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Abstract

A colloidal particle is a prominent example of a stochastic system, and, if suspended in a simple viscous
liquid, very closely resembles the case of an ideal random walker. A variety of new phenomena have
been observed when such colloid is suspended in a viscoelastic fluid instead, for example pronounced
nonlinear responses when the viscoelastic bath is driven out of equilibrium. Here, using a micron-
sized particle in a micellar solution, we investigate in detail, how these nonlinear bath properties leave
their fingerprints already in equilibrium measurements, for the cases where the particle is unconfined
or trapped in a harmonic potential. We find that the coefficients in an effective linear (generalized)
Langevin equation show intriguing inter-dependencies, which can be shown to arise only in nonlinear
baths: for example, the friction memory can depend on the external potential that acts only on the
colloidal particle (as recently noted in simulations of molecular tracers in water in (2017 Phys. Rev. X7
041065)), it can depend on the mass of the colloid, or, in an overdamped setting, on its bare diffusivity.
These inter-dependencies, caused by so-called fluctuation renormalizations, are seen in an exact small
time expansion of the friction memory based on microscopic starting points. Using linear response
theory, they can be interpreted in terms of microrheological modes of force-controlled or velocity-
controlled driving. The mentioned nonlinear markers are observed in our experiments, which are
astonishingly well reproduced by a stochastic Prandtl-Tomlinson model mimicking the nonlinear
viscoelastic bath. The pronounced nonlinearities seen in our experiments together with the good
understanding in a simple theoretical model make this system a promising candidate for exploration
of colloidal motion in nonlinear stochastic environments.

1. Introduction

Almost any matter consists of nonlinearly interacting components, giving rise to complex properties, as can be
observed in prominent experiments [ 1-5], or computer simulations [6—10]. This poses a serious and timely
challenge of understanding such nonlinear systems, both from an experimental or phenomenological viewpoint
as well as theoretically: the theoretical treatment of nonlinear systems typically requires approximations, and
various schemes have been developed [11-15]. These schemes involve, inter alia, linearization techniques [13],
perturbation theory [16], or projection-operator methods [17]. In particular nonlinear stochastic systems have
proven useful in physics, chemistry, and biology, as, for instance, in describing transition phenomena[18, 19],
kinetics of phase separation [20, 21], non-equilibrium thermodynamics [22, 23], or nonlinear fluctuational-
electrodynamics [24]. Regarding fluids, a variety of formal approaches exist [25-27]. These approaches
encompass, for example, (phenomenological) Langevin equations [17, 28, 29], microscopic models [30-32],
density functional theory [33, 34], or mode coupling theory [35-37]. Systems near equilibrium can generally be
captured by linear (stochastic) equations, with linear coefficients renormalized by the underlying nonlinear
interactions, as, e.g. exemplified by projection operator techniques [38, 39].

© 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft


https://doi.org/10.1088/1367-2630/ab6a39
https://orcid.org/0000-0002-5496-5268
https://orcid.org/0000-0002-5496-5268
mailto:boris.mueller@uni-goettingen.de
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/ab6a39&domain=pdf&date_stamp=2020-02-05
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/ab6a39&domain=pdf&date_stamp=2020-02-05
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0

I0OP Publishing New J. Phys. 22 (2020) 023014 B Miiller et al

Figure 1. Experimental setup of a colloidal particle in a micellar solution subjected to a harmonic confinement potential. The
micrometer-sized particle performs a typical random walk in the limited configurational space in thermal equilibrium.

The renormalization of linear coefficients is widely known, for example regarding the linear optical response
given by the permeability € [40]; for a typical solid, € is a function of temperature, one reason for it being the
mentioned underlying nonlinear interactions of atoms. Despite the presence of such examples, it appears that
understanding of these effects in explicit experimental systems is still rare. Detecting and describing such
nonlinear properties is especially important for non-equilibrium systems, as nonlinear properties also dictate
the far-from-equilibrium behavior which is typically even less understood.

In this paper, we experimentally and theoretically investigate the clean and rich system of a Brownian
particle suspended in a complex, viscoelastic bath, a system which has in various forms been addressed before [5,
41-44], and which indeed shows unexplained non-equilibrium properties [45, 46]. For example, the (transient)
dynamics of a probe particle that has strongly perturbed its surrounding requires a theoretical description to
account correctly for the stress release in the strained fluid, which is not avaliable.

In particular, we investigate how the nonlinear character of the bath manifests itself in equilibrium
measurements, performed in presence or absence of a harmonic trapping potential, finding strong effects which
can only be present in nonlinear baths. These investigations are supported by an analytical analysis within the
framework of projection operator formalism: starting from either Newtonian or overdamped dynamics, we
demonstrate how microscopic interactions give rise to nontrivial dependencies (‘fluctuation renormalizations’
[17]) oflinear coefficients; for example the dependence of the friction kernel on the external potential, which has
recently been observed for solutes in water [47]. These dependencies are theoretically analyzed in several
theoretical models which couple the colloidal particle to a single bath particle, finding that a stochastic Prandtl-
Tomlinson model can well describe our experiments. We finally connect the equilibrium analysis to
microrheology also discussing the limiting cases of weak and strong external confinement [31].

