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Abstract: Spin-crossover (SCO) materials have for more than 30 years stood out for their vast
application potential in memory, sensing and display devices. To reach magnetic multistability
conditions, the high-spin (HS) and low-spin (LS) states have to be carefully balanced by ligand
field stabilization and spin-pairing energies. Both effects could be effectively modelled by electronic
structure theory, if the description would be accurate enough to describe these concurrent influences
to within a few kJ/mol. Such a milestone would allow for the in silico-driven development of SCO
complexes. However, so far, the ab initio simulation of such systems has been dominated by general
gradient approximation density functional calculations. The latter can only provide the right answer
for the wrong reasons, given that the LS states are grossly over-stabilized. In this contribution,
we explore different venues for the parameterization of hybrid functionals. A fitting set is provided
on the basis of explicitly correlated coupled cluster calculations, with single- and multi-dimensional
fitting approaches being tested to selected classes of hybrid functionals (hybrid, range-separated, and
local hybrid). Promising agreement to benchmark data is found for a rescaled PBE0 hybrid functional
and a local version thereof, with a discussion of different atomic exchange factors.

Keywords: spin crossover; transition metals; DFT

1. Introduction

Spin-crossover (SCO) complexes are molecules which exhibit spin transitions under external
stimuli such as temperature and pressure, commonly based on d4 to d7 transition metals. Some of the
most notable examples for SCO materials are based on Fe(II) [1], whereby the transition occurs between
the S = 0 and the S = 2 states. These complexes have a wide potential application as molecular switches
for use in display, memory and sensing devices [2–5]. Single center complexes make up for a large
portion of these materials, since they can exhibit abrupt, well-defined transitions. Supramolecular
complexes combining several metal centers have been also developed over the last few years [6–8].
The latter have gathered some interest given their unique SCO properties, allowing for hysteretic and
multistep transitions.

There have been a multitude of theoretical studies on the spin energetics of Fe(II) complexes.
With the inherent difficulties in obtaining a balanced description of the different spin states, internal
references are often adopted [9,10]. Hereby, calculations are carried out not only on the target of study
but also a reference compound. The theoretical values are then discussed looking at trends instead
of absolute values, how the relative energy placement of the two states is shifted by coordination or
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structural changes. This might be a viable approach for closely related families of compounds, but its
robustness is hard to verify a posteriori.

It is not clear which theoretical approaches can be reliably applied to simulate the energetics
of Fe(II) SCO complexes. The discussion is definitely impaired by the problems in defining suitable
benchmark data. Experimental measurements will always include some sort of environment effect [11]
and a fully converged electronic structure description is unattainable. Several studies in the past
have applied multi-reference approaches including RASSCF/RASPT2, CASSCF/CASPT2, NEVPT2
and SORCI [12–17]. Other studies have relied instead on the coupled cluster series, building upon
a single-reference picture. All the aforementioned studies have aimed at a convergence of the N- and
one-particle spaces for small models of functioning SCO complexes. Here we try to highlight some
of the conclusions made over the last few years. Divergence between CASPT2 values [13] and
singlet-quintet gaps computed at the CCSD(T) level [18] have been noted in the past and attributed
to a failure in the single-reference description of coupled cluster. This is something which needs to
be assessed system by system, as the weight of different configurations (mostly determined by the
different occupations on the metal d-orbitals) will depend on the specific ligand. However, it should
be noted that even in case multi-reference becomes an issue, it is not clear which of the methods will
provide the most accurate prediction. The impact of triple excitations is sizeable when comparing
different spin states. This is directly observed in the comparison between CCSD and CCSD(T) values of
several works [19,20]. Second-order perturbation theory (even in a multi-reference framework) might
not capture all the dynamical correlation differences upon spin change. In the end, it is a question of
balance between the two flavors of correlation [21]. This is also an issue when it comes to the selection
of the electron space to be expanded in correlated calculations. Pierloot and coworkers [14] highlighted
in 2017 the importance of electronic correlation effects from the (3s3p) electrons. Also clear in the study
is the strong basis set dependence in spin gap energetics.

Albeit scarcer, there are also calculations based on diffusion Monte Carlo (DMC) [22–24].
One should note that these show much larger discrepancies among them than the error bounds
estimated for their convergence. Overall, in comparison to coupled cluster, DMC appears to stabilize
the high-spin states, although the magnitude of the effect changes with the details of the calculation.

Recently, Phan et al. [25] have suggested a strong correlation between the spin state of homoleptic
diimine complexes of Fe(II) and the N-N distances in diimine ligands. A target region was identified
around 2.8–2.9 Å, whereby magnetic bistability would be likely. The model focuses on the role of orbital
overlap in the coordination to the metal, but ignores the electron donating capacity of the chelating
ligand, assuming that the main identifier is the imine character of the coordination center. Environment
effects are also neglected [26,27]. Albeit simple, the model has a quite surprising predictive power
for this class of compounds. This also establishes a clear priority for the development of theoretical
screening approaches for SCO complexes. A reliable computational protocol should not only be able
to describe quantitatively the HS-LS gap for a specific coordination environment, but also how the
latter changes with the relative placement of the coordinating atoms. Studies carried out so far on
the benchmarking of DFT [24,28,29] have looked at different ligands, but not upon structure changes
which affect the coordination to the metal. The uncertainty about nondynamical effects, and therefore
the lack of reference values, has also hampered such efforts.

