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In this study, ordinal pattern analysis and classical frequency-based EEG analysis

methods are used to differentiate between EEGs of different age groups as well as

individuals. As characteristic features, functional connectivity as well as single-channel

measures in both the time and frequency domain are considered. We compare

the separation power of each feature set after nonlinear dimensionality reduction

using t-distributed stochastic neighbor embedding and demonstrate that ordinal

pattern-based measures yield results comparable to frequency-based measures applied

to preprocessed data, and outperform them if applied to raw data. Our analysis yields

no significant differences in performance between single-channel features and functional

connectivity features regarding the question of age group separation.

Keywords: EEG - Electroencephalogram, t-SNE (t-distributed stochastic neighbor embedding), ordinal pattern

statistics, nonlinear dimensionality reduction, biomarkers, functional connectivity, coherence, mutual information

1. INTRODUCTION

The study of physiological networks is of great interest in biomedical sciences. Especially functional
brain networks, extracted from MRI- or EEG-recordings, are a frequent subject of studies. We
obtain functional networks from EEG recordings and compare these networks to features of single
EEG channels in their function as biomarkers.

Neurobiological changes in healthy and pathological aging and their electrophysiological
correlates (EEG) are still a hot topic in the neuroscience community, particularly since the
incidence and prevalence of mild cognitive impairment and dementia increase alongside
life expectancy (Ricci, 2019). Although some consensus has been reached regarding some
electrophysiological correlates of aging, such as the reduction of occipital alpha power (Babiloni
et al., 2006) and a shifting of the individual alpha peak towards lower frequencies in elderly subjects
(Scally et al., 2018), an electrophysiological marker with which we can confidently discriminate
between young and elderly individuals is yet to be established.
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Thus, the study of age group differences in EEG recordings
has been of interest for several decades and has been addressed by
many authors over the years. While some considered differences
in single-channel (SC) measures (Waschke et al., 2017), others
used functional connectivity (FC) (McIntosh et al., 2013) or a
combination ofmultiple feature groups (Al Zoubi et al., 2018). All
methods successfully extracted significant differences between
two age groups or significant correlations between the measure
of choice and age. This is why we wanted to directly compare the
discriminating power of FC and SC features in this study.

In recent years, studies aiming not only at differentiating
between age groups but also between individuals based on
features extracted from EEG recordings have become available
(Rocca et al., 2014; Demuru and Fraschini, 2020; Suetani and
Kitajo, 2020; Wilaiprasitporn et al., 2020). In all mentioned
works, the features of choice were based in the frequency domain.

A problem for commonly used features extracted from
EEG signals is the observation that in most cases, extensive
preprocessing of the data is required and done, which has recently
been shown to possibly lead to different results (Robbins et al.,
2020). Thus, a method of feature extraction where the amount
of preprocessing can be reduced would be desirable. Therefore,
we used ordinal pattern (OP) statistics (Bandt and Pompe, 2002)
for characterizing our data which has been shown to be a robust
method for analysing physiological time series (Keller et al.,
2007a, 2014; Parlitz et al., 2012; Amigó et al., 2015; Unakafov,
2015). For example, OP analysis has been used to separate
healthy subjects from patients suffering from congestive heart
failure (Parlitz et al., 2012) or to differentiate between different
experimental conditions in EEG recordings (Unakafov, 2015;
Quintero-Quiroz et al., 2018).

The discriminating power of OP distributions of single
channels is compared to FC measures given by the mutual
information (MI) based on OP distributions. These time domain
features are compared to spectral features given by power spectral
densities (PSDs) of single channels and coherence characterizing
interrelations of pairs of channels. As a benchmark task we aim
at separating individuals and age groups based on different sets
of features extracted from EEG recordings. To illustrate and
quantify the separation the high dimensional features (feature
vectors) are mapped to a two-dimensional plane using the
nonlinear dimensionality reduction algorithm t-SNE (van der
Maaten and Hinton, 2008).

2. MATERIALS

2.1. Data Set
The data set analyzed in this study was on a set of recordings
from 45 participants, divided into two different age groups, who
participated in an image recognition task. We will refer to this
data set as the Image Recognition data set.

Twenty-two young (12 female, mean age: 24.8 years ± 3.9
SD) and 23 elderly (11 female, mean age: 62.4 years ± 7.2
SD) healthy subjects were included. All subjects had normal or
corrected-to-normal vision, normal contrast sensitivity and no
color vision weakness/blindness. None of the participants had
a history of neurological or psychiatric diseases. Normal visual

acuity, contrast sensitivity and color vision were corroborated
with the Snellen chart (Snellen, 1862), the Mars Letter Contrast
Sensitivity test (Arditi, 2005), and a version of the Stilling, Hertel,
and Velhagen color panels test (Broschmann and Kuchenbecker,
2011), respectively. To select the hand with which participants
would answer the tests, handedness was assessed using the
Edinburgh Handedness Inventory (Oldfield, 1971). Additionally,
subjects were screened for cognitive impairment and depression
using the Mini-Mental State Examination (MMSE) (Folstein
et al., 1975) and the Beck Depression Inventory II (BDI-II) (Beck
et al., 1996). A score of ≤24 points in the MMSE and/or a score
of ≥9 points in the BDI-II were considered exclusion criteria.

The subjects participated in a modified version of the image
recognition task described in Miloserdov et al. (2020). Subjects
were shown images from three different categories: cars, faces
and scrambled images. The images were shown on two different
contrast levels, high (100% contrast) and low (10% contrast),
giving six different conditions in total. The subjects were asked
to categorize each image they were shown. Each condition was
repeated a total of 80 times, resulting in a total of 480 trials.

2.2. Measurement and Preprocessing of
EEG Data
The EEG data was recorded at a sampling rate of 1,000Hz using
a 64-channel Brain Products system elastic cap. The cap includes
a reference electrode located at FCz. The FieldTrip toolbox for
Matlab (Oostenveld et al., 2010) was used for data preprocessing.
Continuous EEG data was segmented into 1,500ms long epochs
(either 1,500ms prestimulus or 1,500ms poststimulus). What we
will refer to as “raw” data was analyzed without going through
any additional preprocessing steps.