2. Experiment: non-Gaussian displacements

The experimental analysis is performed in an equimolar solution of surfactant, cetylpyridinium chloride
monohydrate (CPyCl) and sodium salicylate (NaSal) in deionised water at a concentration of 7 mM and at room
temperature, T = 298 £ 0.2K. After overnight mixing, worm-like micelles form and deform dynamically in
such solvents [48]. They build a highly dynamical entangled viscoelastic network which exhibits a comparatively
large structural relaxation time of 7, = 2.5 &+ 0.2 s determined by a recoil experiment [45] and
macrorheological measurements, thereby giving rise to highly non-Newtonian properties [45, 46]. The length of
wormlike micelles is typically found between 100 and 1000 nm [49], and the characteristic mesh size is on the
order of 30 nm [50]. We examine the thermal equilibrium fluctuations of a single mesoscopic silica particle of
diameter 2R = 2.73 pm. While the particle naturally lives in a three dimensional surrounding, far from any
boundaries, we concentrate on its x-component. The particle is trapped by a highly focused laser beam, which
creates a static parabolic potential Vi, = %sz, with x the spatial coordinate relative to the potential minimum,
see figure 1. The focal plane is adjusted to the middle of the sample cell, so that the trap position is more than
40 pm away from any walls and hydrodynamic interactions with walls can be ruled out. x (¢) is recorded at rates
of atleast 100 fps.

As mentioned, this system displays highly nonlinear properties when driven out of equilibrium [45, 46],
which triggers the question whether and how these nonlinear properties can already be detected in equilibrium,
where the particle positions follow the Boltzmann distribution as shown in figure 2, P (x) o< e=V® /ksT with
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Figure 2. Main graph: probability distribution P(x) for a harmonically trapped particle, which is well described by the Boltzmann
distribution shown as a red line. Inset: measured trap potential (symbols) and a parabolic fit (solid line), from which the trap stiffness
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Figure 3. Main graph: normalized wavenumber-dependent long-time diffusion coefficient D (k, t — o0) extracted from a long-time
2D free diffusion measurement of a tracer particle in a micellar bath and from a 3D free diffusion measurement in a water-glycerol
mixture. Error bars show the statistical error estimated from partitioning the measured trajectory into two pieces. Inset: recorded
experimental trajectory (x(¢), y(f)) over a time period of 1800 s.

Boltzmann constant kg (P(x) thus allows determination of the value of ). In order to address this, we start with
the case x = 0, and investigating the particle’s free diffusion (again regarding the x coordinate). A well-known
measure of nonlinearity is then given by the incoherent dynamic structure factor [51]

Ss(k, t) = (exp(ik(x(0) — x(1)))) = exp(—D(k, t)k?*t). (1)

The right-hand side of equation (1) defines the diffusion coefficient D(k, t), which depends in general on
wavevector k and time f (and has recently attracted a lot of interest [52—54]). As evident from equation (1), a
Gaussian process, as found in purely linear systems, shows no k-dependence in D, so that such k-dependenceis a
direct indicator for a non-Gaussian and nonlinear process.

Figure 3 shows the long-time limit of D(k, t), obtained as

lim D(k, 1) = —lim - log((exp(ik(x(0) — x(1)), @

t—00

for a viscoelastic bath (wormlike micellar solution) and a Newtonian bath (water-glycerol mixture). The
curves are normalized on their respective values at minimum resolvable wavenumber k;, = 6.31 pm~},
D (kppin, t — 00) = 204.8 nm? s~'and D (kpin, t — 00) = 1 539.9 nm? s~} respectively. The figure shows

that in the viscoelastic case D indeed depends on k, starting to decrease ata wavenumber around k = 10m™ L
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This value is connected to a length scale 27/ k of roughly 600 nm, which is indeed a good estimate for a typical
length of micellar particles [50]. We note that for the micellar system there may be another increase of

D(k, t — o00) for even smaller k-values (currently not resolvable) as a comparison with the value obtained from
a fit of the mean-square displacement seems to suggest [46].

As the particle is probing length scales comparable to the length scale of (nonlinear) interaction with the bath
(recall that the length of worm-like micelles is between 100 and 1000 nm [49], and the typical mesh size is on the
order of 30 nm [50]), it apparently experiences a greater resistance which is reflected in a decrease of the
diffusion coefficient. In the opposite regime of small wavenumbers, k — 0, the continuous properties of the
bulk system enter and the diffusion coefficient reaches its plateau value Dy. Note that resolving the long-time
diffusion coefficient for high k becomes more and more difficult due to a finite spatial accuracy of 4 nm in the
experiment [55], and a sharper decay of the average in equation (2) over time.

Having obtained a first indication of the pronounced nonlinear properties of the micellar bath without
confinement, we next develop a theoretical understanding of nonlinear markers in the presence of a confining
potential.

3. Theory: how nonlinear interactions enter linear coefficients

In this section we aim to analyze how nonlinear interactions can modify or enter linear coefficients. Using the
well-known Zwanzig Mori projection operator technique, we obtain a linearized equation of motion for a single
(the colloidal) degree of freedom, coupled to bath particles making up the viscoelastic medium. This analysis will
be performed in the two cases of Hamilton dynamics as well as overdamped dynamics.

3.1. Hamilton dynamics

As discovered by Mori in 1965 using projection operator techniques, the Liouville equation [28], describing the
dynamics of a Hamiltonian system, can be transformed into a linear equation for an observable A of interest
(which can be vector in space of observables) [56, 57]

94 =i Alt) — ft dsM(s) - A(t — ) + F(1), 3)
ot 0

with the matrices (in space of observables) {2 and M given by
i = (CA, A) - (4, A, )
M(t) = (F(1), F(0)) - (A, A)~". (5)

L is the Liouville operator and the parentheses (-, -) specify an inner product weighted with the equilibrium
distribution function f.q

(4, B) = [[dXf COACOBHX) = (AB¥)eq, G)

Note that the asterisk denotes the complex conjugate. The integral over X = (p, q) is meant to be over all phase
space variables (here position and momentum degrees of freedom q and p). The process of integrating out
degrees of freedom to arrive at equation (3) renders it non-Markovian, and also gives rise to a random force
(noise) F(t) . Itis given by the projected dynamics

F(t) = e'=PL(1 — P)LA, @)
where the projector P, projecting on A, has been introduced. Its action on a variable B1is

PB = (B, A) (A, A A ®)
Notably, equation (5) may be identified with the fluctuation-dissipation theorem, linking the memory matrix
M(?) to the equilibrium noise correlator.