In this work, we set out to establish whether hybrid density functionals can be adequately
parameterized to capture the effects of ligand field stabilization under different geometric constraints.
This perspective is orthogonal to most benchmark studies so far, where reference values are computed
and compared changing the chemical nature of the compound. We make use of the simplest model
system for an Fe(II) complex with N-coordinating ligands, the [FeII(NH3)6]2+ species. We establish a set
of standard benchmark tests which can be easily expanded to other centers and varying coordination,
focusing on the ligand structure. The fundamental quantity of interest is the adiabatic HS-LS energy
difference ∆EHL = EHS(RHS)− ELS(RLS), with EXS(RXS) representing the energy of the HS/LS states
in their respective geometries. Only electronic energies will be discussed. Environments effects
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(solution, solid-state interactions) are not discussed but could be introduced on top through standard
embedding procedures.

2. Results

As mentioned earlier, there is an active discussion about the single reference character of both
singlet and quintet states of the [FeII(NH3)6]2+ complex. Such arguments are in line with the many
observed difficulties in converging the level of theory for non-heme iron complexes (for a recent
example and some selected references see Ref. [30]). Song et al. [24] suggested that the system would
have a significant amount of static correlation based on their analysis of the single excitation amplitudes.
Two diagnostics are commonly used, the T1 diagnostic which is based on the Frobenius norm and D1,
based on the matrix 2-norm [31]. Their computed values varied between 0.049 and 0.087, depending
on the spin state and basis set combination. This would be above what was suggested to be a safe
threshold of 0.04 [31]. However, such thresholds have been derived from small molecule calculations
with no transition metals featured. More recent assessments [32], specifically for 3-d transition metal
compounds, place the threshold at D1 < 0.15. Care should also be taken since it is best to combine
several diagnostics for a more robust assessment. Wilson and coworkers suggested the combined use
of D1 with T1 (should remain below 0.05) and a computed percentage of the atomization energy.

We have carried out calculations on the DFT optimized [FeII(NH3)6]2+ complex to verify these
multi-reference descriptors. Our CCSD D1 diagnostics (triple-zeta quality basis set) are even slightly
higher (0.092 for the LS and 0.045 for the HS state) than those of Song et al., but still well below 0.15.
The T1 values are again below the threshold (0.02 for the LS and 0.013 for the HS state, compared
to the suggested value of T1 < 0.05). Having fulfilled two out of three criteria, we would agree with
the assessment made by Flöser et al. [33] and deem the multi-reference character of both states to
be amenable.

It should also be noted that in a recent report, Radoń benchmarked different electronic structure
methods against experimentally derived iron spin-state energetics, finding that CCSD(T) in fact
performs remarkably well [28]. Compared to the proposed back-corrected experimental data set,
the mean absolute error was about 1 kcal/mol (depending on the choice of reference orbitals). Other
comparisons to experimental data have also been favorable to CCSD(T) [14,19].

The convergence at the coupled cluster level of ∆EHL for the relaxed geometry of the hexaamino
complex has been already extensively addressed by Flöser et al. [33]. Here, we will just provide
a small review and compare their results, obtained with local correlation approaches and basis set
extrapolation to our own, which are derived from canonical CCSD(T) with explicit correlation.

First of all, we confirmed the additivity of the scalar relativistic corrections to the HS-LS gap at
the coupled cluster level. The results are presented in Appendix A. For the hexaamino complex (in its
minimum geometry) the latter account for 2.51 kcal/mol, and have a negligible effect on the computed
correlation energies. The scalar relativistic corrections can be computed at the Hartree–Fock level and
added to non-relativistic CCSD(T) values with little to no effect on the value of ∆EHL. We applied
canonical coupled cluster singles and doubles with perturbative triples (CCSD(T)), with explicit
correlation (F12B) and scaled triples. The basis set used was of triple-zeta quality, which should provide
close to converged results. Further details are provided in Materials and Methods. Comparison to the
aforementioned results of the Neese group show only very small deviations. Our computed scalar
relativistic corrections amount to 2.51 kcal/mol, compared to 2.37 kcal/mol. Also in the basis set
correction, moving from triple-zeta to CBS extrapolation or in our case using the F12B value as the
limit, the deviations are quite small. The CBS[Q:5] correction of Flöser et al. amounts to −4.7 kcal/mol,
while our value is at−5.0 kcal/mol. We obtained for [FeII(NH3)6]2+ a value of ∆EHL =−13.37 kcal/mol,
compared to −11.3 kcal/mol. The difference between their ∆EHL result and our value is mostly due to
the difference in the geometry optimization.
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2.1. Benchmark Results

Taking the work of Phan et al. [25] as a starting point, we built models mimicking different ligand
geometries. This was achieved by setting constraints to the N-N distances in the [FeII(NH3)6]2+ model.
Given that many SCO complexes of interest bear bidentate ligands, and in keeping with the model
of Phan et al. [25], we restrained the distances between the NH3 molecules pairwise (see Figure 1).
No symmetry constraints were used. The N-N distance range was set between 2.5 and 3.1 Å, effectively
covering the predicted optimal SCO range and beyond. The complex geometries were optimized for
all other degrees of freedom at the PBE0r [34] level of theory (as described in Materials and Methods).
This local hybrid functional is also discussed later in the text.