What we will further refer to as the “preprocessed” data went
through the following additional steps. An offline 0.1Hz–220Hz
band-pass filter (butterworth, hamming window) and a 50Hz
notch filter were applied. Jumps and clips were automatically
detected using a amplitude z-value cutoff of 20 in the case of
jumps and a time threshold of 0.02 s for clips. The data points
identified as clips or jumps were then linearly interpolated.
Muscle artifacts were detected automatically by first applying a
band-pass filter of 120Hz–140Hz and selecting an amplitude z-
value threshold of 5. The trials marked as having muscle artifacts
were afterwards visually inspected and rejected. Blink artifacts
were corrected for using Independent Component Analysis
(ICA). Data was re-referenced to the common average, i.e., the
average across all EEG channels is subtracted from the EEG signal
of each individual channel.

3. METHODS

The aim of this study was to compare the results from classical
frequency-based neuroscientific features as coherence and power
spectra to features extracted on the basis of symbolic dynamics
and information theoretical measures. From each domain, we
took one single-channel measure and one functional connectivity
measure that takes into account the relationships between
different areas in the brain.

Frontiers in Physiology | www.frontiersin.org 2 February 2021 | Volume 11 | Article 614565

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Kottlarz et al. Robust Biomarkers for EEG Recordings

3.1. Functional Connectivity in EEG
Recordings
Functional connectivity (FC) quantifies the temporal statistical
dependence between signals in different brain regions (Sakkalis,
2011) and there exists an abundance of different measures that
are used in the neuroscientific community. Generally, FC can
be measured in time domain or frequency domain. In both
domains, linear and non-linear measures exist. In this study, the
non-linear time domain based measure mutual information (MI,
Cover and Thomas, 1991) is compared to one of themost popular
measures in EEG analysis, the frequency domain-based linear
coherence (Bastos and Schoffelen, 2016). These twomeasures will
be introduced in the following.

3.1.1. Ordinal Pattern Statistics and Mutual

Information

Ordinal patterns (OPs) are a symbolic approach to time series
analysis that was originally introduced by Bandt and Pompe
(2002). Since then, OP based methods have successfully been
used in the analyses of biomedical data (Keller et al., 2007b;
Amigó et al., 2010, 2015; Parlitz et al., 2012; Graff et al., 2013;
Kulp et al., 2016; McCullough et al., 2017) and specifically
EEG recordings (Keller et al., 2007a, 2014; Ouyang et al., 2010;
Schinkel et al., 2012, 2017; O’Hora et al., 2013; Rummel et al.,
2013; Shalbaf et al., 2015; Unakafov, 2015; Cui et al., 2016;
Quintero-Quiroz et al., 2018). Statistics based on ordinal pattern
have been shown to be robust to noise (Parlitz et al., 2012;
Quintero-Quiroz et al., 2015) and can be used to define advanced
concepts for quantifying information flow (Staniek and Lehnertz,
2008; Amigó et al., 2016) or to derive transition networks in state
space from observed time series (McCullough et al., 2015; Zhang
et al., 2017).

In ordinal pattern statistics, the order relations between
values of a time series are considered rather than the values
themselves. An ordinal pattern for a given length w and lag
l describes the order relations between w points of a time
series, each separated by l − 1 points. For a length w, there
are w! possible different patterns, that can each be assigned a
unique permutation index as illustrated for w = 4 in Figure 1.
The permutation index characterizes the permutation π that is
needed to get from a sample xt , xt+l, . . . , x(w−1)(t+l) of the time
series to a sample xπ(t), xπ(t+l), . . . , xπ((w−1)(t+l)) that is ordered
ascendingly according to the amplitude of the sample in the
time series.

An important parameter is the lag l which can be used to
address different time scales as illustrated in Figure 2.

Ordinal patterns are easy and inexpensive to compute and
have been shown to be robust to noise (Bandt and Pompe,
2002; Parlitz et al., 2012). From a sequence of ordinal patterns,
the probabilities of occurrence of specific patterns, given a lag
l and length w, can be used to characterize the underlying
time series. Commonly, complexity measures as permutation
entropy (Bandt and Pompe, 2002; Parlitz et al., 2012) or
conditional entropy (Unakafov, 2015) are applied to the resulting
pattern distributions.

Here, the question asked is not about the complexity of a
univariate time series, but about the similarity of channels in
one multivariate EEG recording. The similarity measure that
is used here is the mutual information (MI) (Shannon, 1948;
Cover and Thomas, 1991). Mutual information can be expressed
by the Kullback-Leibler divergence (Kullback and Leibler, 1951)
between the joint probability distribution pX,Y of two jointly
varying random variables X and Y and the product of their
marginal distributions:

I(X;Y) = KL(pX,Y ||pX · pY ). (1)

For independent variables, the joint distribution is equal to the
product of the marginal ones, resulting in a mutual information
of I(X;Y) = 0. Accordingly, mutual information can be
interpreted as a quantity that measures to what degree two
random variables are not independent.

3.1.2. Coherence

In contrast to OP statistics and MI, coherency (Bastos and
Schoffelen, 2016) measures functional connectivity in the
frequency domain. The coherency of two time series yi and yj,
for example two EEG channels i and j, is defined as the normed
expectation value of the cross-spectrum

cohij(f ) =
〈ŷi(f )ŷ

∗
j (f )〉

√

〈ŷi(f )ŷ
∗
i (f )〉 〈ŷj(f )ŷ

∗
j (f )〉

, (2)

where ŷi(f ) is the Fourier transform of the signal yi(t) and ∗

denotes the complex conjugate.
The expectation value 〈·〉 is usually approximated by taking

the average over multiple trials from an EEG sample. In this
study, we will consider the absolute value of Equation (2), and
call it coherence.

