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Abstract: Regulatory SNPs (rSNPs) are a special class of SNPs which have a high potential to
affect the phenotype due to their impact on DNA-binding of transcription factors (TFs). Thus,
the knowledge about such rSNPs and TFs could provide essential information regarding different
genetic programs, such as tissue development or environmental stress responses. In this study, we
use a multi-omics approach by combining genomics, transcriptomics, and proteomics data of two
different Brassica napus L. cultivars, namely Zhongshuang11 (ZS11) and Zhongyou821 (ZY821), with
high and low oil content, respectively, to monitor the regulatory interplay between rSNPs, TFs and
their corresponding genes in the tissues flower, leaf, stem, and root. By predicting the effect of
rSNPs on TF-binding and by measuring their association with the cultivars, we identified a total
of 41,117 rSNPs, of which 1141 are significantly associated with oil content. We revealed several
enriched members of the TF families DOF, MYB, NAC, or TCP, which are important for directing
transcriptional programs regulating differential expression of genes within the tissues. In this work,
we provide the first genome-wide collection of rSNPs for B. napus and their impact on the regulation
of gene expression in vegetative and floral tissues, which will be highly valuable for future studies
on rSNPs and gene regulation.

Keywords: rSNPs; transcription factor; multi-omics; gene expression; random forest; DOF

1. Introduction

With rapidly evolving genomic sequencing technologies, the number of identified
single nucleotide polymorphisms (SNPs) is increasing at a remarkable pace. Due to their
straightforward functional interpretation, SNPs located in the protein coding regions
of the genes are mostly in the focus of research. However, results from genome-wide
association studies (GWAS) reveal that the vast majority of phenotype-associated SNPs are
located in intergenic and intronic regions [1,2]. Many of these non-coding SNPs are located
within the regulatory regions, such as the promoter regions, and could hence influence
the gene expression by changing the binding affinity of regulatory proteins. In recent
years, these so-called regulatory SNPs (rSNPs) have come into the focus of research and the
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underlying mechanisms resulting in a differential gene expression are closely studied for
many specific traits and diseases [2,3]. It is well known that the differential gene expression
in different tissues and under certain environmental conditions is governed by the binding
of transcription factors (TFs) to specific DNA-sequence motifs, the transcription factor
binding sites (TFBSs). By altering the sequence within such a TFBS, an rSNP can have a
severe effect on TF binding and, hence, could change a gene’s expression rate [2–4]. In
plant sciences, previous studies identified different putative rSNPs affecting different traits,
as e.g., seed shattering in rice [5], maize rough dwarf disease [4], grain weight in wheat [6],
or vicine and convicine content of Vicia faba [7]. Until now, there are several tools predicting
a SNP’s impact on TF binding (e.g., [3,8–12]), but the Regulatory Sequence Analysis Tool
(RSAT) [11] is one of the few tools supporting plants. In RSAT, users have the possibility to
retrieve specific genetic variants with the corresponding flanking sequences and predict
their impact on TF binding in a variety of organisms [11]. However, all these studies and
tools concentrate on single regulatory variants and do not cover a systematic analysis
to obtain a genome-wide prediction of rSNPs. Notwithstanding that the importance of
rSNPs and their regulatory power is well known, no such systematic analysis including a
genome-wide prediction of rSNPs for Brassica napus L. exists.

As an important oilseed crop, B. napus is grown and used worldwide for its oil and
fodder production where the oil is widely used for human consumption and biofuel
production, while the rapeseed meal remaining after oil extraction can be used as high-
protein animal fodder [13,14]. B. napus has gained global importance due to an intensive
breeding program focusing on the reduction of nutritionally undesirable components in
the oil and fodder and thus, enabled the production of varieties with both low erucic acid
and glucosinolate content [15]. Today, improving the oil content is an important breeding
goal and in this context the resistance to several stresses is a relevant objective [13,16,17].
The oil is stored within the seeds as triacylglycerols (TAGs) in oil bodies, but the TAG
synthesis takes place in the plastids through a variety of different interacting metabolic
pathways and regulatory processes [18]. However, such pathways as well as the underlying
transcriptional machinery controlling the oil content and -quality could vary across different
B. napus cultivars [19,20]. Hence, the investigation of such biological processes is an
important task to assess the genetic programs of two cultivars: (i) Zhongshuang11 (ZS11)
characterized by a double-low accession (00, low erucic acid and low glucosinolate) and
a high oil content and; (ii) Zhongyou821 (ZY821) with double-high accession (++, high
erucic acid and high glucosinolate) and low oil content [19].

