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The test of understanding graphs in kinematics (TUG-K) has widely been used to assess students’
understanding of this subject. The TUG-K poses different objectives to the test takers such as (1) the selection
of a graph from a textual description, (2) the selection of corresponding graphs, and (3) the selection of a
textual description from a graph. Whether test takers follow these task requirements is usually inferred from
evaluating the test scores as correct or incorrect, yet the process of how students actually interact with the
different tasks remains unknown. Recent studies have shown that eye tracking can provide rich insight into
student’s interaction with multiple-choice tasks. In the current work, we analyzed the eye movement patterns
of N ¼ 115 high school students while solving the TUG-K. Each question was divided into a question
area (Q) and an option area (O), then gaze transitions between Q and O and between different options
were calculated. A cluster analysis using the transition metrics revealed three item groups, containing the
aforementioned objectives of the items. The clusters remain stable for different subsamples of our dataset, for
instance, considering only the correct or only the incorrect responses, or considering high- or low-confidence
responses. We conclude that eye movements can reflect task demands on a procedural level well beyond
the classical methods of evaluating test scores, eventually making eye tracking an additional method for
item analysis that can be utilized to confirm or explore test and item structures.
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I. INTRODUCTION

Since the development of the Force Concept Inventory
(FCI) [1], the design and use of research-based distractor-
driven multiple-choice items has accelerated. The PhysPort
collection comprises more than 90 research-based assess-
ments for introductory and upper-level physics concepts,
scientific reasoning, problem solving, or student attitudes
and beliefs [2]. The methodologies utilized to create and
evaluate these assessments include student interviews, expert
reviews, and statistical analysis of the instruments’ psycho-
metric properties. However, the way in which the test
participants visually interact with the tasks has hardly been
taken into account so far, especially not for the purpose of a
systematic instrument or item analysis. Previous studies—
one using the FCI, the others using the test of understanding
graphs in kinematics (TUG-K) [3]—have examined the test
takers’ visual attention distribution on the stems and options

of the test items [4–7]. In both studies, the domain experts
not only achieved better test scores, they were also more
efficient and effective in distributing their visual attention
to the distractors by avoiding naive or intuitive ideas (i.e.,
alternative conceptions) and focusing on the correct alter-
natives. Both studies showed that using a subject’s eye
movements can provide insight into elements of their
performance beyond simple totals of correct and incorrect
responses. Furthermore, the analysis of eye movements can
reveal whether students approach test items in problem-
solving mode rather than merely recalling declarative
information [8,9].
Here, we demonstrate that capturing students’ visual

attention while solving (physics) concept tests also has the
potential to confirm test and item structures at the level of
visual behavior. Particularly for the different item formats
of the TUG-K, visual attention can provide information on
whether the items are processed as intended by the test
makers, for example, whether test takers actually compare
the different graphs in the options.

II. STATE OF RESEARCH

The TUG-K, introduced by Beichner in 1994 [3], has
become one of the most widely used tests to date designed
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to evaluate students’ understanding in kinematics. It
addresses several objectives that are summarized in
Table I. In its recently modified version 4.0 [10] the test
comprises 26 items that were created based on the
extensive research on student difficulties with graphs of
position, velocity, and acceleration versus time. Besides
the mathematical evaluation of kinematic quantities from
a graph (objectives 6 and 7 in Table I), the items pose
various demands on the test takers, especially to organize
and integrate the information that is presented. Some
items start from a textual description and require the
student to select a graph (objective 2), or vice versa
(objective 4), while other items require a mapping
between two corresponding graphs (objective 3). The
task objectives, for which such selection processes are
central, are especially accessible to an eye-tracking
analysis. The students must integrate different information
from the questions and options, and the eye movements
can reflect these integration processes. All TUG-K items
will be included in our analysis; however, we are par-
ticularly interested in the attentional patterns when the
test takers are facing the demands postulated in objectives
2–4. As we show in the next section, some eye-tracking
studies already exist for multiple-choice tests in physics
education research (PER); however, a grouping of test
items based on apparently similar requirements has not yet
been done.