3.2. Single-Channel Features in EEG
Recordings
We compare the introduced FC measures to measures only
taking into account single channels, but no relations between
them. For this, we consider the PSDs as done by Suetani and
Kitajo (2020), as well as OP distributions for each channel.
In both cases, (not necessarily normalized) distributions per
channel are considered. As a metric to compare them, we use
the generalized KL-divergence. A vectorized, symmetric version
of this was introduced by Suetani and Kitajo (2020) as a metric,
which is given by

dnm =
1

Nch

Nch
∑

l=1

1

2

[

DB(S
(l)
n ||S(l)m )+ DB(S

(l)
m ||S(l)n )

]

, (3)

where the generalized KL-divergence DB(P||Q) between two not
necessarily normalized densities P and Q is given according to

DB(P||Q) =

∫ (

p(x) log
p(x)

q(x)
− p(x)+ q(x)

)

dx. (4)
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FIGURE 1 | All 24 ordinal patters of length w = 4.

FIGURE 2 | Illustration of ordinal patterns on different time scales in raw EEG data with sampling rate 1,000Hz. The colored interval in the right column covers the

same time span (0.06 s) as the entire window in the left column.

dnm gives the distance between two vectors of dimension Nch,

where each dimension contains a distribution S
(l)
n , which will

either be a PSD or aOP distribution. It is a special case of the beta-
divergence (Basu et al., 1998; Mihoko and Eguchi, 2002) used in
Suetani and Kitajo (2020) with β = 1.

3.3. Dimensionality Reduction
Dimensionality reduction aims to visualize such high-
dimensional data in a low-dimensional space, preferably by
extracting the most important features and representing each
data point only by those. While the idea of dimensionality
reduction dates back more than 100 years (Pearson, 1901),
recently, more and more techniques have surfaced (van der
Maaten et al., 2007).

In this study, the non-linear algorithm t-distributed stochastic
neighbor embedding (t-SNE, van der Maaten and Hinton, 2008)

is used to project features extracted from EEG time series. These
features are adjacency matrices in case of functional connectivity
and vectors of distributions in case of single-channel measures.

3.3.1. Nonlinear Dimension Reduction (t-SNE)

T-distributed stochastic neighbor embedding was first
introduced by van der Maaten and Hinton (2008) as an extension
of stochastic neighbor embedding (SNE) (Hinton and Roweis,
2003) to avoid the crowding problem and simplify optimization.

The algorithm projects a set of L samples x1, x2, . . . , xL from
a high-dimensional into a low-dimensional space so that RN ∋

xn 7→ yn ∈ R
M , considering the so-called neighbor probabilities

pm|n =
exp(−||xn − xm||

2/(2σ 2
n ))

∑

r 6=n exp(−||xr − xn||2/(2σ 2
n ))

. (5)
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FIGURE 3 | t-SNE projections of features obtained from the EEG time series of the Image Recognition data set (k = 30). We compare time-domain measures (A,B) to

frequency domain measures (C,D). The time-domain measures are extracted from raw data by calculating OP sequences, the frequency-domain measures are taken

from frequency bands of the preprocessed data. In each case, a projection for the parameter (lag/frequency band) yielding the best group separation for the method is

shown. (A) Projection of functional connectivity vectors obtained from OP statistics (τ = 100ms), (B) Projection of OP distribution-vectors (τ = 15ms) with the

generalized KL-divergence as a metric, (C) Projection of functional connectivity vectors obtained from average coherence (alpha-band), (D) projection of power

spectral density-vectors (theta-band) with the generalized KL-divergence as a metric.

for high-dimensional data points xn and xm. Here, || · || is
typically the Euclidean norm. For projections of single-channel
features, where one high-dimensional data point consists of Nch

distributions, we use || · || = dnm in Equation (3). In case of
connectivity matrices, we flatten1 the upper triangular part of the
matrix and use the Euclidean norm as a measure of distance.
N is an arbitrary integer value and M ∈ {2, 3} in general, we
use M = 2 in this study. The probability pm|n describes the
probability that xm is a neighbor of xn and is proportional to
a Gaussian centered at xn. The standard deviation σn of the
high-dimensional probability distributions is calculated so that it
satisfies a given value of the perplexity k. More specifically, the
entropy of the conditional probability pm|n as a function of m

1We “flatten” a matrix by concatenating all column vectors into one long vector.

must be approximately equal to log2(k), or

k(pm|n) = 2H(pm|n), (6)

where H is the Shannon entropy (Shannon, 1948). The goal
of t-SNE is now to minimize the sum of the Kullback-
Leibler divergences between the symmetric probabilities pnm =

(pm|n + pm|n)/2 in the high-dimensional space and the neighbor
probabilities qnm of the projections into low-dimensional space,

qnm =
exp(1+ ||yn − ym||

2)−1

∑

r 6=n exp(1+ ||yr − yn||
2)−1

, (7)
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FIGURE 4 | Exemplary plot of a the estimated kernel densities for the same

parameters as in Figure 3A; a distinction is made only between age groups,

not conditions.

where qnm is proportional to a Student-t-distribution (Student,
1908) with mean yn. The cost-function then becomes

C =
∑

n

KL(Pn||Qn) =
∑

n

∑

m 6=n

pnm log

(

pnm

qnm

)

. (8)

This cost-function is minimized using the gradient descent
method, thus aligning the high- and low-dimensional neighbor
probabilities. As a consequence, data points that are close in
high-dimensional space will be projected closely together.

Because t-SNE is a stochastic method that starts out
the projection with randomly assigning low-dimensional
coordinates to data points and then minimizing the cost-
function given in Equation (8), the resulting projection depends
on the initial conditions of the projection. If one only considers
a single projection, it is possible that this projection is not
necessarily representative for all projections. Thus, if one wants
to quantify effects in the t-SNE projections, one must average
over many projections with different initial conditions.

3.4. Analysis Scheme
The EEG recordings were cut into trials. These trials were 1.5 s
long, either directly before or directly after the subjects were
shown a picture. These steps were done both for the raw and
preprocessed versions of the data set.

OP sequences with patterns of length w = 4 were calculated
for each trial. From all trials belonging to the same condition,
histograms of the probability of occurrence were extracted, giving
one histogram per EEG-channel, per condition and per subject.
On the basis of the OP sequences, one single-channel feature and
one functional connectivity feature were extracted:

• Themarginal ordinal pattern distributions were used as single-
channel features for dimensionality reduction with t-SNE.
Here, we calculated the distance between two samples, each
characterized by Nch OP distributions, with Equation (3).