To unravel such genetic programs in both B. napus cultivars, we computationally
identified the regulatory processes controlling specific biological functions associated with
oil content, plant growth, or responses to environmental stresses. For this purpose, we
used multi-omics data including genomics and transcriptomics data of two cultivars and
plant proteomics data to identify rSNPs, important genes and transcriptional regulators
orchestrating specific genetic programs in different tissues and thus, leading to phenotypic
differences of both cultivars. To this end, mainly focusing on the vegetative and floral
tissues such as flower, leaf, stem, and root, we first identified differentially expressed
genes (DEGs) between both cultivars in these four tissues. Second, by analyzing 670,028
high-quality SNPs, we obtained a genome-wide collection of rSNPs and their predicted
consequences on the binding affinity of the TFs. Similar to our previous studies [21,22],
we applied a random forest (RF) feature selection approach to assess the importance of
rSNPs with respect to the phenotype. Subsequently, we determined tissue-specific DEGs
harboring those important rSNPs within their promoter region, whose transcription is
likely to be affected by the consequences of rSNPs on TF binding. By causing a disruption
of a TFBS or the creation of a new TFBS, rSNPs can strongly influence the binding affinity
of TFs and, thus, can lead to the differentiation of a wide range of genetic processes in both
cultivars like their oil content, tissue development, or stress-resistance mechanisms [13,23].
Our results show that the consideration and systematic analysis of multi-omics data
(genomics, transcriptomics, and proteomics) of two different B. napus cultivars provides:
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(i) essential information about functions of transcription factors involved in the regulation
of transcriptional activity of vegetative and floral tissues; and (ii) novel insights into the
regulatory programs controlling oil content and -quality underlying both cultivars.

2. Results and Discussion
2.1. Differentially Expressed Genes

The comparison of the ZS11 (high oil content, double-low cultivar) against the ZY821
(low oil content, double-high cultivar) in the four tissues revealed several differentially
expressed genes, of which the up-regulated DEGs refer to genes with a significantly higher
expression in ZS11 than in ZY821, whereas down-regulated genes are significantly higher
expressed in ZY821 than in ZS11 (Table 1, the full lists of DEGs is given in Table S1). The
overlap of the four tissues showed that 171 and 252 DEGs were found up- and down-
regulated in all four tissues, respectively. To assess the underlying biological processes,
we provide the Gene Ontology (GO) terms and treemaps for the respective up- and down-
regulated DEG sets in Table S2 and Figure S1.

Table 1. Numbers of differentially expressed genes (DEGs) in four tissues based on the comparison
of the cultivars Zhongshuang11 (ZS11) against Zhongyou821 (ZY821). Up-regulated and down-
regulated DEGs are defined as log2 fold change >2 and log2 fold change <−2 and an adjusted p-value
threshold of 0.05, respectively.

Tissue No. of DEGs No. of
Up-Regulated DEGs

No. of
Down-Regulated DEGs

Flower 11,442 5221 6221

Leaf 3234 1486 1748

Stem 4198 2510 1688

Root 2318 1448 870

2.2. Transcription Factor Binding Site Enrichment Analysis

For understanding the expression behavior of DEGs regarding their up- or down-
regulation, the knowledge on the TFs, which are involved in controlling the regulatory
programs of these genes, is important to explain gene expression changes between both
B. napus cultivars. Applying TFBS enrichment analyses, we assessed the potential roles of
TFs in the regulation of the DEGs based on the over-representation of their TFBSs in the
promoter regions. In the following, we refer to a TF as enriched in a tissue, if its respective
TFBS is significantly over-represented in the set of promoter sequences of the DEGs in that
tissue. The results of these analyses show that the number of enriched TFs is remarkably
different between tissues: While the largest number of enriched TFs was identified in the
flower tissue (74), there was only one enriched TF in the root tissue. We further found 27
and 10 TFs enriched in the leaf and stem tissues, respectively (Figure 1; the complete list of
enriched TFs is given in Table S3).

Interestingly, Figure 1 shows that the number of unique enriched TFs found for flower
is clearly higher than those of the remaining tissues. In this regard, the transcription factor
GATA19 found only for the root tissue is a member of GATA-type zinc finger proteins,
which are known to be involved in light-mediated gene expression and nitrogen-dependent
stress response [24,25].
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Figure 1. Venn diagram for the enriched transcription factors (TFs) found for the tissues flower, leaf,
stem, and root of B. napus (visualized with http://bioinformatics.psb.ugent.be/webtools/Venn/).

Furthermore, the TCP family members TCP16 and ARALYDRAFT_897773 (also
known as TCP4) were identified as enriched only in the leaf tissue. As shown in pre-
vious studies, TCP genes participate in the developmental control of plant form as, e.g.,
flower and leaf shape or shoot branching by regulating cell proliferation and they have
been shown to be highly expressed in leaf [26,27].