Applying this to the case of a colloidal particle in a complex bath, we start from the following microscopic
Hamiltonian

2

p? N p
H=— + ‘/ext(x) + Z —L + th({gj}) (9)
2m i1 2m;
Here, m is the mass of the colloid, and V(x) is an external potential acting on it, e.g. imposed by optical forces as
mentioned above. 1; are the masses of the N-bath particles. p and p; are corresponding momenta. The potential
Vi ({€ i) is the interaction potential of the N 4 1 particles involved, which is not necessarily pairwise additive.
Since Vi, ({& 1) is invariant under displacing all particles by the same vector, it can be given in terms of { £},
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where §; = g — xis the distance between tracer and bath particle j. For simplicity, we consider a one-
dimensional system, expecting the qualitative discussion to be equivalent in other dimensions.

Aiming to describe the dynamics of the colloid, we naturally choose A = (x, p)7, i.e. the vector formed by its
position and momentum. Using PB = (Bx) (x?)~'x 4+ (Bp) (p?)~'p, we obtain from equation (3) the explicit
result [17]

x(t) = p)/m, (10)
mi(t) = —kx(t) — ft dsI'(s)x(t — s) + F(¢). (11)
0

While the applied technique is well known, it is worth reminding that despite the fact that the Hamiltonian in
equation (9) contains nonlinear interactions V., and Vj,;, the resulting equation (11) is linear in p and x. Indeed,
the nonlinear character of V,,, and V;, finds its way into the linear coefficients appearing in equation (11). First,
an effective spring constant  appears [17]

(12)

which depends on Vi (via the equilibrium distribution f.q) and thermal energy kg T. It is however independent
of Vi The so-called memory kernel I'(t) reads

L'(t) = m(e'*PLQ — P)Lp, Lp)(p, p)~ . (13)

Compared to  in equation (12), the form of I in equation (13) is more involved, containing the projected
dynamics, and no closed form for it is known. However, the series expansion in time ¢ can be given, in principle,
to any order, yielding more insight. Writing this expansion

< 1@

_ I 2n
I = ;::0 ! 2 (14)

we note that only even powers of t contribute due to the intrinsic time reversal symmetry I'(f) = I'(—t) seenin
equation (5). By expanding the operator exponential in equation (13), and using the anti-Hermitian property of
the Liouville operator, £ = — L, the Taylor coefficients in equation (14) are found to be given by the quadratic
form

rem — (_1)nm<p2>e—ql<[(1 _ P)/J]““p]2>e . (15)
For simplicity, we shall in the following consider the case of V. (x) = —sz We find for the first two coefficients
(where 3 = (kgT)™1)
IO = B(Ff)eq (16)
o= _ 1 Z <(9 Fines 6kat Z L (8 Fmt) (17)
7k j J

We introduced the covariance (A; B) = (AB) — (A) (B) inequation (17),and denote Fin ({¢;}) = 32,0 Vi ({§;))
the force acting on the tracer particle due to interactions with the bath particles. While the leading term for short t1mes,
equation (16), depends on this interaction potential in an expected manner, already the second term, equation (17), is
more interesting: The first term on the right-hand side of equation (17) depends on the mass m of the colloidal particle.
The presence of this term is worth noting, as it goes against a naive expectation that the friction kernel should only
depend on properties of the bath, and be independent of tracer mass. Indeed, this term carries the covariance of force
gradients as a prefactor, and is thus absent for harmonic couplings, as e.g. employed in the models by Caldeira—Leggett

[58]. Such dependence on the tracer mass is hence a signature of nonlinear coupling to the bath. Going one term
further, we have

T = 5™ (0Fius OiFineq + OKO). (18)
m?

This term shows the emergence of another interesting dependence: the friction kernel does not only depend on
the properties of bath and tracer, but also on the stiffness « of the surrounding potential. (Let us be reminded
that this potential does not act on the bath particles in equation (9), in contrast to the analysis provided in [59]).
This dependence has indeed been observed in computer simulations of molecular solutes in water in [47].
Notably, that term does also depend on the mass of the tracer particle, and it vanishes for harmonic tracer-bath
coupling. Itis thus another marker for nonlinear interactions, being absent in linear processes. This can be seen
also in the higher-order terms in ¢, which take the form,
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n—1

en — (1l
F”—( l)n —

Z <ajFint; akFint>eq + O(’{niz)- (19)
jok

3.2. Overdamped dynamics
A similar analysis as done in the previous subsection is feasible for the case of overdamped dynamics, where a
simple model consists of two coupled Brownian particles, i.e.

V(1) = = Vi (x — @) = Ve (x(1)) + F(1),
WA (1) = Vin(x — @) + Fy(®). (20)
Here the position of the tracer particle x(¢) (the colloid) is confined by a potential, which, as above, we take
harmonic, V. = %nxz, and it interacts via an arbitrary interaction potential Vi (x — g) with the second
Brownian particle (the bath particle). The noise sources of tracer and bath particles are assumed to be white,
Gaussian, and independent ((4, ) € {F, F;,})
(Fi()eq = 0,  (FEMF{))eq = 6;2ks Ty (t — t). (2]

Similarly to the above, one may obtain a linearized equation of motion for the position of the tracer particle,
which reads

i ~
0= —rx(t) — f AsT($)%(t — 5) + E(b). (22)
0
In this case, the memory kernel takes on the following expansion
n)
(1) =~6(t) + Z - (23)
n=0

which differs from equation (14): in the overdamped case, I'(#) is a nonanalytic function of time, carrying an
instantaneous response ~4(t), and, despite its time-symmetry, even and odd powers of t. A straightforward
calculation then yields the coefficients in equation (23)

ro = ﬂ<Fi%1t>eq) (24)
1
P = (P Py + 2, OEaEil)e + FnFideo), (25)
R
F(Z) = ?<F1(r}t)’ Fl(é3>eq + O(KO)’ (26)
o = (—p i = <Ffr}3, F)eq + O(k"2). 27)