III. CAPTURING VISUAL ATTENTION
WITH EYE TRACKING

In various PER studies, visual attention was investigated
to gain process-related insights into problem solving. Most
recently, Susac et al. investigated the students’ attentional
distribution on optical interference and refraction patterns
that were presented as response options in multiple-choice
tasks [11]. They evaluated dwell times on the different
options and correlated them with response accuracy. The
test takers attention on the different answer options was
also important in the study by Han et al. who found that
students pay a lot of attention to wrong options despite
correct answers [4]. They concluded that alternative force
conceptions are persistent [4]. In a study on the TUG-K, we

also found that although attention to popular (wrong)
options decreases with increasing expertise, it is still
present [5]. The early studies from Madsen et al. [12],
the recent studies from Viiri et al. [13], and the studies from
Klein et al. [14] should also be mentioned in this context.
In these studies, students’ attention on different response
options were used, again evaluating fixation counts or visit
durations (viewing times). When multiple-choice tasks are
being processed, the attention naturally changes between
the item stem and response options, and oftentimes the
different response options are considered. Therefore, it is
surprising that transitions have not been considered in the
studies mentioned. A recent investigation by Viiri et al.
examined the number of transitions from the stem to the
options when solving multiple-choice problems including
different representations (see, e.g., text and graphs) [15].
With a rather small sample size (N ¼ 8), the study
indicated that the transitions between the text (stem) and
the graph (options) were different for students who prefer
either the text or graph representation. They interpreted the
transitions between the question and the options as the
number of times a student must reread the stem for
connecting it to the options and how difficult (or easy) it
is to remember the stem. The transitions between the
different options were related to decision-making processes
and comparisons between different options. Especially
when different forms of representations such as text and
diagrams have to be integrated with each other, as is the
case with the TUG-K, transitions can provide information
about the students’ coordination behavior [16]. Because
the item objectives listed in Table I involve highly visual
processes (e.g., selecting and integrating information), the
goal of our study is to further exploit eye tracking as a
method for item analysis on a behavioral level, particularly
using transition metrics that reflect an important aspect of
the test takers response process. By gathering eye gaze data
from a exceptionally large sample (compared to other eye-
tracking studies [17]), we aim to answer the following
research questions. (1) Do eye gaze transitions based on
item stems and options reveal task objectives for TUG-K
items? (2) If so, do we find stability of the result regarding
different subsamples, for example, considering only correct
answers?

TABLE I. Overview of TUG-K item objectives and representational formats.

Item format (Question, Options) Items Objectives

Text → Graph 1, 23 (1) Identify a graph with greatest change in a variable
9, 12, 20, 22, 26 (2) Select a graph from a textual description

Graph → Graph 11, 14, 15, 21 (3) Select corresponding graph from a graph

Graph → Text 3, 8, 17, 24, 25 (4) Select a textual description from a graph
10, 19 (5) Establish the procedure to determine the change of a variable

Graph → Value 2, 5, 6, 7, 13, 18 (6) Evaluate the slope of a graph
4, 16 (7) Evaluate the area under the curve
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IV. METHODS

The data were collected using stationary eye-tracking
systems installed in the schools’ libraries.
Participants and data collection.—In total, 115 high

school students (58 female and 57 male, all with normal or
correct-to-normal vision, all German native) took part in
the study. At the time of the test, the subject kinematics was
completed in all classes.
Material.—The items of the latest version of the TUG-K

were presented to the students in the original order of the
test in German. Besides gathering students’ responses, their
response confidence was assessed using a four-point rating
scale for each item.
As reported by the test constructors, the Kuder-

Richardson reliability index exceeds the desired benchmark
of 0.7 for group measures (α ¼ 0.88 for the modified
version) and the average point-biserial coefficient is
r ¼ 0.50 [10]. For our dataset, we obtained α ¼ 0.90
and r ¼ 0.47, and the students’ mean test score and
standard deviation were (59� 25%), ranging from 4%
(1 question correct, 1 student) to 100% (26 questions
correct, 2 students).
Apparatus.—The eye movements were recorded using a

Tobii Pro X3-120 stationary eye-tracking system, operating
with an accuracy of less than 0.40° of visual angle and a
sampling frequency of 120 Hz. An eye movement was
classified as a saccade (i.e., in motion) if the acceleration of
the eyes exceeded 8500°=s2 and velocity exceeded 30°=s.
The average distance between the eyes of the students and
the screen was 62 cm.
Data preparation.—For each item, two areas of interest

(AOIs) were defined; see Fig. 1. The Q-AOI covers the
question (item stem) which consists of text or a graph. The
O-AOI covers all (five) answer options, consisting of
written statements, values, or graphs. The O-AOI was
divided into five smaller AOIs, each covering the single
choices, for calculating the transitions between different
answer options. Figure 1 also illustrates the eye movement
data from one participant.

