  ¥k .

We thus conclude that themeasurement of linear response coefficients gk¥ tlim ( ) and mk tlim 0 ( ) gives
information on theκ-dependence of thememory kernelΓ(t) if the effective dynamics of the system ismodeled
by a linear generalized Langevin equation.

Note that a related discussion of linear response coefficients was presented in [31] for a systemwith hard-
sphere interactions. The authors analyze the linear response coefficients of the two extrememodes (constant
force and constant velocity) and demonstrate their difference. Here, however, we aimed at a connection between
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the linear response coefficients and the frictionmemory kernelΓ as frequently used in the description of
effective Brownian dynamics.

Figure 11 showsΓ(s=0) as a function ofκ, obtained in the stochastic Prandtl Tomlinsonmodel, including
the two limiting cases for large and smallκ.

7. Summary

Combining experimentalmeasurements, analytical computations, and simulations of a stochastic Prandtl–
Tomlinsonmodel, we investigated several equilibrium-properties of a colloidal particle suspended in a
nonlinear bath. Additionally to displacements being non-Gaussian, a nonlinear bath shows up by unexpected
properties of the coefficients of a linearized equation; For example, in a nonlinear bath, the effective friction
memory of the bath can depend on the stiffness of a potential trapping the particle, as has been observed in
molecular simulations [47], or on themass or bare friction of the colloidal particle. These dependencies are
observed in our experiments, so that the frictionmemory of the trapped particle varies bymore than a factor of
two for trap stiffnessesκ ranging from1.89 μNm−1... 7.29 μNm−1. Thementioned dependencies are also
demonstrated in an exact analytic expansion of thememory kernel for small times, for the case ofHamilton and
Brownian dynamics.

Linear response theory provides the link between themeasurements of the particle in the trap at rest and
microrheological quantities. This allows to determine the limiting forms for the friction kernel for small and
large trapping stiffness, and also connects this discussion tomicrorheological cases of ‘constant force’ or
‘constant velocity’.

Analyzing severalmodels, we develop a stochastic Prandtl–Tomlinson, which is easy to be evaluated
numerically andwhichwell describesmost of the aspects observed in our experimental data. The resulting
parameters of themodel are physically plausible, so that thismodel promises to be useful in analysis of complex
tracer-baths systems.

The observed ‘fluctuation renormalisation’ of linear coefficients, already pointed out by Zwanzig,must be
taken into account when describing nonlinear stochastic systems, and are pronounced for colloidalmotion in
viscoelastic solvents. External forces, inertial forces, and forces from a bath, which are strictly independent on a
microscopic level, become dependent on each other in a linearized description.

Colloidalmotion in viscoelastic baths, here exemplified by amicellar suspension, provide a new
paradigmatic case of stochasticmotion, with various phenomena that go far beyond thewell-studied cases of
colloids in pure solvents. It is thus important to develop basic understanding of such systems, and the studies
performed here provide afirst step towards systematic investigation andmodeling.With the given findings at
hand, future workwill address non-equilibrium cases, and investigate how the equilibriumobservations and
modelingwill determine nonlinear responses and far from equilibriumproperties, such as those found
in [45, 46].

Figure 11. Long-time friction coefficient òg gº = G = ¢G ¢¥
¥

t t tlim 0 dt 0
( ) ˆ ( ) ( ) of the particle in a slowlymoving trap from the

stochastic PTmodel. Dashed lines give the limiting casesκ→ 0 and k  ¥ as discussed in themain text. The simulation parameters
are provided in table B3.

13

New J. Phys. 22 (2020) 023014 BMüller et al



Acknowledgments

Weacknowledge support by theGermanResearch Foundation and theOpenAccess Publication Funds of the
GöttingenUniversity.MK andBMwere supported byDFGGrantNo.KR3844/3-1.MK andBMalso
acknowledge support by theGöttingenCampusQPlus program. CB acknowledges financial support by the ERC
AdvancedGrant ASCIR (GrantNo.693683) and from theGermanResearch Foundation (DFG) through the
priority program SPP 1726.