The noted dependence on colloidal mass m in, e.g. Equation (17) is here, in the overdamped case, mirrored by
the dependence on «yin equation (25): it is worth noting that the memory kernel depends on the bare tracer
friction v (and not only on bath properties). As is the case in equation (17), the term involves the force variance,
i.e. it vanishes for harmonic tracer-bath couplings. Also the appearance of x in equation (26) is similar as in
equation (18), with the mass replaced by the bare friction coefficient. Again, in any higher order in ¢, x and y
appear, in combination with the covariance of the derivative of the interaction force.

4. Exploring different tracer-bath couplings

4.1.Model

Section 3 explicitly described the dependencies of the coefficients arising in a linearized equation; the friction
memory of the bath may depend on the mass or the bare friction of the tracer, or the potential that the tracer is
subjected to. Here we aim to study these using specific forms of Vj,,; in equation (20), employing the model
sketched in figure 4: the (overdamped) colloidal particle is subject to a harmonic potential Vo (x) = %sz.
Additionally, the colloid is coupled to another overdamped particle, accounting for the bath. This model is thus
given by equation (20), and is designed to mimic our experimental setup.

To compute the correlation function from simulated trajectories we deploy a stochastic Runge—Kutta
method of weak convergence order three [60]. A high convergence order algorithm in combination with
sufficient statistics is essential for our analysis, as will be demonstrated in section 4.2.

While, from equations (25) and (26), interesting behavior of the friction kernel upon varying the colloidal
bare friction «y or k is expected, we will restrict ourselves to varying «, as this is easily done in our experiments,
and also allows comparison to results of [47].
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Figure 4. Model of tracer and bath. The tracer particle (coordinate x) is confined by a potential Vey (x) = %sz, tracer and bath are
coupled via an interaction potential Vi, (x — q), where ¢ is the coordinate of the bath particle.

In the following, we set the friction coefficients of tracer and bath particletobe y = 1andy, = 10,
respectively. Further, we consider inverse temperature 5 = 1 and also all parameters appearingin the
interaction potential Vi, to unity. x can thus be thought of being given in units of kg T /d¢ (see e.g. equation (33)
below for d;), so that the length \/ (xPeq = \/ kg T /K is compared to the length scale d, appearing in the
interaction potential. The table of parameters used in this section are provided in appendix B.

4.2. Harmonic coupling
We start with the simplest case of a harmonic coupling, i.e. Vi, (§) = %Hl &2, which can be treated analytically
[17,25, 58]. One obtains the following linear equation for the colloidal particle

t
f AsT(t — $)%(s) = —rx(t) + F(2). (28)
The kernel and noise are
D(t) = 296(t) + re 2, (29)
t K]
B(t) = F(t) + 21 f dse— 59, (5). (30)
Yo V-0

As expected from section 3 and literature [17, 25, 58], the kernel I'(¢) in equation (29), apart from the trivial term
2~6(t) depends only on bath properties, i.e. v, and the interaction strength «;.

The harmonic coupling allows to test the quality of numerical simulations, applied to equations (20). These
are used to create particle trajectories, from which the correlation function Cy, (t) = (x()x(0))eq is computed.
Aiming to extract I'(¢), we turn to Laplace space, where equation (28) reads

P(s) = 2 T"“C’C{(S) (31)
B
= — Cx(9)s
with Laplace transforms hA(s) = fo * dte—h (t). Note that we used in this derivation the equal time correlation

function to be given by C,(0) = (x?)eq = kBTT, i.e. the bath is prepared in thermal equilibrium at t = 0.

Figure 5 shows the results for different values of «. The data points for I'(s) (main graph) and C,,(#) (inset)
follow well the analytical forms (solid lines). For values of x spanning five orders of magnitude, I'(s), as found
from simulations, takes identical forms This requires high numerical accuracy, as may be illustrated by
regarding the case of &k = 10°: here, the correlator quickly decays to a very small value of ~10~, reaching a
plateau value there. This plateau, which is easily overlooked, is however essential to obtain the correct value of
Cyx(s)ass — 0.In thelimit of large x, the relaxation time scales set by the trap and the bath are well separated
and the latter is decisive for the Laplace transform of the correlation function. Note that in the limit of large s
(small times) the particle diffuses freely, i.e. we have lim;_, ., ') = ~v, while for small s (large times)
Pis=0)=~+ 7, due to the bounded potential.

4.3. Double-well interaction potential
Going one step beyond section 4.2, we consider a nonlinear interaction potential. A useful choice for such
nonlinear potential is a symmetric double well

7
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Figure 5. Main graph: memory kernel "(s) — ~ for harmonic coupling, in Laplace space, as obtained in numerical simulations, for
different values of k. The black line represents the analytical solution given in equation (29). Inset: simulated correlation function
(x(¢)x(0)) plotted against the analytical solution. The simulation parameters are provided in table B1.
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Figure 6. Main graph: memory kernel I'(s) — ~ for a double well coupling, in Laplace space, as obtained in numerical simulations, for
various values of . Inset: simulated correlation function (x(¢)x(0)). The simulation parameters are provided in table B2.

Vi (6) = %(5 — Ao+ do)?, (32)
0

where V) is the height of the potential barrier between the wells, and d,, is half the distance between their minima.
Note that for a single particle moving in such a potential interesting barrier-crossing kinetics were found for a
Langevin equation with bi-exponential memory only recently [61].