Moreover, a minority of the TFs (PIF1, PIF7, bHLH74, UNE10, OJ1058_F05.8, and
BEH2) are simultaneously enriched for flower, leaf, and stem tissues. Besides the two
phytochrome interacting factors (PIF1 and PIF7), the factors PIF3, PIF4, and PIF5 are en-
riched only in flower and leaf. The PIFs belong to one of the largest classes of plant TFs,
the basic/helix-loop-helix (bHLH) proteins [20], and they are known to repress photomor-
phogenesis in darkness by promoting the transcription of genes which positively regulate
cell elongation in A. thaliana [28]. In particular, while PIF1 has been reported to negatively
regulate seed germination in response to light and hormone signaling [29,30], PIF4 and
PIF5 are regulators of de-etiolation [31], and PIF7 is a main regulator of stem elongation in
light [32].

The factor unfertilized embryo sac10 (UNE10) is another member of the bHLH class.
It is supposed to inhibit far-red light signaling by interacting with phytochromes [33] and
to play an important role during the fertilization of ovules by pollen in A. thaliana [34].

Several BES1 (BRI1-EMS-SUPPRESSOR1) family members, in particular BEH2, BEH3,
BEH4, and BZR1, are enriched in flower and leaf and/or stem tissues, and are known to
regulate brassinosteroid-mediated genes. Different BES1-family members are suggested
to regulate different auxin and jasmonic acid-related genes, resulting in enhanced growth
and vigor [35,36] in B. napus and A. thaliana and to be involved in stress resistance such as
salt and drought stress in B. napus and B. rapa [37,38].

Interestingly, we found members of the TF families MYB (or MYB-related; MYB46,
MYB98, MYB119, MYB59, and MYB111), DOF type C2H2 zinc finger factors (DOF4.2,
OBP3, AT2G28810 (DOF2.2), AT5G02460 (DOF5.1), and AT5G66940 (DOF5.8)), and NAC
(NAC080, NAC028, NAC025, NAC058, NAC055, NAC043, NAC083, and T11I18.17) en-
riched exclusively in flower. The MYB TFs are involved in several processes as, e.g.,
response to biotic and abiotic stress, development, and differentiation; in particular, MYB46
is involved in secondary wall and fiber biosynthesis; MYB98 and MYB119 are important reg-
ulators of female gametophyte development; MYB59 is involved in cell cycle progression,
and MYB111 plays a crucial role in flavonol biosynthesis in A. thaliana [39–42].

On the other hand, the DOF proteins are characterized by a highly conserved DNA
binding domain (DOF domain) and are present in many different plant species [43]. DOF
proteins play a role in several biological processes as, e.g., flowering time, seed develop-
ment, and responses to hormones and abiotic stress [43–45]. Interestingly, He et al. [44]

http://bioinformatics.psb.ugent.be/webtools/Venn/
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found the Arabidopsis DOF5.8 to be an upstream regulator of a gene encoding an NAC
family member in response to drought and salt stress.

The NAC transcription factors make up one of the largest plant-specific TF families
with specific functions regarding plant development, biotic stress response, and response
to environmental stress [46]. Research performed in B. napus revealed upregulation of NAC
genes after mechanical wounding and infection with Sclerotinia sclerotiorum. In the same
way, NAC genes were upregulated after the induction of a cold shock [47]. Interestingly, we
have shown that members of TF families such as GATA, DOF, NAC, or MYB are important
regulators of genes with a monotonic expression pattern in both cultivars in the seed tissue
by forming TF co-operations [48].

2.3. Analysis of Regulatory SNPs

Today it is well known that the binding affinity of TFs can be affected by rSNPs to a
great extent and, hence, either enable or repress the protein–DNA interaction. In order to
be able to explain the observed differences in the expression of the DEGs, we investigated
the role of rSNPs causing such severe effects on TF binding. Taking the initial 670,028
high-quality SNPs into account, we determined 41,117 of them as rSNPs due to their
genomic positions in the promoter regions of B. napus genes and their consequences of
either “Gain of TFBS” or “Loss of TFBS”. A closer look at these rSNPs reveals that 5847
(flower), 1604 (leaf), 2174 (stem) and 1240 (root) rSNPs are related to the DEGs (the full list
of rSNP predictions can be found in Table S4). Interestingly, a direct comparison of the
rSNP and DEG numbers shows that approximately 50% of DEGs contain on average one
rSNP within the promoter region (Figure 2).

A) B)

Figure 2. Overlap of the DEGs in (A) and rSNPs in (B) for the four investigated tissues (visualized
with http://bioinformatics.psb.ugent.be/webtools/Venn/).