• We also used (joint) OP distributions to calculate MI-values
between each pair of EEG channels, resulting in an Nch × Nch

symmetric adjacency matrix per stimulus type per subject,
containing the MI before or after each stimulus.

Additional to the time-domain measures, features were extracted
from the frequency domain. For each trial, power spectra were
calculated by performing a fast Fourier transform (FFT). Based
on this, we again extracted one single-channel feature and one
functional connectivity feature:

• The power spectral densities of each electrode were calculated
as the squared absolute value of the Fourier transform of
the signal and averaged over all trials. Again, we calculated
the distance between two samples, each characterized by Nch

PSDs (either full PSD or only the bins of specific frequency
bands), with Equation (2) where only the frequency bins of
specific frequency bands were contained (alpha: 8 Hz–12Hz,
beta: 15 Hz–30Hz, theta: 3 Hz–7Hz, gamma: 30 Hz–50Hz).
We consider different frequency bands for comparability with
findings in literature.

• Adjacency matrices based on the coherence between EEG
channels were composed by calculating the average coherence
over all trials per frequency-band.

The above described dimensionality reduction algorithms were
applied to each feature set. In case of the adjacency matrices,
the flattened upper triangular part of the matrices was used
as input for the algorithms with the Euclidean distance as a
metric. We also projected the vectors containing PSDs and
OP distributions with the vectorized KL-divergence as distance
measure as introduced in Equation (3).

It is important to mention that the different feature sets
(FC and SC) involved in the comparison have different
numbers of features which itself might influence dimensionality-
reduction methods.

To quantify the effect of subject separation in the
2d-projections the ratio ρ between the average distances
within a subject-cluster to the average distances to its three next
neighbors was calculated. This ratio gives insight on how much
closer data points of the same subject are projected together than
data points of different individuals.

As a quantification of the separation of age groups we used
a kernel density estimation (KDE; Silverman, 1986) with a
Gaussian kernel and a bandwidth selection according to Scott
(2015) for the distributions of the two age groups in the
projections. An illustration of such estimated densities is given
in Figure 4.

We then calculated the Jensen-Shannon divergence
(Lin, 1991) between the two distributions. The Jensen-
Shannon divergence quantifies differences between probability
distributions. It is bound by unity in case of a base-2 logarithm
and can be derived from the KL divergence via

JSD(P||Q) =
1

2
KL(P||M)+

1

2
KL(Q||M), where

M =
1

2
(P + Q). (9)
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FIGURE 5 | Quantification of the separation of Elderly and Young in 2d t-SNE projections (k = 30) for both raw (red) and preprocessed (blue) EEG data. We consider

group separation based on (A,C) functional connectivity and (B,D) single channels. Results from OP based measures are displayed in the upper row, and from

frequency-based measures in the lower row. The solid lines describe the separation when using the full PSD, otherwise only the frequency bins of one specific band

are considered. The error bars display the standard deviation over 100 t-SNE projections with different random seeds.

The square root of the Jensen-Shannon divergence is a metric
that is often called the Jensen-Shannon distance (JSD, Endres
and Schindelin, 2003). This was done, in all cases, for 100 t-SNE
projections of the ensemble with different random seeds.

4. RESULTS

T-SNE projections of similar experimental conditions from
the Image Recognition data set, i.e., samples after a high-
contrast stimulus, are displayed in Figure 3. Four different
feature types were projected. The results for the two FC
features MI and Coherence (alpha band) are displayed in
the left column, and the projections of the single-channel
features, OP distributions and filtered PSDs (theta band), are
depicted in the right column. In all cases, separations of age
groups and individuals can be observed visually. We observe
that the three conditions (face, car, scrambled image) are
projected together closely for each individual. This effect is
similar to the one observed in Suetani and Kitajo (2020) and
is further quantified in Figure A1 in the Appendix. The two

age groups (Elderly in red and Young in blue) appear to be
loosely separated.

As will be detailed in the following section we find that
the separation of the two age groups, based on the JSD, are
comparable for all feature sets, with a tendency toward higher
separations for the OP based methods. The separation of
individuals is clearly more distinct for OP based measures than
for frequency based measures, both for FC and single channels.

4.1. Age Group Separation
In Figure 3, a separation of the two age groups in the t-SNE
projections can be observed visually. As an example, in Figure 4,
the estimated densities of the age groups are plotted for the same
parameters as in Figure 3A. One can observe that the densities
barely overlap.

The Jensen-Shannon distances between the two estimated
distributions, depending on time or frequency scales, are
displayed in Figure 5 for both raw and preprocessed data. For
all feature sets, an average JSD larger than zero can be observed,
with the highest values being achieved by the OP based measures.
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While for the OP based measures, no increase of the best
performance across time scales through artifact removal can be
observed, artifact correction clearly leads to an overall increase of
performance for frequency based measures. This is yet another
illustration of the robustness of OP statistics.

We found no significant dependency of the separation of
age groups on the perplexity k for the t-SNE projections. In
case of individuals, we found the same dependency as Suetani
and Kitajo (2020), where for larger values of k (up to k =

100), the separation is less distinct than for smaller values, but
still observable.

5. DISCUSSION

In this study, we obtained differences between age groups
(Elderly, Young) and individuals subjected to similar
experimental conditions based on both functional connectivity
and single-channel measures obtained from multichannel
EEG time series. We found that t-SNE as a method for
dimensionality reduction and feature extraction does not only
reflect individuality but also appears to represent inter-individual
relationships, given by age groups in this case.

It should be emphasized that the separation of individuals
is restricted to the separation of recordings from the same
individual under similar conditions (post high contrast stimulus).
Separate checks using pre-stimulus recordings and resting state
recordings from the same session, revealed that the data points of
the same individual are not necessarily projected closely together.

Regarding the separation between age groups, one could
consider that a difference between brain age, which is a descriptor
of the physiological condition of the brain, and the chronological
age of the subject has been hypothesized (Irimia et al., 2015;
Steffener et al., 2016). If the chronological age and the brain age of
some individuals in the study differ, this could explain apparent
outliers in the projections.