The results for the Laplace transformed memory kernel ['(s) are illustrated in figure 6. In contrast to the case of
harmonic coupling, the memory kernel shows indeed, as expected from equation (26), a dependence on the external
trap stiffness « for finite values of s. However, for small and large values of s, I'(s) takes the same limiting values as for
the harmonic coupling, shown in figure 5. For large s, the colloid, as before, does not notice the presence of the bath.
For small s, the two particles behave as a composite particle, with the sum of bare friction coefficients. This is because
the two particles are coupled by abound potential, so that on large time scales, they move together.

4.4. Stochastic Prandtl-Tomlinson model

Given the observation of section 4.3, we now look for a model where colloid and bath particle are not bound,
which brings us to the so called Prandtl-Tomlinson (PT) model. This model is popular in the field of frictional
processes on the atomic scale, and was introduced by Prandtl to describe plastic deformations in crystals as well
asdry friction [62]. The model consists of a particle in a periodic potential that is damped by a frictional force

8
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 — o0 shown in the main graph will be discussed in section 6. The simulation parameters are provided in table B3.

and harmonically coupled to a host solid. The theoretical framework derived by Prandtl has been extensively
deployed and modified to be applicable to a wide range of physical applications [63]. Most prominently it well
describes the damped motion of a nanotip of an atomic force microscope driven over a (corrugated) surface
[64—66]. The principal idea of the PT model—which has not been used so far for complex fluids—is applied here
to effectively describe the interaction between a viscoelastic bath and a colloidal probe particle.

Using

Vi () = Vpcos(2Te), (33)
dy

with a wavelength dy and amplitude V;, with equation (20) yields an extension of the PT model: it is a PT model
where the sinusoidal potential is not fixed in space, but is the interaction potential with a bath particle, which by
itself is stochastic with finite friction and diffusion coefficients (given through ;). The physical intuition is that
the micellar bath of our experiments is indeed a non-static background with a finite relaxation time.

In contrast to section 4.3, Vi, in equation (33) is unbounded. Figure 7 shows the results obtained from
simulations of the stochastic PT model for different values of . As expected, I'(s) does strongly depend on «, and, as
the potential is unbound, also in the limit of s — 0. The value of I'(s = 0) differs by more than a factor of three
between very large and very small values of « (a ratio which can of course be tuned by varying the model parameters).

Can the stochastic PT model describe our experiments? Before addressing this question quantitatively in
section 5 below, we first study the diffusion coefficient D(k, t), obtained as in figure 3, but here from simulation
trajectories performed at k& = 0. Figure 8 shows the resulting values as a function of wavevector k (see
equation (2)). As was observed in figure 3, the data points figure 8 decrease with increasing k, while they
approach limiting values for both large and small k. While in figure 3 the characteristic wavevector was identified
with the size of micellar particles, it is here related to the chosen value of d, (which is unity).

Encouraged by the qualitative agreement between our experiments and the stochastic PR model, we
continue with a detailed and quantitative comparison in the next section.

5. Stochastic Prandtl-Tomlinson model and experiments

Having discussed several signatures of bath-nonlinearity in equilibrium systems, we now aim to discuss these in
quantitative detail for our experiments, in comparison with the stochastic PT model.

Starting with the diffusion coefficients, figure 9 shows the experimental data of figure 3 together with those
obtained from the SPT model, showing good agreement. The fit parameters of the model are provided in table 1.

Notably, the SPT model can be used to link our experimental data of free diffusion to the cases with optical
trap present; figure 10 finally shows the experimental correlation functions (x (¢)x (0))eq for the trapped particle,
at three different values of trapping strength « (inset). The main graph gives, in the same manner as figures 5-7,
the extracted form of the friction memory I'(s). We restrict to the experimentally accessible range of s. Indeed,
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Figure 9. Normalized wavenumber-dependent long-time diffusion coefficient D (k,  — 00) for a micellar bath, obtained from
experiments as well as from the stochastic PT model. As in figure 3 above, bars show the statistical error estimated by partitioning the

measured trajectory into two pieces.

Table 1. Parameters of the stochastic PT model used for the curves shown in
figures 9 and 10.

K[UNm™]  VolkyT]  dolnm]  y[puNsm™'] 7, [pNsm™']

0 2.1 98 0.16 148
1.89 1.9 210 0.18 66.7
2.81 2.11 210 0.168 68.2
7.29 1.4 120 0.189 148.3

our experiments also strongly show the marker of nonlinearity exhibited in I', as this function displays a

dependence on the given k.

The solid lines shown in figure 10 have been obtained from the SPT model, with parameters given in table 1.
The agreement with the data is very good, underpinning our conclusion that the effects seen in figures 9 and 10
have the same physical origin: nonlinear interactions on the micellar length scale.

Ideally, one set of parameters of the SPT model should suffice to describe all experimental data shown in figures 9
and 10 (see appendix C). We have, however, slightly adjusted the parameters to obtain optimal agreement. Additionally
to the circumstance that the stochastic PT model is a rather coarse representation of the micellar bath, there are also
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Figure 10. Main graph: memory kernel '(s) of a micellar system, in Laplace space, as obtained from experimental data, for three
values of k. Error bars show the statistical error obtained from partitioning the measured trajectories into two pieces. Inset: correlation
function (x(t)x(O)}eq from experimental data. In both main graph and inset, the solid black lines are obtained from the stochastic PT
model, with parameters given in table 1.

possibilities for systematic errors causing these parameter variations: optical traps as used in our experiments are
usually optimized for trap stiffnesses that are smaller than the largest ones used here, so that studying the mentioned
effects requires going beyond the typical regime of stiffnesses. This may introduce local heating, promotion of ageing
effects, or a slight anharmonicity of trap shape; Indeed, the relative standard error for  is roughly 2% for its smallest
value and 5% for the largest. An estimate of the effect of local heating by measuring the absorption spectrum of the
micellar solution seems to imply a small effect: the spectrum shows a local minimum of 1.3% at the laser wavelength of
1064 nm which is virtually identical to the value obtained for water. With these comments in mind, the quantitative
agreement between experimental data and the stochastic PT model is satisfactory and convincing.