To gain a better insight into the distribution of the rSNPs in the promoter regions,
we investigated their genomic positions relative to the transcription start sites (TSS). The
results of this analysis indicate that while there are fewer rSNPs around the TSS, we
observed a tendency of increasing rSNP numbers in the remaining upstream promoter
regions (Figure 3). This finding goes in line with the observation of Triska et al. [49], who
performed a similar analysis based on the SNP distributions in the promoters of rice.

http://bioinformatics.psb.ugent.be/webtools/Venn/
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Figure 3. Distribution of rSNPs relative to the transcription start sites (TSS) of the corresponding
genes. Position 0 denotes the position of the TSS.

2.4. Analysis of Important Regulatory SNPs

Moreover, we assessed the importance of rSNPs regarding their significant association
with oil content of both cultivars and identified 1141 important rSNPs (the complete list of
important rSNPs is given in Table S5). The consideration of the important rSNPs in the DEGs
of the tissues consequently results in 245 important rSNPs in the flower, 68 in the leaf, 142 in
the stem and 82 in the root tissue. Surprisingly, the distribution of important rSNPs relative
to the TSS (see Figure 4) shows a behavior in the promoter regions, that is remarkably
different from that of rSNPs (Figure 3). This finding suggests that the important rSNPs do
not follow a certain pattern but rather spread throughout the considered promoter regions.
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Figure 4. Distribution of important rSNPs relative to the transcription start sites (TSS) of the corre-
sponding genes. Position 0 denotes the position of the TSS.
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2.5. DEGs Harboring Important rSNPs in the Promoter Region

In order to assess the regulatory impact of important rSNPs on the regulation of the
DEGs and, hence, to explain their differential expression status, we identified the regulatory
interplay between rSNPs, TFs and their corresponding DEGs of interest.

As a result, we found 145, 44, 81, and 50 DEGs harboring important rSNPs in the
promoter region for flower, leaf, stem, and root, respectively.

To gain a deeper insight into the functions of these genes, we identified their related
enriched GO terms as well as the pathways (Table S6). Regarding enriched GO terms of
biological processes, we could observe DEGs related to protein folding, alcohol, lipid or
phytosteroid biosynthesis in leaf and a variety of genes related to oxidation–reduction
processes in the leaf and flower tissue.

Interestingly, the gene BnaA06g33360D occurs in the flower and stem set of DEGs
harboring important rSNPs, which leads to the significant enrichment of the monoterpenoid
biosynthesis pathway [50]. Monoterpenoids are volatile secondary plant products that
could play a role in olfactory cues for pollinating insects in A. thaliana [51]. Surprisingly,
the gene BnaA06g33360D, which presumably codes for a monoterpene synthase, is down-
regulated in flower tissue, while it is up-regulated in stem tissue.

In the gene set of the leaf tissue, several KEGG pathways [50] related to fatty acid
metabolism were enriched. Especially the gene BnaA04g26960D, which is significantly up-
regulated in the leaf tissue, is represented in the enriched pathways fatty acid metabolism,
fatty acid biosynthesis, fatty acid degradation or peroxisome. BnaA04g26960D, also called
BnaLACS1-4, is a member of the long-chain Acyl-CoA synthetase (LACS) family of genes,
which have been shown to be involved in fatty acid biosynthesis in chloroplasts and seed
oil accumulation in B. napus [52]. Furthermore, several LACS genes showed differential
gene expression in multiple tissues in the comparison between high and low oil content
B. napus cultivars [52]. Within the promoter region of BnaA04g26960D, we identified one
important rSNP (chromosome A04, position 19042835, C → T) which causes a “Gain of
TFBS” for the binding site of MNB1A (the maize DOF1 TF) 90 bp downstream of the TSS.
More specifically, this means the DOF1 binding site is not present in the reference allele (C),
while DOF1 binding is likely to be enabled by the alternate allele (T). The importance of
DOF-mediated gene regulation has already been shown in the results of TF enrichment
(see Section 2.2). Interestingly, the soybean DOF proteins GmDOF4 and GmDOF11 have
been shown to directly induce LACS genes, and also increased the fatty acid content in
transgenic Arabidopsis seeds [43,53]. In cotton, an overexpression of the GhDOF1 gene led
to an increase of lipid levels in the seeds [43,54]. These results suggest that this important
rSNP might play an important role in the DOF1-mediated expression rate of the LACS gene
BnaA04g26960D and, hence, might regulate the fatty acid content in B. napus.