Since the aim of t-SNE is to find a low-dimensional projection
of a high-dimensional data set that represents the distances
between high-dimensional points, it can be assumed that the
projected ensemble does not only represent the two features
with highest variance and omits the others, but is rather a
representation of the whole feature set.

We showed that OP analysis can obtain results comparable
to classical EEG feature sets, and even outperform them if both
methods are applied to raw data. For the OP based measures,
the applied preprocessing pipeline partially even leads to a
decrease in performance regarding the separation of age groups,
while for the frequency-based measures, there is always an
increase observable. This supports previous observations that
OP based methods yield promising results if applied to raw
data sets. Preprocessing could thus be reduced to avoid potential
differences of analyses in different labs.

The question answered here is “Is the average or best
performance of one feature set comparable to the average or
best performance of another feature set?” This appears to be the
case for the age group separation, and also for the separation
of subjects.

Given the observation that there appears to be no significant
difference between FC and SC measures, the question arises

whether the obtained functional networks actually contain the
information that we assume they do. In light of these findings,
the interpretation of other studies that obtained age group
differences based on functional connectivity (Wada et al., 1998;
McIntosh et al., 2013; Al Zoubi et al., 2018, amongst others) could
be reconsidered.

If the age differences are also contained in single-channel
measures, and the separation power of functional connectivity
does not outperform the single channel measures, it must be
thoroughly investigated how these group differences are related
to one another.

A possible explanation for the lack of differences between
functional connectivity and single-channel measures would be
that the main information that is contained in the functional
connectivity measures that are considered here is due to shared
sources between the different EEG channels. This information
would also be contained in single-channel features. To verify this,
further tests must be done.

Furthermore, future studies should include a comparison with
other measures of network physiology like time delay stability
(Bartsch et al., 2015; Liu et al., 2015; Lin et al., 2016) and transfer
entropy (Schreiber, 2000; Staniek and Lehnertz, 2008; Vicente
et al., 2011; Wibral et al., 2013) measures.

DATA AVAILABILITY STATEMENT

The datasets presented in this article are not readily
available due to data protection rules. Requests to
access the datasets should be directed to Melanie Wilke
(melanie.wilke@med.uni-goettingen.de).

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved bymedical ethics committees of the UniversityMedical
Center Göttingen, Germany. The patients/participants provided
their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

IK, AS, and UP prepared the design of the manuscript. MW
and DT-T designed the behavioral tasks. DT-T performed the
experiments and was responsible for data acquisition. DT-T
and IS performed data preprocessing. AS, IK, SB, UP, and
IS developed the conceptional design of the data analysis. IK
and SB implemented the analysis algorithms and performed
the data analysis. MB, SL, and MW were in charge of project
administration and funding acquisition. All authors edited and
reviewed the article and approved the manuscript.

FUNDING

We acknowledge EKFS Seed Funding by the Else Kröner-
Fresenius Foundation and support through the German Center
for Cardiovascular Research (DZHK), partner site Göttingen.
MW, IS, and DT-T were funded by the Herman and Lilly
Schilling Foundation.

Frontiers in Physiology | www.frontiersin.org 8 February 2021 | Volume 11 | Article 614565

mailto:melanie.wilke@med.uni-goettingen.de
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Kottlarz et al. Robust Biomarkers for EEG Recordings

ACKNOWLEDGMENTS

IK would like to thank Steffen Korn for helpful discussions
regarding machine learning techniques. All authors would like to

thank Aishwarya Bhonsle for interesting discussions. We would
like to thank Kristina Miloserdov for the task design and support
with data collection and Carsten Schmidt-Samoa for his support
in task programming and technical assistance.

REFERENCES

Al Zoubi, O., Ki Wong, C., Kuplicki, R. T., Yeh, H.-w., Mayeli, A., Refai, H., e,t

al. (2018). Predicting age from brain EEG signals-a machine learning approach.

Front. Aging Neurosci. 10:184. doi: 10.3389/fnagi.2018.00184

Amigó, J. M., Keller, K., and Unakafova, V. A. (2010). Permutation

Complexity in Dynamical Systems: Ordinal Patterns, Permutation

Entropy and All That. Heidelberg: Springer Science & Business Media.

doi: 10.1007/978-3-642-04084-9_3

Amigó, J. M., Keller, K., and Unakafova, V. A. (2015). Ordinal symbolic analysis

and its application to biomedical recordings. Philos. Trans. Ser. A Math. Phys.

Eng. Sci. 373:20140091. doi: 10.1098/rsta.2014.0091

Amigó, J. M., Monetti, R., Graff, B., and Graff, G. (2016). Computing algebraic

transfer entropy and coupling directions via transcripts. Chaos 26:113115.

doi: 10.1063/1.4967803

Arditi, A. (2005). Improving the design of the letter contrast sensitivity test. Invest.

Ophthalmol. Vis. Sci. 46, 2225–2229. doi: 10.1167/iovs.04-1198

Babiloni, C., Binetti, G., Cassarino, A., Dal Forno, G., Del Percio, C.,

Ferreri, F., et al. (2006). Sources of cortical rhythms in adults during

physiological aging: a multicentric EEG study. Hum. Brain Mapp. 27, 162–172.

doi: 10.1002/hbm.20175

Bandt, C., and Pompe, B. (2002). Permutation entropy: a natural

complexity measure for time series. Phys. Rev. Lett. 88:174102.

doi: 10.1103/PhysRevLett.88.174102

Bartsch, R. P., Liu, K. K. L., Bashan, A., and Ivanov, P. C. (2015). Network

physiology: how organ systems dynamically interact. PLoS ONE 10:e142143.

doi: 10.1371/journal.pone.0142143

Bastos, A. M., and Schoffelen, J. (2016). A tutorial review of functional connectivity

analysis methods and their interpretational pitfalls. Front. Syst. Neurosci. 9:175.

doi: 10.3389/fnsys.2015.00175

Basu, A., Harris, I. R., Hjort, N. L., and Jones, M. C. (1998). Robust and efficient

estimation by minimising a density power divergence. Biometrika 85, 549–559.

doi: 10.1093/biomet/85.3.549

Beck, A., Steer, R., Ball, R., and Ranieri, W. (1996). Comparison of beck depression

inventories -IA and -II in psychiatric outpatients. J. Pers. Assess. 67, 588–597.

doi: 10.1207/s15327752jpa6703_13

Broschmann, D., and Kuchenbecker, J. (2011). Tafeln zur Prüfung des Farbensinnes.