AppendixA. Extraction of Laplace-transformedmemory kernel andnumerical error

Toextract the Laplace-transformedmemory kernel G sˆ ( ) fromnumerical (experimental or simulated)data,weuse
its unique relation to the position autocorrelation function C sxx

ˆ ( ) in Laplace domain givenby equation (31) in the
main text.We restrict our analysis of Laplace transforms to the real axis in Laplace domain, i.e.weset Im[s]=0.The
Laplace transformof the equilibriumcorrelation function ò=

¥ -C s t C td exx
st

xx0
ˆ ( ) ( ) is computednumerically up

to a truncation time tmax. The equilibriumcorrelation function canbe typically approximatedby a sumof
exponentially decaying function and thuswe can approximate the relative numerical truncation error by

ò
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where = t-f t e t max( ) is now the exponential decaywith the longest relaxation time τmax. By introducing
rescaled variables t=s s max˜ and t=t tmax max˜ and computing the integrals in equation (A1) analytically, the
relative numerical truncation error takes on a form that does not explicitly depend on τmax
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s t
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( ˜)
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The relaxation time of the numerical truncation error in rescaled units is bounded in the interval [0,1] for any
positive real value of s̃ . The important time scales in the studied systemunder overdamped conditions are set by
the relaxation time in the trap τκ=γ/κ and the relaxation time(s) of thememory kernel, which in the
experiment is typically given by the structural relaxation time τs. The relative numerical truncation error
converges exponentially to zero as shown infigure A1 and is negligibly small even for small values of s̃ provided
that tmax˜ is amultiple of the longest relaxation time of the system.While the numerical truncation error is of
negligible significance for simulated data (very long trajectories can easily be created), itmight play a role for
experimental data as themeasurement time is limited e.g.due to aging effects of the solution.

Figure A1.Relative numerical truncation errorD s t,rel max
¯ (˜ ˜ ) in rescaled units for a finite upper integration limit tmax˜ in the Laplace

transformof an exponentially decaying function = -f t e t(˜) ˜ over a large range of s̃ values.
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Appendix B. Simulation parameters

In this appendix, we provide the simulation parameters used for creation of the figures in section 4 and 6 not
given in themain text.

B.1.Harmonic coupling

B.2.Double-well interaction potential

B.3. Stochastic Prandtl–Tomlinsonmodel

AppendixC. Comparison between SPTmodel and experimentwith a single set of
parameters

Figure 10 presents the comparison between the SPTmodel introduced in themain text and the experimental
memory kernel of a wormlikemicellar solution upon varying external trap stiffness. As outlined in the
main text, we allowed a slight variation ofmodel parameters to obtain optimal agreement between between
model and experiment (see themain text for discussion and compare table 1). In this appendix, we
want to replot the figure but with a single set of parameters. The result obtained with the parameters for
κ=1.89 μNm−1 is shown in figure C1. In this case, themodel slightly underestimates the experimental
memory kernel at the second to highest trap stiffness but strongly overestimates it for the highest trap
stiffness.

Table B1. Simulation parameters for the case of harmonic coupling. ntraj denotes the
number of trajectories, nstep is the number of time steps dt of a single trajectory, and teq
is the equilibration time used in the simulation.

κ ntraj nstep dt β γ γb κl teq

0.1 1.8·106 106 10−2.5 1 1 10 1 300

1 1.8·106 106 10−2.7 1 1 10 1 100

10 1.8·106 106 10−2.9 1 1 10 1 60

100 1.8·106 106 10−3.4 1 1 10 1 40

1000 1.8·106 106 10−3.4 1 1 10 1 20

Table B2. Simulation parameters for the double-well interaction potential.

κ ntraj nstep dt β γ γb V0 d0 teq

0.1 1.2·104 106 10−2.5 1 1 10 1 1 300

1 1.2·104 106 10−2.7 1 1 10 1 1 100

10 1.2·104 106 10−2.9 1 1 10 1 1 60

100 1.2·104 106 10−3.4 1 1 10 1 1 40

1000 1.2·104 106 10−4 1 1 10 1 1 20

Table B3. Simulation parameters for the stochastic PTmodel.