Cluster analysis.—To identify item groups, a hierarchi-
cal cluster analysis using agglomerative methods based on
the squared Euclidean distance was performed [18], taking
into account two measures of eye movements: the tran-
sitions between the question and options, and the transi-
tions between different options. To select the method of
clustering, the agglomerative coefficient was calculated,
indicating the strength of the clustering structure. To select
the number of clusters, the average silhouette approach was
used [19]. The cluster analysis was conducted via the
R-package cluster (version 2.1.0) [20], visualized with
FACTOEXTRA [21], and two dendrograms were compared
using DENDEXTEND [22]. For the latter, the quality of the
alignment of two dendrograms can be quantified by the
entanglement measure, ranging from 0 (no entanglement)
to 1 (full entanglement). A lower entanglement coefficient
corresponds to a good alignment [22].

V. RESULTS

The Ward method was assessed to provide the strongest
cluster structure, yielding an agglomerative coefficient of
0.95, and outperforming other agglomerative methods
(average linkage 0.87, single linkage 0.80, complete link-
age 0.91). The results of hierarchical clustering are pre-
sented in a dendrogram; see Fig. 2. The bottom column
(26 nodes) represents the initial data (items), and the
remaining nodes represent the clusters to which the items
belong, with the vertical lines representing the distance
(dissimilarity). The height of each node in the plot is
proportional to the value of the intergroup dissimilarity
between its two daughters. Inspecting the dendrogram, we
find a three-cluster solution that was also confirmed using
the average silhouette approach. The first cluster (referred
to as cluster A hereafter) includes the items 1, 9, 12, 20, 22,
23, and 26, the second cluster (cluster B) includes the items
11, 14, 15, and 21, and the third cluster (cluster C) includes
all remaining items. The solution is also presented in Fig. 3,
illustrating how the clusters are characterized by the
transition metrics. The cluster A is characterized by items

FIG. 1. Definition of AOIs. The Q-AOI covers the question and
the O-AOI covers all answer choices. The AOIs that cover single
options are not shown for the sake of clarity.
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FIG. 2. Dendrogram illustrating the arrangement of the clusters
produced by the hierarchical cluster analysis using the Ward
method.
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with a low number of transitions between question and
options (QO transitions) but high number of transitions
between options (OO transition). The items in cluster B
have both high QO and OO transitions, and the cluster C is
defined by items with low numbers of QO and OO
transitions. In a next step, we used inference statistical
methods to check whether the interaction of OO and QO
transitions exhibits a statistically significant difference
between the clusters. A 2 × 3 analysis of variance
(ANOVA) with type of transitions (QO, OO) as a
within-item factor and cluster (A, B, C) as a between-item
factor was performed. We found a significant main effect of
the factor cluster [Fð2; 23Þ ¼ 31.5, p < 0.001, η2p ¼ 0.73]
and a significant interaction between cluster and transition
type, Fð2; 23Þ ¼ 50.6, p < 0.001, η2p ¼ 0.82.
Note that all data were included in the analysis, regardless

ofwhether the students responded correctly or incorrectly. In
a next step, the transition metrics were additionally calcu-
lated using only correct and incorrect responses to the
questions, and the same procedure as described above
was applied. In the SupplementalMaterial [23], two dendro-
grams are presented side by side, with the labels connected
by lines. The entanglement between both solutions is very
low (0.08), meaning that the dendrograms are very similar.
For the incorrect responses, also a three-cluster solution was

obtained (entanglement 0.08) with only one item (21) being
assigned to two different clusters. As above, the 2 × 3
ANOVAs for correct and incorrect responses yield strong
interaction effects between cluster and transition type; see
Table II. That is, the three clusters can be distinguished
significantly using the QO and OO transition metrics.
Last, we also used the confidence responses to restrict our

dataset and to recalculate the transition means per item.
Because the students reported their response confidence on a
rating scale, we first performed an item-based median split
into low- and high-confidence responses, aggregated the
transitionmetrics for the resulting datasets accordingly, and,
finally, used cluster analysis as before. The three-cluster
solution remained stable, and the ANOVA results are
presented in Table II, lining up with the results of the other
data splits. So, independent of the split criterion, we find that
the number of transitions differs between the clusters, and
there is an interaction between transition type and cluster.