Stuttgart: Thieme.

Cover, T. M., and Thomas, J. A. (1991). Elements of Information Theory. New York,

NY: Wiley-Interscience. doi: 10.1002/0471200611

Cui, D.,Wang, J., Wang, L., Yin, S., Bian, Z., and Gu, G. (2016). Symbol Recurrence

Plots based resting-state eyes-closed EEG deterministic analysis on amnestic

mild cognitive impairment in type 2 diabetes mellitus. Neurocomputing 203,

102–110. doi: 10.1016/j.neucom.2016.03.056

Demuru, M., and Fraschini, M. (2020). EEG fingerprinting: subject-specific

signature based on the aperiodic component of power spectrum. Comput. Biol.

Med. 120:103748. doi: 10.1016/j.compbiomed.2020.103748

Endres, D. M., and Schindelin, J. E. (2003). A new metric for

probability distributions. IEEE Trans. Inform. Theory 49, 1858–1860.

doi: 10.1109/TIT.2003.813506

Folstein, M. F., et al. (1975). “Mini-mental state”: a practical method for grading

the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198.

doi: 10.1016/0022-3956(75)90026-6

Graff, G., Graff, B., Kaczkowska, A., Makowiec, D., Amigó, J., Piskorski, J., et al.

(2013). Ordinal pattern statistics for the assessment of heart rate variability.

Eur. Phys. J. Spec. Top. 222. doi: 10.1140/epjst/e2013-01857-4

Hinton, G. E., and Roweis, S. T. (2003). “Stochastic neighbor embedding,” in

Advances in Neural Information Processing Systems 15, eds S. Becker, S. Thrun,

and K. Obermayer (Cambridge, MA: MIT Press), 857–864.

Irimia, A., Torgerson, C. M., Matthew Goh, S. Y., and Van Horn, J. D.

(2015). Statistical estimation of physiological brain age as a descriptor

of senescence rate during adulthood. Brain Imag. Behav. 9, 678–689.

doi: 10.1007/s11682-014-9321-0

Keller, K., Lauffer, H., and Sinn, M. (2007a). Ordinal analysis of EEG time series.

Chaos Complex. Lett. 2, 247–258.

Keller, K., Sinn, M., and Emonds, J. (2007b). Time series from the ordinal

viewpoint. Stochast. Dyn. 07, 247–258. doi: 10.1142/S0219493707002025

Keller, K., Unakafov, A., and Unakafova, V. (2014). Ordinal patterns, entropy, and

EEG. Entropy 16, 6212–6239. doi: 10.3390/e16126212

Kullback, S., and Leibler, R. A. (1951). On information and sufficiency. Ann. Math.

Stat. 22, 79–86. doi: 10.1214/aoms/1177729694

Kulp, C. W., Chobot, J. M., Freitas, H. R., and Sprechini, G. D. (2016). Using

ordinal partition transition networks to analyze ECG data. Chaos 26:073114.

doi: 10.1063/1.4959537

Lin, A., Liu, K. K. L., Bartsch, R. P., and Ivanov, P. C. (2016). Delay-correlation

landscape reveals characteristic time delays of brain rhythms and heart

interactions. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374:20150182.

doi: 10.1098/rsta.2015.0182

Lin, J. (1991). Divergence measures based on the Shannon entropy. IEEE Trans.

Inform. Theory 37, 145–151. doi: 10.1109/18.61115

Liu, K. K. L., Bartsch, R. P., Lin, A., Mantegna, R. N., and Ivanov, P. C. (2015).

Plasticity of brain wave network interactions and evolution across physiologic

states. Front. Neural Circuits 9:62. doi: 10.3389/fncir.2015.00062

McCullough, M., Small, M., Iu, H. H. C., and Stemler, T. (2017). Multiscale ordinal

network analysis of human cardiac dynamics. Philos. Trans. R. Soc. A Math.

Phys. Eng. Sci. 375:20160292. doi: 10.1098/rsta.2016.0292

McCullough, M., Small, M., Stemler, T., and Iu, H. H.-C. (2015). Time lagged

ordinal partition networks for capturing dynamics of continuous dynamical

systems. Chaos 25:053101. doi: 10.1063/1.4919075

McIntosh, A. R., Vakorin, V., Kovacevic, N., Wang, H., Diaconescu,

A., and Protzner, A. B. (2013). Spatiotemporal dependency of age-

related changes in brain signal variability. Cereb. Cortex 24, 1806–1817.

doi: 10.1093/cercor/bht030

Mihoko, M., and Eguchi, S. (2002). Robust blind source separation by beta

divergence. Neural Comput. 14, 1859–1886. doi: 10.1162/089976602760128045

Miloserdov, K., Schmidt-Samoa, C., Williams, K., Weinrich, C. A., Kagan, I., Bürk,

K., et al. (2020). Aberrant functional connectivity of resting state networks

related tomisperceptions and intra-individual variability in parkinson’s disease.

NeuroImage 25:102076. doi: 10.1016/j.nicl.2019.102076

O’Hora, D., Schinkel, S., Hogan,M. J., Kilmartin, L., Keane,M., Lai, R., et al. (2013).