κ ntraj nstep dt β γ γb V0 d0 teq

0.1 2.4·103 106 10−2.5 1 1 10 1 1 100

1 2.4·103 106 10−2.7 1 1 10 1 1 30

10 2.4·103 106 10−2.9 1 1 10 1 1 10

100 2.4·103 106 10−3.4 1 1 10 1 1 5

1000 2.4·103 106 10−3.6 1 1 10 1 1 4
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AppendixD.Derivation of equation (31) and thefluctuation-dissipation theorem

In this appendix, we derive equation (31) and prove the fluctuation-dissipation theoremby direct calculation for
the overdamped generalized Langevin equation in equation (28). The route presented here is similar to the one
shown in [78] for the underdamped case, butwith the presence of an external harmonic field. In equation (28)
the initial preparation of the systemhas been shifted to the infinite past as is reflected by the lower integration
boundary in thememory integral. In order to directly apply the convolution theorem to equation (28), the
equation ofmotion needs to be slightly recast according to

ò kG - = - + D +s t s x s x t f t f td , D1
t

0
( ) ( ) ( ) ( ) ( ) ( )

wherewe introduced a shift of the random force òD = - G + -
¥

f t s t s x sd
0

( ) ( ) ( ) .We then obtain the equation

ofmotion for the position autocorrelation functionCxx(t) bymultiplying both sides of the equationwith x(0)
and subsequently perform an equilibrium average

ò kG - = - + á ñs t s C s C t f t xd 0 , D2
t

xx xx
0

eq( ) ( ) ( ) ˜ ( ) ( ) ( )

wherewe used the abbreviation = D +f t f t f t˜( ) ( ) ( ). In order to reach consistencywith theMori equation
[56] (where the system is prepared at t=0 in a certain initial configuration), we require the relation
á ñ =f t x 0 0eq

˜( ) ( ) , i.e.

òá ñ = G + -
¥

f t x s t s C s0 d . D3xxeq
0

( ) ( ) ( ) ( ) ( )

By Laplace transforming equation (D2) together with this relation, we derive equation (31)where the bath is
prepared in thermal equilibrium at t=0. Replacing the lower integration boundary in thememory integral of
equation (31) by the initial preparation time t=0 is thus at the cost of specifying initial conditions for particle
and bath aswas amply discussed in [78].

It can nowbe shownby direct calculation that equation (28) together with the relation in equation (D3)
implies the correct formof the fluctuation-dissipation theorem

á ñ = G >f t f k T t t0 , 0, D4Beq( ) ( ) ( ) ( )

and hence correctly describes the equilibriumproperties of the Brownian particle. Note that a similar derivation
of the FDThas been presented in [59] for the underdamped case by transforming theMori equation into Laplace
domain. In our proof no transformation to Laplace domain is necessary.Wemultiply both sides of equation (28)
with f (0) and perform a subsequent equilibrium average to obtain

òká ñ = á ñ + G - á ñ
-¥

f t f f t x s s f t x s0 0 d . D5eq

0
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

FigureC1. Figure 10 replottedwith a single set of parameters as obtained forκ=1.89 μN m−1 in themain text (see table 1).
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By application of the requirement for the fluctuating force-position correlator in equation (D3), wemaywrite
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¥
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Apartial integration of the first term yields
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Nowusing the fact that =
k

C 0xx
k TB( ) in equilibrium and realizingwith some algebra that the last two terms

compensate each other, we obtain the formof the FDT in equation (D4).

Appendix E. Linear-response theory of amoving harmonic trap

Wewant to derive the linear-response relation for the time-dependent friction coefficient γ(t) as defined in
equation (35).We consider a systemof a harmonically trapped tracer particle that is arbitrarily coupled to a heat
bath. The position of theminimumof the trap follows a time protocol x0(t) andwe ask for its effect on themean
position of the tracer particle. The time-dependent external potential then reads

k= -V x x t
1

2
. E1ext 0

2( ( ) ( )

For small dragging velocities ò= ¢ ¢x t t v td
t

0 0 0( ) ( )wemay linearize the perturbationHamiltonian

k q= - + H t xv t t v , E2pert 0 0
2( ) ( ) ( ) ( )

where θ(t) is theHeaviside step function, andwe assumed the perturbation to be constant over time and switched
on at t=0. Direct application of the general formof the FDT yields [28]
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Bymeans of partial integration and the fact that á ñ =
k

x k T2
eq

B in equilibriumwe then obtain
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From this relation equation (35) follows immediately.
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