The gene BnaC08g26140D, present in the significantly enriched pathways fatty acid
metabolism, biosynthesis of unsaturated fatty acids and fatty acid elongation of the leaf
gene set, encodes a Trans-2,3-enoyl-CoA reductase (ECR). This enzyme is involved in the
synthesis of very-long-chain fatty acids (VLCFAs) which are essential for the synthesis
of cuticular waxes, sphingolipids and Triacylglycerols (TAGs) in B. napus [55]. As an
enzyme of VLCFA synthesis, it is also known to catalyze the fourth reaction of the elongase
complex during erucic acid synthesis [55,56]. Surprisingly, we found the ECR gene up-
regulated in the double-low cultivar with high oil content. One possible explanation for
its up-regulation in the low erucic acid cultivar might be that the synthesized VLCFAs are
precursors for a variety of different lipids in higher plants, such as cuticular waxes [55].

In the promoter region of the B. napus ECR gene, we found three important rSNPs
(hereinafter referred to as ECR-rSNP1, ECR-rSNP2 and ECR-rSNP3), affecting five different
binding sites. ECR-rSNP1 (chromosome C08, position 27619847, G → T) is positioned
−152 bp from the TSS and causes a “Loss of TFBS” for the Arabidopsis response regulator
(ARR10) or response regulator 10 (RR10) binding site. As a cytokin response regulator,
RR10 is involved in cytokinin-mediated signaling pathways and acts, e.g., as negative
regulator of drought response in A. thaliana [57]. In B. napus, it has been shown to be
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up-regulated in leaves under salt stress [58]. The ECR-rSNP2 (chromosome C08, position
27619942, 247 bp upstream of the TSS, A→ G) causes a “Loss of TFBS” for TF DOF4.5
and a “Gain of TFBS” for TF MYB56. The DOF4.5 is another member of the DOF family
of TFs, which is assumed to share regulatory functions in, e.g., shoot branching and seed
coat formation together with other DOF family members in A. thaliana [45]. MYB56 is a
member of the previously described MYB family and is known to be a positive regulator
of seed size and to control seed coat development in Arabidopsis [18,59]. The ECR-rSNP3
(258 bp upstream of the TSS) causes a “Loss of TFBS” for TF DOF4.5 and a “Gain of TFBS”
for ethylene-responsive transcription factor ERF069. Within the AP2/EREBP superfamily
of TFs, ERF069 belongs to the ethylene-responsive element binding proteins (EREBP)
subfamily, which are known to respond to abiotic stress [60]. Liu et al. observed an
up-regulation of ERF069 in response to chromium treatment in A. thaliana [60]. In the
foxtail millet, SiAP2/ERF-069 was up-regulated under drought and salinity stress [61]
and in B. napus and ERF069 was up-regulated under Pi-starvation in 3- and 5-leaf stage
seedings [62].

With this analysis, we identified several interesting tissue-specific DEGs whose regu-
lation is likely to be influenced by the “Loss-” or “Gain of a TFBS” caused by an important
rSNP within their regulatory region. The TFs overlapping these important rSNPs provide a
promising basis for further investigation of their regulatory roles and underlying pathways
that lead to the distinction between the two cultivars.

3. Materials and Methods

Our analysis framework follows the structure shown in Figure 5, i.e., we start with
the analysis of genomics and transcriptomics data to systemically monitor the important
(tissue-specific) regulatory SNPs and TFs regulating the DEGs.

Genotype Phenotype 

Differentially expressed genes

Root

Important rSNPs associated 
with oil content/ -quality 

670,028 SNPs
80,927 genes

Genome wide association analysis 
using random forest 

DEGs harboring 
important rSNPs

High vs. low oil 
content and 
-quality

- SNPs in promoter regions 
- TFBS prediction
- SNPs causing a gain or loss 

of TFBS

41,117 rSNPs

High/low oil 
content and 
-quality 

1141 important rSNPs

2318 DEGs11,442 DEGs

Transcriptome Data  

Flower Leaf Stem

3234 DEGs 4198 DEGs

Tissue-specific 
enriched TFs

Genome data  

Identification of 
rSNPs

Figure 5. Flowchart of the analysis applied in this study.

3.1. B. napus Data Set and Data Preparation

In this study, we use publicly available genomics and transcriptomics data sets of
two B. napus cultivars, which are briefly explained below. Readers who are interested in
learning more about these data sets are kindly referred to the original study [19].