Age-related task sensitivity of frontal EEG entropy during encoding predicts

retrieval. Brain Topogr. 26, 547–557. doi: 10.1007/s10548-013-0278-x

Oldfield, R. (1971). The assessment and analysis of handedness: the Edinburgh

inventory. Neuropsychologia 9, 97–113. doi: 10.1016/0028-3932(71)90067-4

Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J.-M. (2010). Fieldtrip:

open source software for advanced analysis of MEG, EEG, and

invasive electrophysiological data. Comput. Intell. Neurosci. 2011:156869.

doi: 10.1155/2011/156869

Ouyang, G., Dang, C., Richards, D. A., and Li, X. (2010). Ordinal pattern

based similarity analysis for EEG recordings. Clin. Neurophysiol. 121, 694–703.

doi: 10.1016/j.clinph.2009.12.030

Parlitz, U., Berg, S., Luther, S., Schirdewan, A., Kurths, J., and Wessel,

N. (2012). Classifying cardiac biosignals using ordinal pattern

statistics and symbolic dynamics. Comput. Biol. Med. 42, 319–327.

doi: 10.1016/j.compbiomed.2011.03.017

Pearson, K. F. R. S. (1901). LIII. on lines and planes of closest fit to systems

of points in space. Lond. Edinburgh Dublin Philos. Mag. J. Sci. 2, 559–572.

doi: 10.1080/14786440109462720

Frontiers in Physiology | www.frontiersin.org 9 February 2021 | Volume 11 | Article 614565

https://doi.org/10.3389/fnagi.2018.00184
https://doi.org/10.1007/978-3-642-04084-9_3
https://doi.org/10.1098/rsta.2014.0091
https://doi.org/10.1063/1.4967803
https://doi.org/10.1167/iovs.04-1198
https://doi.org/10.1002/hbm.20175
https://doi.org/10.1103/PhysRevLett.88.174102
https://doi.org/10.1371/journal.pone.0142143
https://doi.org/10.3389/fnsys.2015.00175
https://doi.org/10.1093/biomet/85.3.549
https://doi.org/10.1207/s15327752jpa6703_13
https://doi.org/10.1002/0471200611
https://doi.org/10.1016/j.neucom.2016.03.056
https://doi.org/10.1016/j.compbiomed.2020.103748
https://doi.org/10.1109/TIT.2003.813506
https://doi.org/10.1016/0022-3956(75)90026-6
https://doi.org/10.1140/epjst/e2013-01857-4
https://doi.org/10.1007/s11682-014-9321-0
https://doi.org/10.1142/S0219493707002025
https://doi.org/10.3390/e16126212
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1063/1.4959537
https://doi.org/10.1098/rsta.2015.0182
https://doi.org/10.1109/18.61115
https://doi.org/10.3389/fncir.2015.00062
https://doi.org/10.1098/rsta.2016.0292
https://doi.org/10.1063/1.4919075
https://doi.org/10.1093/cercor/bht030
https://doi.org/10.1162/089976602760128045
https://doi.org/10.1016/j.nicl.2019.102076
https://doi.org/10.1007/s10548-013-0278-x
https://doi.org/10.1016/0028-3932(71)90067-4
https://doi.org/10.1155/2011/156869
https://doi.org/10.1016/j.clinph.2009.12.030
https://doi.org/10.1016/j.compbiomed.2011.03.017
https://doi.org/10.1080/14786440109462720
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Kottlarz et al. Robust Biomarkers for EEG Recordings

Quintero-Quiroz, C., Montesano, L., Pons, A. J., Torrent, M. C., García-Ojalvo,

J., and Masoller, C. (2018). Differentiating resting brain states using ordinal

symbolic analysis. Chaos 28:106307. doi: 10.1063/1.5036959

Quintero-Quiroz, C., Pigolotti, S., Torrent, M. C., and Masoller, C. (2015).

Numerical and experimental study of the effects of noise on the permutation

entropy. New J. Phys. 17:093002. doi: 10.1088/1367-2630/17/9/093002

Ricci, G. (2019). Social aspects of dementia prevention from a worldwide to

national perspective: a review on the international situation and the example

of Italy. Behav. Neurol. 2019:8720904. doi: 10.1155/2019/8720904

Robbins, K. A., Touryan, J., Mullen, T., Kothe, C., and Bigdely-Shamlo,

N. (2020). How sensitive are EEG results to preprocessing methods: a

benchmarking study. IEEE Trans. Neural Syst. Rehabil. Eng. 28, 1081–1090.

doi: 10.1109/TNSRE.2020.2980223

Rocca, D. L., Campisi, P., Vegso, B., Cserti, P., Kozmann, G., Babiloni,

F., et al. (2014). Human brain distinctiveness based on EEG spectral

coherence connectivity. IEEE Trans. Biomed. Eng. 61, 2406–2412.

doi: 10.1109/TBME.2014.2317881

Rummel, C., Abela, E., Hauf, M., Wiest, R., and Schindler, K. (2013).

Ordinal patterns in epileptic brains: analysis of intracranial EEG

and simultaneous EEG-fMRI. Eur. Phys. J. Spec. Top. 222, 569–585.

doi: 10.1140/epjst/e2013-01860-9

Sakkalis, V. (2011). Review of advanced techniques for the estimation of brain

connectivity measured with EEG/MEG. Comput. Biol. Med. 41, 1110–1117.

doi: 10.1016/j.compbiomed.2011.06.020

Scally, B., Burke, M. R., Bunce, D., and Delvenne, J.-F. (2018). Resting-

state EEG power and connectivity are associated with alpha peak

frequency slowing in healthy aging. Neurobiol. Aging 71, 149–155.

doi: 10.1016/j.neurobiolaging.2018.07.004

Schinkel, S., Marwan, N., and Kurths, J. (2017). Order patterns recurrence

plots in the analysis of ERP data. Cogn. Neurodyn. 1, 317–325.

doi: 10.1007/s11571-007-9023-z

Schinkel, S., Zamora-López, G., Dimigen, O., Sommer, W., and Kurths, J. (2012).

Order Patterns Networks (ORPAN)-a method to estimate time-evolving

functional connectivity frommultivariate time series. Front. Comput. Neurosci.

6:91. doi: 10.3389/fncom.2012.00091

Schreiber, T. (2000). Measuring information transfer. Phys. Rev. Lett. 85, 461–464.

doi: 10.1103/PhysRevLett.85.461

Scott, D. W. (2015). Multivariate Density Estimation: Theory, Practice, and

Visualization. Hoboken, NJ: John Wiley & Sons. doi: 10.1002/9781118575574

Shalbaf, R., Behnam, H., Sleigh, J. W., Steyn-Ross, D. A., and Steyn-Ross, M. L.

(2015). Frontal-temporal synchronization of EEG signals quantified by order

patterns cross recurrence analysis during propofol anesthesia. IEEE Trans.