We also point out that the used version of SPT model cannot correctly account for the prefactor
D(0, t — o) used to normalize the data in figure 9. Indeed, figure 9 shows only a small range of k, and processes
on other length scales may influence D (0, t — 00). The observation of the missmatch of D(0, ¢t — c0)
suggests the presence of other important length scales, which theoretically could be accounted for by adding
more bath particles with different values of d;. In the absence of more experimental evidence at present, we leave
this discussion for future work. We note that adding another bath particle with a distinct length scale would not
change the curves shown in figure 10.

The simulation parameters provided in table 1 may now be interpreted in terms of experimental scales. The
amplitude V; is a typically potential barrier formed by micelles surrounding the tracer particle, and its value
being of order of kT is thus reasonable. The length scale dj sets the dominant length scale of (nonlinear)
interactions between tracer particle and bath. It is here of the order of a few hundred nanometers, which is in
great agreement with sizes of micellar particles [50]. The bare tracer friction -y allows for an estimate of the
solvent viscosity, the so-called infinite shear viscosity. At infinite frequency, the viscosity ., &~ 7 mPa s exceeds
the viscosity of water by a factor of seven, probably due to hydrodynamic interactions in the micellar solution.
Finally, the relaxation time of the bath for a fixed tracer position can be estimated from -, and the curvature of
Vincatits minimum. Itis of the order of a few seconds (7, = [4.17 s, 1.88 s, 1.92 s, 4.73 s] for the parameters of
table 1), matching the order of magnitude of the measured structural relaxation time by a recoil experiment [45].
The STP model thus well describes our experiments, with physically plausible parameters.

6. Connection to micro-rheology and limiting cases

In this section, we establish ties between the results from previous sections and the viscosity or friction coefficient
obtained from microrheology [37, 67-72]. This will also allow to better understand the limiting curves of I'(s) for very
large and very small values of x, as e.g. shown in figure 7. The application of linear-response theory to the situation of
aprobe particle in a moving trap of finite trap stiffness appears unknown in literature.

In a useful setting of (active) microrheology, the potential trap moves at a constant velocity vq, switched on at
time t = 0. The external potential is thus given by
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%m=§Mx—mﬂ% (34)

Due to the motion of the trap, the colloidal particle is dragged through the bath, thereby giving rise to a friction
force. The mean force exerted by the particle on the external potential (or vice versa), x| (x) (f) — vy |, is thus the
observable of interest. Division by v, yields the time dependent friction coefficient y(#). Using linear response
theory (see appendix E), 7(f) may be connected to fluctuations of the colloid measured at rest

K| (x) () — vot]
Yo

t
N () = — Gr? fo At (x () x(0))eq. (35)
The derivation of this relation in the framework of linear-response theory appears novel in literature. Performing
asmall s expansion of C,, (s) in equation (31), we find a connection between the long-time friction coefficient of
microrheology and the memory kernel defined in the generalized Langevin equation, given by

w= lim 30 = 00 = [~ arre) (36)

This relation provides an insightful connection: the previously discussed and analyzed form of I'(s), i.e. its
dependence on parameters such as the colloidal mass or the trapping potential coefficient x, thus translate to
microrheological observations. Indeed, it has been noticed before, that, e.g. the value of the trapping potential
coefficient x can influence the measured microrheological viscosity [31, 73-75].

This insight becomes even stronger when discussing the limit of large and small x. Taking the limit of
k — 00 allows neglecting the term on the left hand side of equation (28). Using this, as well as
(f(®)f(0))eq = B~'T'(Jt]) and equation (35), we obtain, in the limit £ — oo

lim I'(s) = lim s9(s). (37)
KR—00 R—00

Equation (37) is the extension of equation (36) for any s, valid for large . The microrheological setup
corresponding to the limit £ — 00 is the case where the colloidal particle is moving at constant velocity vo. The
dashed line in figure 7, giving the limit for large x, thus corresponds to the microrheological case of driving at
constant velocity. In our simulations, we obtained it by measuring the correlator of forces acting on the tracer
held at fixed position.

In order to address the reverse limit of vanishing trap stiffness, i.e. K — 0, we introduce the particle mobility
() via the Einstein relation [28]

gd 2
t) = ——((x(#) — x(0 . 38
p(t) 2dt<(() (0))eq (38)
Expressing the right hand side in terms of the time derivative of C,,(t), we obtain from equation (31) an equation
for pu(s)
1 1

f(s) = —= = —— + O(k). (39)
sI'(s) + k sI'(s)

In the second equality we expanded for small . (Note that the limitss — 0and x — 0 do not commute). We
thus find [76, 77]

lim '(s) = lim ——. (40)
k=0 k=0 S{L(8)

We thus connected the limit of vanishing trap stiffness « to the mobility 4 of the particle in absence of the trap. In
the language of microrheology, this mobility is found by applying a constant force to the tracer. The second
limiting curve in figure 7 corresponds thus to the microrheological mobility of constant applied force. The curve
in the figure was obtained by measuring the diffusion process of of the tracer in absence of external potential.
Expanding equation (2) for small k and comparing to equation (38) yields the well-known relation [28]

lim £'(0) = !

K—0 BD(0, t — c0) (1)

Figure 8, where we included the corresponding value taken from the limiting curve in figure 7 as a dashed line,
displays this relation. No such relation has been obtained in the opposite limit for k — oo.

We thus conclude that the measurement of linear response coefficients lim,,_, .,y (¢) and lim,,_, 1 (¢) gives
information on the x-dependence of the memory kernel I'(¢) if the effective dynamics of the system is modeled
by alinear generalized Langevin equation.