Int. J. Mol. Sci. 2021, 22, 789 9 of 15

3.1.1. Genotype Data

To identify the rSNPs that are likely to be associated with different genetic programs
in two B. napus cultivars, namely Zhongshuang11 (ZS11) with double-low accession (low
erucic acid and glucosinolate, 00) and high oil content and Zhongyou821 (ZY821) with
double-high accession (high erucic acid and glucosinolate, ++) and low oil content, we
analyzed a genotype data set that has previously been used in [19]. Prof. Kun Lu from
the Southwest University, China provided the genotype data set for this study. The raw
sequencing data are available at the BIG Data Center under BioProject accession code
PRJCA000376. The genotype data set comprises 670,028 high-quality SNPs (MAF > 0.05)
for 280 Zhongshuang11 (ZS11) and 133 Zhongyou821 (ZY821) samples. The data set
contains SNPs which are located on the chromosomes A01-A10 and C01-C09 (originated
during hybridization of B. rapa (AA, 2n = 20) and B. oleracea (CC, 2n = 18) [19]) including
80,927 genes.

3.1.2. Transcriptome Data

The RNA-sequencing data of four tissues (flower, leaf, stem, and root) from both culti-
vars (ZS11 and ZY821) with two biological replicates each were generated by Lu et al. [19].
The raw sequencing data were downloaded from the BIG Data Center under BioPro-
ject accession code PRJCA001246. In line with [19], we mapped the filtered reads to
the B. napus reference genome version 4.1 (obtained from [63] and available at https:
//wwwdev.genoscope.cns.fr/brassicanapus/data/) using STAR 2.4.2a [64]. Finally, ap-
plying the htseq-count program [65] to the aligned sequencing reads, we identified the
number of reads (gene count table).

For the identification of differentially expressed genes (DEGs), we applied the DESeq2
tool (R package version 1.24.0) with default settings in the median-of-ratios normalization
method, fold change shrinkage and a significance cutoff of an absolute log2 fold change of 2
and an adjusted p-value of 0.05 [66]. The experimental design of the differential expression
analysis is shown in Table 2.

Table 2. Meta data of the RNA-Seq experiment samples which were used for differential expression
analysis. ZS11 and ZY821 stand for Zhongshuang11 and Zhongyou821, respectively. 00 and ++ stand
for low erucic acid, low glucosinolate and high erucic acid, high glucosinolate, respectively.

Cultivar Oil Quality Oil Content Biological Replicates

ZS11 00 high 2

ZY821 ++ low 2

3.2. Transcription Factor Binding Site Enrichment Analysis in Promoter Sequences

In order to identify transcription factors (TFs) with significantly over-represented
transcription factor binding sites (TFBSs) in the promoter sequences of the DEGs, we
employed the CiiiDER algorithm [67].

However, the selection of the promoter regions is crucial: (i) to avoid the redundancy
between sequences which could lead to the overestimation of some TFBSs [68] (ii) to ad-
dress the inaccuracy of transcription start site (TSS) positions resulting from their imprecise
prediction. To overcome these issues, we followed a similar strategy to those suggested in
previous studies [7,49,68–74] and accordingly extracted two sets of promoter sequences
for each tissue ranging from −500 bp to +100 bp relative to the TSS using the reference
genome version 4.1 and gene annotation given in [63]. While the first sequence set refers
to the promoter sequences of the DEGs (foreground set), the second set contains the pro-
moter sequences of genes having the same GC-content as the foreground set (background
set) [75]. For the generation of background sets, we used the oPOSSUM3.0 [76] web ap-
plication (http://opossum.cisreg.ca/GC_compo/) and selected only sequences that are
not included in the foreground set. Second, following the workflow of the CiiiDER pro-
gram [67], we scanned each sequence by applying the MATCH™ program [77] with a

https://wwwdev.genoscope.cns.fr/brassicanapus/data/
https://wwwdev.genoscope.cns.fr/brassicanapus/data/
http://opossum.cisreg.ca/GC_compo/
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non-redundant plant position weight matrix (PWM) library from the JASPAR database [78]
to detect the potential TFBSs. Finally, comparing the distribution of TFBSs predicted in the
foreground as well as the background promoter sequence set, the enrichment of TFBSs was
assessed (Bonferroni adjusted p-value threshold of 0.01).

3.3. Identification of Regulatory SNPs and Their Importance

Following the regulatory SNP (rSNP) detection method of Heinrich et al. [7], we
selected the SNPs from the genome data which are located in the promoter regions of
B. napus genes and analyzed them to detect their impact on the TFBSs. For this purpose, we
first extracted the flanking sequence of ±25 bp for each selected SNP resulting in a 51 bp
long sequence with the SNP in the central position. Second, we created two copies of the
flanking sequence: One with the reference allele in the SNP position, the second with its
alternate variant. After that, employing the MATCH™ algorithm [77], both sequences were
scanned to predict the TFBSs with their affinity scores. The potential binding affinity of a
TF was quantified by MATCH™ in terms of a matrix similarity score (MSS) ∈ [0, 1], where
a MSS value of 1 denotes a complete match in each position of the TFBS. As suggested
in [67], we removed all TFBS predictions with MSS values <0.85 and which did not overlap
the SNP position in the flanking sequences. Finally, to evaluate the impact of a SNP on the
binding affinity of a TF, we inferred four different types of consequences for each SNP-TFBS
pair: (i) “No Change”: the SNP has no effect on the TF binding; (ii) “Score-Change”: the
binding affinity (i.e., MSS) is changed; (iii) “Loss of TFBS”: a TFBS is only found on the
reference allele, while the TFBS does not occur in the alternate allele; and (iv) “Gain of
TFBS”: the TFBS appears only for the alternate allele. In the following, we define a SNP as
rSNP if it causes a “Gain of TFBS” or a “Loss of TFBS” (consequence iii or iv) for at least
one TFBS.