Neural Syst. Rehabil. Eng. 23, 468–474. doi: 10.1109/TNSRE.2014.2350537

Shannon, C. E. (1948). A mathematical theory of communication.

Bell Syst. Techn. J. 27, 379–423. doi: 10.1002/j.1538-7305.1948.

tb01338.x

Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Boca

Raton, FL; London: Chapman&Hall, London. doi: 10.1007/978-1-4899-3324-9

Snellen, H. (1862). Probebuchstaben zur Bestimmung der Sehschärfe. Utrecht: Van

de Weijer.

Staniek, M., and Lehnertz, K. (2008). Symbolic transfer entropy. Phys. Rev. Lett.

100:158101. doi: 10.1103/PhysRevLett.100.158101

Steffener, J., Habeck, C., O’Shea, D., Razlighi, Q., Bherer, L., and Stern, Y.

(2016). Differences between chronological and brain age are related to

education and self-reported physical activity. Neurobiol. Aging 40, 138–144.

doi: 10.1016/j.neurobiolaging.2016.01.014

Student (1908). The probable error of a mean. Biometrika 6, 1–25.

doi: 10.2307/2331554

Suetani, H., and Kitajo, K. (2020). A manifold learning approach to mapping

individuality of human brain oscillations through beta-divergence. Neurosci.

Res. 156, 188–196. doi: 10.1016/j.neures.2020.02.004

Unakafov, A. M. (2015). Ordinal-patterns-based segmentation and discrimination

of time series with applications to EEG data (Ph.D. thesis). University of Lübeck,

Lübeck, Germany.

van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-SNE. J. Mach.

Learn. Res. 9, 2579–2605.

van der Maaten, L., Postma, E., and van der Herik, J. (2007). Dimensionality

reduction: a comparative review. J. Mach. Learn. Res. 10, 2579–2605.

Vicente, R., Wibral, M., Lindner, M., and Pipa, G. (2011). Transfer entropy–a

model-free measure of effective connectivity for the neurosciences. J. Comput.

Neurosci. 30, 45–67. doi: 10.1007/s10827-010-0262-3

Wada, Y., Nanbu, Y., Kikuchi, M., Koshino, Y., Hashimoto, T., and Yamaguchi,

N. (1998). Abnormal functional connectivity in Alzheimer’s disease:

intrahemispheric EEG coherence during rest and photic stimulation. Eur.

Arch. Psychiatry Clin. Neurosci. 248, 203–208. doi: 10.1007/s004060050038

Waschke, L., Wöstmann, M., and Obleser, J. (2017). States and traits of

neural irregularity in the age-varying human brain. Sci. Rep. 7:17381.

doi: 10.1038/s41598-017-17766-4

Wibral, M., Pampu, N., Priesemann, V., Siebenhühner, F., Seiwert, H., Lindner,

M., et al. (2013). Measuring information-transfer delays. PLoS ONE 8:e55809.

doi: 10.1371/journal.pone.0055809

Wilaiprasitporn, T., Ditthapron, A., Matchaparn, K., Tongbuasirilai, T.,

Banluesombatkul, N., and Chuangsuwanich, E. (2020). Affective EEG-

based person identification using the deep learning approach. IEEE Trans.

Cogn. Dev. Syst. 12, 486–496. doi: 10.1109/TCDS.2019.2924648

Zhang, J., Zhou, J., Tang, M., Guo, H., Small, M., and Zou, Y. (2017). Constructing

ordinal partition transition networks from multivariate time series. Sci. Rep.

7:7795. doi: 10.1038/s41598-017-08245-x

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Kottlarz, Berg, Toscano-Tejeida, Steinmann, Bähr, Luther, Wilke,

Parlitz and Schlemmer. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Physiology | www.frontiersin.org 10 February 2021 | Volume 11 | Article 614565

https://doi.org/10.1063/1.5036959
https://doi.org/10.1088/1367-2630/17/9/093002
https://doi.org/10.1155/2019/8720904
https://doi.org/10.1109/TNSRE.2020.2980223
https://doi.org/10.1109/TBME.2014.2317881
https://doi.org/10.1140/epjst/e2013-01860-9
https://doi.org/10.1016/j.compbiomed.2011.06.020
https://doi.org/10.1016/j.neurobiolaging.2018.07.004
https://doi.org/10.1007/s11571-007-9023-z
https://doi.org/10.3389/fncom.2012.00091
https://doi.org/10.1103/PhysRevLett.85.461
https://doi.org/10.1002/9781118575574
https://doi.org/10.1109/TNSRE.2014.2350537
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1007/978-1-4899-3324-9
https://doi.org/10.1103/PhysRevLett.100.158101
https://doi.org/10.1016/j.neurobiolaging.2016.01.014
https://doi.org/10.2307/2331554
https://doi.org/10.1016/j.neures.2020.02.004
https://doi.org/10.1007/s10827-010-0262-3
https://doi.org/10.1007/s004060050038
https://doi.org/10.1038/s41598-017-17766-4
https://doi.org/10.1371/journal.pone.0055809
https://doi.org/10.1109/TCDS.2019.2924648
https://doi.org/10.1038/s41598-017-08245-x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Kottlarz et al. Robust Biomarkers for EEG Recordings

APPENDIX

To quantify the effect of subject separation and its dependency
on considered time scales, the ratio ρ of intra- and inter-
cluster-distances was calculated on different time scales. For

each projection, the ratio between the mean intra- and

inter-cluster-distances was calculated. The average ratio ρ and

the standard deviation, depending on the lag for the OPs or the

frequency band, is displayed in Figure A1.

FIGURE A1 | Quantification of separation of subjects in the t-SNE projections (perplexity k = 30) data set for raw and pre-processed EEG data. Both FC measures

(A,C) and single-channel measures (B,D) were projected. For each projection, the ratio between the mean intra- and inter-cluster-distances was calculated. We call

the Euclidean distances between points belonging to the same subject intra-cluster-distances, and the distances between the center of one cluster and its three next

neighbors inter-cluster-distances. The error bars display the standard deviation over 100 t-SNE projections with different random seeds.
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