Note that a related discussion of linear response coefficients was presented in [31] for a system with hard-
sphere interactions. The authors analyze the linear response coefficients of the two extreme modes (constant
force and constant velocity) and demonstrate their difference. Here, however, we aimed at a connection between
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Figure 11. Long-time friction coefficient v = lim,_ ..y () = '(0) = fo ™ dt'T'(¢") of the particle in a slowly moving trap from the
stochastic PT model. Dashed lines give the limiting cases s — 0and £ — 00 as discussed in the main text. The simulation parameters
are provided in table B3.

the linear response coefficients and the friction memory kernel I as frequently used in the description of
effective Brownian dynamics.

Figure 11 shows I'(s = 0) as a function of k, obtained in the stochastic Prandtl Tomlinson model, including
the two limiting cases for large and small .

7.Summary

Combining experimental measurements, analytical computations, and simulations of a stochastic Prandtl-
Tomlinson model, we investigated several equilibrium-properties of a colloidal particle suspended in a
nonlinear bath. Additionally to displacements being non-Gaussian, a nonlinear bath shows up by unexpected
properties of the coefficients of a linearized equation; For example, in a nonlinear bath, the effective friction
memory of the bath can depend on the stiffness of a potential trapping the particle, as has been observed in
molecular simulations [47], or on the mass or bare friction of the colloidal particle. These dependencies are
observed in our experiments, so that the friction memory of the trapped particle varies by more than a factor of
two for trap stiffnesses » ranging from 1.89 uN'm™ ... 7.29 N m~'. The mentioned dependencies are also
demonstrated in an exact analytic expansion of the memory kernel for small times, for the case of Hamilton and
Brownian dynamics.

Linear response theory provides the link between the measurements of the particle in the trap at rest and
microrheological quantities. This allows to determine the limiting forms for the friction kernel for small and
large trapping stiffness, and also connects this discussion to microrheological cases of ‘constant force’ or
‘constant velocity’.

Analyzing several models, we develop a stochastic Prandtl-Tomlinson, which is easy to be evaluated
numerically and which well describes most of the aspects observed in our experimental data. The resulting
parameters of the model are physically plausible, so that this model promises to be useful in analysis of complex
tracer-baths systems.

The observed ‘fluctuation renormalisation’ of linear coefficients, already pointed out by Zwanzig, must be
taken into account when describing nonlinear stochastic systems, and are pronounced for colloidal motion in
viscoelastic solvents. External forces, inertial forces, and forces from a bath, which are strictly independent on a
microscopic level, become dependent on each other in alinearized description.

Colloidal motion in viscoelastic baths, here exemplified by a micellar suspension, provide a new
paradigmatic case of stochastic motion, with various phenomena that go far beyond the well-studied cases of
colloids in pure solvents. It is thus important to develop basic understanding of such systems, and the studies
performed here provide a first step towards systematic investigation and modeling. With the given findings at
hand, future work will address non-equilibrium cases, and investigate how the equilibrium observations and
modeling will determine nonlinear responses and far from equilibrium properties, such as those found
in [45, 46].
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Appendix A. Extraction of Laplace-transformed memory kernel and numerical error

To extract the Laplace-transformed memory kernel I'(s) from numerical (experimental or simulated) data, we use
its unique relation to the position autocorrelation function Cye(s)in Laplace domain given by equation (31) in the
main text. We restrict our analysis of Laplace transforms to the real axis in Laplace domain, i.e. wesetIm[s] = 0.The
Laplace transform of the equilibrium correlation function Co (s) = fo * dtet Cix (1) is computed numerically up
to a truncation time #,,x. The equilibrium correlation function can be typically approximated by a sum of
exponentially decaying function and thus we can approximate the relative numerical truncation error by

I\ " estf (1) dt

Arel(s) tmax) =1- S
j;) e Stf (t)dt

(AD)

where f (t) = e~!/™a is now the exponential decay with the longest relaxation time 7,,,x. By introducing
rescaled variables § = sTyax and fipax = tmax /7 and computing the integrals in equation (A1) analytically, the
relative numerical truncation error takes on a form that does not explicitly depend on 7,

Arel(g) ;max) - eXP(—ﬁ)- (AZ)

The relaxation time of the numerical truncation error in rescaled units is bounded in the interval [0,1] for any
positive real value of §. The important time scales in the studied system under overdamped conditions are set by
the relaxation time in the trap 7,, = -/ k and the relaxation time(s) of the memory kernel, which in the
experiment is typically given by the structural relaxation time 7,. The relative numerical truncation error
converges exponentially to zero as shown in figure A1 and is negligibly small even for small values of § provided
that #,,x is a multiple of the longest relaxation time of the system. While the numerical truncation error is of
negligible significance for simulated data (very long trajectories can easily be created), it might play a role for
experimental data as the measurement time is limited e.g. due to aging effects of the solution.
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Appendix B. Simulation parameters

In this appendix, we provide the simulation parameters used for creation of the figures in section 4 and 6 not
given in the main text.

B.1. Harmonic coupling

Table B1. Simulation parameters for the case of harmonic coupling. #,,,j denotes the
number of trajectories, 71, is the number of time steps dt of a single trajectory, and f.q
is the equilibration time used in the simulation.

K Niraj Nstep dt 5 Y o vl teq
0.1 1.8 - 10° 10° 10722 1 1 10 1 300
1 1.8 - 10° 10° 1077 1 1 10 1 100
10 1.8 - 10° 10° 107%° 1 1 10 1 60
100 1.8 - 10° 10° 1074 1 1 10 1 40
1000 1.8 - 10° 10° 107> 1 1 10 1 20

B.2. Double-well interaction potential

Table B2. Simulation parameters for the double-well interaction potential.