3.4. Association Analysis Using Random Forests

For the assessment of the importance of single rSNPs, regarding their association to
the B. napus cultivars, we applied a random forest (RF)-based feature selection algorithm
to measure the relative importance of each rSNP for the trait oil content (congruent with
oil quality, see Table 2), following our previous studies [21,22]. In particular, the relative
importance of each rSNP is calculated by applying the Boruta algorithm [79], which is an
RF-based feature selection wrapper for finding all relevant variables in a data set. The
Boruta algorithm assesses important features (in this case rSNPs) with respect to a variable
outcome (in this case oil content) by constructing multiple decision trees based on random
subsets of attributes or features. The pseudo-code for Boruta is given in Algorithm 1.

Using Algorithm 1, in this study, we analyze genotypes of rSNPs to identify their
significant genotype × phenotype association regarding the oil content of the cultivars. In
order to deal with remaining obstacles resulting from the correlations between the SNPs or
random fluctuations involved in the data set, we iteratively applied the Boruta algorithm
(e.g., 1000 times), and considered an rSNP in our further analysis as important if and only
if its importance was confirmed in all analyses. In the following, we refer to those rSNPs as
important rSNPs.
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Algorithm 1 Boruta Algorithm
Input:M: Genotype (rSNPs) data

Input: L: Labels (cultivars)

Output: C: A ranked list of rSNPs based on their importance score

Method:

1: t = 0

2: repeat

3: Mt =M
4: M̂t = shuffle(Mt): Creation of shadow attributes

5: Mext
t = [Mt;M̂t;L]: Matrix (data) concatenation to extend the input data

6: VIS t(Mext
t ) = RF(Mext

t ): Gathering variable importance scores (VIS) using RF classifier

7: V̂IS t = max(VIS(M̂t)): Max. VIS value (in terms of z-Score) for shadow attributes

8: Mc
t =Mext

t [VIS(Mext
t ) > V̂IS t] \ M̂t: rSNPs with significantly higher VIS values > V̂IS

9: Mr
t =Mext

t [VIS(Mext
t ) < V̂IS t] \ M̂t: rSNPs with significantly lower VIS values < V̂IS

10: M =Mt \ [Mc
t ;Mr

t ]: Remove all rSNPs with determined importance from the inputMt

11: Ct = VIS(Mc
t ): Gathering the rSNPs with confirmed VIS

12: t = t + 1

13: until importance of all rSNPs is assigned

14: C = ⋃t
i=1 Ci

4. Conclusions

Transcription factors orchestrate the entirety of cellular processes leading to tissue
development, tissue differentiation or responses to the environment and, hence, act as
natural master regulators within plants [39]. This makes them promising candidates
as breeding targets to control complex traits in crop breeding [39]. In this study, we
performed a systematic analysis using multi-omics data (genomics, transcriptomics, and
proteomics) to investigate the complex interplay between rSNPs, TFs and DEGs. As a result
of this analysis, we obtained: (i) a genome-wide collection of rSNPs; (ii) their significant
association with the B. napus cultivars differing in oil content; (iii) their consequences for
TF binding; and (iv) the DEGs of four tissues whose expression could be strongly affected
by the occurrence of these important rSNPs within their promoter regions.

Our findings show that while members of the TF-families DOF, MYB, NAC, GATA,
or TCP have been identified as enriched exclusively for a certain tissue, the TFs in the
bHLH or bZIP class, and members of the BES1 family seem to play important regulatory
roles in several tissues. Moreover, the knowledge on the causal interaction between a
rSNP, a TF and a DEG could be promising to explain the expression behavior of the gene,
which in turn is essential for understanding the underlying genetic programs such as tissue
development or responses to abiotic and biotic stresses.