VI. DISCUSSION

Cluster A includes the items that belong to the objectives
1 and 2 in Table I, starting from a text and offering graphs
as options. When solving these items, students perform
many transitions between the different options, and few
transitions between the question and the option. If a graph
has to be selected from a set of many graphs, then these
graphs were compared more often with each other than
textual descriptions or values were compared with each
other, possibly due to different problem-solving heuristics.
Additional verbal data are required to finally support this
conclusion. In general, transitions are performed for com-
parison purposes and for relating given information to each
other [15]. For comparing graphs, the pieces of information
have to be visually encoded piece by piece, resulting in
more transitions based on the limited capacity of the visual
working memory [24]. In line with this reasoning, adding
graphs to the question should increase the number of
transitions between question and the options. And indeed,
cluster B is classified by the highest number of transitions
between the question and the option, and between different
options. Cluster B includes all items that require the
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FIG. 3. Characterization of the three clusters emerging from
cluster analyses based on eye movement transition measures
during problem solving.

TABLE II. Number of eye movement transitions for subsamples of the dataset and ANOVA results.

Cluster 2 × 3 ANOVA statistics

A B C Transition type Cluster Interaction

Data included QO OO QO OO QO OO F p η2p F p η2p F p η2p

All responses 6.3 17.5 22.1 14.2 11.0 6.6 0.2 n.s. � � � 31.5 0.000 0.73 50.6 0.000 0.81
Correct responses 6.1 17.3 20.2 13.7 11.0 6.4 0.0 n.s. � � � 23.1 0.000 0.67 39.2 0.000 0.77
Incorrect responses 6.5 17.7 26.2 15.7 11.3 7.0 2.5 n.s. � � � 29.0 0.000 0.72 63.6 0.000 0.85
High-confidence responses 5.2 14.8 14.8 10.0 8.3 5.0 0.6 n.s. � � � 19.4 0.000 0.63 51.0 0.000 0.82
Low-confidence responses 6.7 18.3 24.1 15.4 12.4 7.4 0.6 n.s. � � � 29.2 0.000 0.72 47.3 0.000 0.80

n.s. stands for (statistcally) “not significant,” indicating p-values > .05.
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selection of a corresponding graph from a graph (objective
3 in Table I). The graphs in the answer choices are often
similar in several sections, so that a comparison of each
individual graph in the answer choices with the graph in the
question is necessary. Accordingly, this process requires an
increased number of visual transitions, or integration
processes, between the graph in the question and the graph
in the answer choices. The cluster C items show the fewest
transitions between the question and the answer choices.
All items in this cluster start from a graph and require text
or values as outputs. The cluster analysis did not distin-
guish between different objectives (4)–(7), that means that
the transitional behavior is similar between evaluating
values and choosing a textual description. When evaluating
the graph, for example, calculating slopes or areas, the
visual attention is typically focused on the graph to apply a
procedure, and after evaluation, the options are considered
to match the (mental) evaluation. Note that when restricting
our analysis to the items that reflect the selection processes
given in objectives 2,3, and 4 (items 3, 8, 9, 11, 12, 14, 15,
17, 20, 21, 22, 24, 25), we find them separated in the three
different clusters.
Interestingly, we note from Table II that there is a

difference regarding the transition metrics between high-
and low-confidence responses, and the difference is much
bigger than between the correct and incorrect responses.
Concerning cluster A, for instance, the high-confidence
responses were related to 5.2 QO transitions and 14.8 OO
transitions (on average), whereas the low-confidence
responses were related to 6.7 QO and 18.3 OO transitions,
thus reflecting differences of þ29% and þ23.6%, respec-
tively. The gap between correct and incorrect responses is
consistently smaller. This result indicates that gaze tran-
sitions are more strongly correlated with confidence than

with accuracy, a notable result that can be explored in
follow-up studies.

VII. CONCLUSION

Here, two transition measures for TUG-K items were
determined based on a comparable huge dataset of
N ¼ 115 high school students. The measures were sub-
jected to a cluster analysis, yielding three statistically
separable clusters, A, B, and C, that reflect different
combinations of graphs and text or values in the questions
and options. The clustering structure has also been proven
stable compared to the evaluation of partial datasets, thus
allowing an interpretation predominantly independent of
the sample. Thus, the eye movements reflected task
demands on a procedural level well beyond the classical
methods of evaluating test scores, eventually making eye
tracking an additional method for supporting (normative)
test structures and item analysis. The AOIs are based on
superficial test structures (questions and options) making
this method suitable to be generalized to other inventories.
Deeper insight into students’ responses, however, likely
requires a detailed look at the actual content that is
presented in the questions and options beyond the level
of these surface features.
We see the application of cluster analysis to eye-tracking

data in general as a promising method to gain insight not
only into different types of learners or reading strategies,
but also into the procedural requirements of task types.
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