K Miraj Nstep de /8 Y Yo VO d() th
0.1 1.2 - 10* 10° 10722 1 1 10 1 1 300
1 1.2 -10* 10° 10727 1 1 10 1 1 100
10 1.2 - 10* 10° 1077 1 1 10 1 1 60
100 1.2 - 10* 10° 107> 1 1 10 1 1 40
1000 1.2 - 10* 10° 107 1 1 10 1 1 20

B.3. Stochastic Prandtl-Tomlinson model

Table B3. Simulation parameters for the stochastic PT model.

ot Niraj Nstep dr ﬂ Y Yo VO dO teq
0.1 24 -10° 10° 107%° 1 1 10 1 1 100
1 24-10° 10° 1077 1 1 10 1 1 30
10 24-10° 10° 10720 1 1 10 1 1 10
100 24-10° 10° 1074 1 1 10 1 1 5
1000 24 -10° 10° 107>¢ 1 1 10 1 1 4

Appendix C. Comparison between SPT model and experiment with a single set of
parameters

Figure 10 presents the comparison between the SPT model introduced in the main text and the experimental
memory kernel of a wormlike micellar solution upon varying external trap stiffness. As outlined in the

main text, we allowed a slight variation of model parameters to obtain optimal agreement between between
model and experiment (see the main text for discussion and compare table 1). In this appendix, we

want to replot the figure but with a single set of parameters. The result obtained with the parameters for

% = 1.89 uN m™"is shown in figure C1. In this case, the model slightly underestimates the experimental
memory kernel at the second to highest trap stiffness but strongly overestimates it for the highest trap
stiffness.
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Figure C1. Figure 10 replotted with a single set of parameters as obtained for & = 1.89 N m ™" in the main text (see table 1).

Appendix D. Derivation of equation (31) and the fluctuation-dissipation theorem

In this appendix, we derive equation (31) and prove the fluctuation-dissipation theorem by direct calculation for
the overdamped generalized Langevin equation in equation (28). The route presented here is similar to the one
shown in [78] for the underdamped case, but with the presence of an external harmonic field. In equation (28)
the initial preparation of the system has been shifted to the infinite past as is reflected by the lower integration
boundary in the memory integral. In order to directly apply the convolution theorem to equation (28), the
equation of motion needs to be slightly recast according to

j; dsT(t — $)x(s) = —rx(t) + Af (1) + £ (), (D1)

where we introduced a shift of the random force Af (t) = — fo > dsI'(t + s)x(—s). We then obtain the equation

of motion for the position autocorrelation function C,,(t) by multiplying both sides of the equation with x(0)
and subsequently perform an equilibrium average

) AST( — ) Ca(s) = —RCu (1) + (F(DxX(0))eqs (D2)

where we used the abbreviation f (t) = Af (t) + f (¢). In order to reach consistency with the Mori equation
[56] (where the system is prepared at ¢+ = 0 in a certain initial configuration), we require the relation

<f(t)x(0)>eq - O,i.e.
(f()x(0))eq = fooo dsT(t + 5)Cre(—5). D3)

By Laplace transforming equation (D2) together with this relation, we derive equation (31) where the bath is
prepared in thermal equilibrium at # = 0. Replacing the lower integration boundary in the memory integral of
equation (31) by the initial preparation time t = 01is thus at the cost of specifying initial conditions for particle
and bath as was amply discussed in [78].

It can now be shown by direct calculation that equation (28) together with the relation in equation (D3)
implies the correct form of the fluctuation-dissipation theorem

(f1f(0)eq = ks TT (1), t>0, (D4)

and hence correctly describes the equilibrium properties of the Brownian particle. Note that a similar derivation
of the FDT has been presented in [59] for the underdamped case by transforming the Mori equation into Laplace
domain. In our proof no transformation to Laplace domain is necessary. We multiply both sides of equation (28)
with f(0) and perform a subsequent equilibrium average to obtain

0
SOF O = £(FOxO) + [ dT=9)(FO2O): (D3)
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By application of the requirement for the fluctuating force-position correlator in equation (D3), we may write
o) R 0 o) R A
(F(Of 0)eq = fnf ATt + 5)Ce(5) + f dsf AT (=)t — 5 + ) Co (). (D6)
0 —00 0
A partial integration of the first term yields
o] S . .
(OF O)eq = KTOC® = [ ds [ dsT(t + 9T = HCols)
0 0
+ Oods OOds’I‘sl'“t—&—s—&—s’C‘Ms’. D7
Jas [ asmer ) Carls) (D7)

Now using the fact that C,, (0) = kl‘TT in equilibrium and realizing with some algebra that the last two terms
compensate each other, we obtain the form of the FDT in equation (D4).

Appendix E. Linear-response theory of a moving harmonic trap

We want to derive the linear-response relation for the time-dependent friction coefficient y(¢) as defined in
equation (35). We consider a system of a harmonically trapped tracer particle that is arbitrarily coupled to a heat
bath. The position of the minimum of the trap follows a time protocol xy(f) and we ask for its effect on the mean
position of the tracer particle. The time-dependent external potential then reads

%m:%mx—mﬁﬂ (E1)

For small dragging velocities xo(t) = j(‘) "t vo(¢") we may linearize the perturbation Hamiltonian
Hpert (t) = —rxvotd(t) + O(), (E2)

where 6(7) is the Heaviside step function, and we assumed the perturbation to be constant over time and switched
onatt = 0. Directapplication of the general form of the FDT yields [28]

|
X)) =8 fo e’ (< O)x(t — 1)eq 0. (E3)
By means of partial integration and the fact that (x?).; = kBTT in equilibrium we then obtain
t
(x) () — vt = —ﬁm/ofol dt’ (x(0)x(t"))eq- (E4)

From this relation equation (35) follows immediately.
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