By mainly considering the promoter regions, our integrated approach provides im-
portant insights into the regulatory processes on the transcriptional level. For future work,
the investigation of further regulatory mechanisms underlying differential gene expres-
sion, as, e.g., post-transcriptional regulation such as microRNA binding or Riboswitch
activity can help to gain a comprehensive understanding of the entirety of gene regulatory
processes. Nevertheless, our study can be seen as one further step leading towards the
deciphering of differential gene expression underlying the different B. napus cultivars and
our genome-wide collection of rSNPs provides a basis for upcoming studies on different
traits in B. napus.



Int. J. Mol. Sci. 2021, 22, 789 12 of 15

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
7/22/2/789/s1.

Author Contributions: M.G. designed and supervised the research. S.K. participated in the design
of the study, and conducted computational and statistical analyses together with M.G. and H.B. A.R.,
A.O.S., J.-S.S., T.M.L., K.L. and S.K. were involved in the interpretation of the results. K.L. provided
the dataset. S.K., T.M.L. and M.G. wrote the final version of the manuscript. M.G. conceived and
managed the project. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: We acknowledge support by the German Research Foundation and the Open
Access Publication Funds of the Göttingen University. We would like to thank Faisal Ramzan,
Felix Heinrich and Martin Wutke for proofreading the manuscript and providing helpful advices
and discussions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Edwards, S.L.; Beesley, J.; French, J.D.; Dunning, A.M. Beyond GWASs: Illuminating the dark road from association to function.

Am. J. Hum. Genet. 2013, 93, 779–797. [CrossRef]
2. Rojano, E.; Seoane, P.; Ranea, J.A.G.; Perkins, J.R. Regulatory variants: From detection to predicting impact. Briefings Bioinform.

2019, 20, 1639–1654. [CrossRef] [PubMed]
3. Macintyre, G.; Bailey, J.; Haviv, I.; Kowalczyk, A. is-rSNP: A novel technique for in silico regulatory SNP detection. Bioinformatics

2010, 26, i524–i530. [CrossRef] [PubMed]
4. Shi, L.; Weng, J.; Liu, C.; Song, X.; Miao, H.; Hao, Z.; Xie, C.; Li, M.; Zhang, D.; Bai, L.; et al. Identification of promoter motifs

regulating ZmeIF4E expression level involved in maize rough dwarf disease resistance in maize (Zea Mays L.). Mol. Genet.
Genom. 2013, 288, 89–99. [CrossRef] [PubMed]

5. Konishi, S.; Izawa, T.; Lin, S.Y.; Ebana, K.; Fukuta, Y.; Sasaki, T.; Yano, M. An SNP caused loss of seed shattering during rice
domestication. Science 2006, 312, 1392–1396. [CrossRef]

6. Jaiswal, V.; Gahlaut, V.; Mathur, S.; Agarwal, P.; Khandelwal, M.K.; Khurana, J.P.; Tyagi, A.K.; Balyan, H.S.; Gupta, P.K.
Identification of novel SNP in promoter sequence of TaGW2-6A associated with grain weight and other agronomic traits in wheat
(Triticum aestivum L.). PLoS ONE 2015, 10, e0129400. [CrossRef]

7. Heinrich, F.; Wutke, M.; Das, P.P.; Kamp, M.; Gültas, M.; Link, W.; Schmitt, A.O. Identification of Regulatory SNPs Associated
with Vicine and Convicine Content of Vicia faba Based on Genotyping by Sequencing Data Using Deep Learning. Genes 2020,
11, 614. [CrossRef] [PubMed]

8. Martin, V.; Zhao, J.; Afek, A.; Mielko, Z.; Gordân, R. QBiC-Pred: Quantitative predictions of transcription factor binding changes
due to sequence variants. Nucleic Acids Res. 2019, 47, W127–W135. [CrossRef]

9. Amlie-Wolf, A.; Tang, M.; Mlynarski, E.E.; Kuksa, P.P.; Valladares, O.; Katanic, Z.; Tsuang, D.; Brown, C.D.; Schellenberg, G.D.;
Wang, L.S. INFERNO: Inferring the molecular mechanisms of noncoding genetic variants. Nucleic Acids Res. 2018, 46, 8740–8753.
[CrossRef]

10. Coetzee, S.G.; Coetzee, G.A.; Hazelett, D.J. motifbreakR: An R/Bioconductor package for predicting variant effects at transcription
factor binding sites. Bioinformatics 2015, 31, 3847–3849. [CrossRef]

11. Medina-Rivera, A.; Defrance, M.; Sand, O.; Herrmann, C.; Castro-Mondragon, J.A.; Delerce, J.; Jaeger, S.; Blanchet, C.; Vincens, P.;
Caron, C.; et al. RSAT 2015: Regulatory sequence analysis tools. Nucleic Acids Res. 2015, 43, W50–W56. [CrossRef] [PubMed]
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