Figure 1. Left panel: Computed HS-LS gap for the [FeII(NH3)6]2+ complex with varying N-N distances
at the coupled cluster level (including the DK correction and the scaled triples). Center panel: Diagram
of the model complexes used in the benchmark. The N-N distances were restricted pairwise with all
other geometry parameters being optimized for both HS and LS states. Right panel: variation in the
Fe-N distance as a function of the restraint placed on the ligands.

The ∆EHL were computed at the coupled cluster level following the procedure described in the
previous section. We observed no significant changes in both the T1 and D1 diagnostics over the
range studied. The triples correction significantly favors the LS state, decreasing the gap by about
10 kcal/mol. As one can observe, the restraints placed in the ligands contribute to a significant lowering
of the ∆EHL, from −12.9 kcal/mol down to −4.3 kcal/mol. In the range applied, however, it is not
sufficient to overturn the stability of the high-spin state. It should be noted that the N-N distances of
the fully relaxed model system are around 3.1 and 2.8 Å, for the HS and LS states, respectively. In the
Appendix A, Figure A1, we present a breakdown of different energy components for the calculation
of ∆EHL as a function of the N-N distance. Some terms show a geometry dependence, most notably
the CCSD correlation energy and the triples correction. The scaling of the triples (T*) seems to bear
little impact.

Taking a closer look at the optimized geometries (right side panel of Figure 1), the shortening of
the N-N distance also leads to a shorter coordination distance. The effect is slightly more pronounced
in the LS geometries. This relation is determined by the overlap of the nitrogen lone pairs and the
Fe eg orbitals. Shortening the distance between the coordinating nitrogens, the orbital overlap can
be partly maintained by shortening the Fe-N distance as well, and vice versa. The S = 0 state is less
destabilized by this change as it will be able to more easily accept density in the eg levels.

2.2. Parameterization of Hybrid Functionals

The main focus of this work is to verify whether it is possible to parameterize hybrid density
functionals to correctly replicate the energy gap between the two spin states of interest in Fe(II).
We attest this for our model system, with varying N-N distances in the coordination, to be sure that
the approach is robust relative to structural changes in the complex. In a sense, we are simulating
a large range of ligands with a small number of reference calculations. Optimally, the results should
not be degraded upon subtle variations in the coordination geometry. This is a necessary condition to
accurately model the dynamics of SCO complexes and to guarantee the predictive power.
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We start by setting a baseline, reporting on the results of two GGA (PBE [35], BP86 [36,37]) and
two meta-GGA functionals (TPSS [38] and M06-L [39]). All DFT calculations in this work have been
performed with Grimme’s proposed D3 dispersion correction [40,41], with the exception of M06-L.
In order to avoid too much cluttering in the names, we have dropped the D3 suffix throughout.
As it has been repeatedly reported in the literature (for example in Ref. [42]), the stability of the LS
states is grossly overestimated by GGA functionals. Nonetheless, many of the calculations on SCO
complexes are still carried out at this level of theory. One primary reason is, of course, the lower
computational cost. The other advantage is that it also often guarantees that the ground-state will be
a LS state. Entropy favors the HS state (longer bonds) so actual SCO complexes where the transition
occurs by heating up the system will require a small energy difference between the two, but with
the LS state being lower. The difficulties are especially aggravating for multicentered complexes,
where benchmarks are even scarcer. For example, in the case of the Fe-grid complexes synthesized at
the Meyer group [8], a number of theoretical studies have accurately predicted, in line with magnetic
susceptibility measurements that the LS states are indeed more stable [43,44]. However, the energy
differences reported between the different spin states are generally too large for an SCO-capable
complex. Theory, in this case, provides only a qualitative picture of the process.

The results for all four functionals are provided in Figure 2, together with the coupled cluster
reference and computations from the other classes of functionals later discussed in the text. The simpler
GGA functionals agree rather well among each other, but deviate strongly from the reference.
As expected, the LS is much too stable. The same pattern is observed for TPSS. The only outlier
is M06-L, which performs in absolute terms much better than its counterparts. However, already one
effect is made clear by our selection of benchmark setup. The coupled cluster values predict an almost
linear relationship between ∆EHL and dN-N. This is well-reproduced by all GGA and meta-GGA
functionals, with the exception of M06-L, which flattens out by dN-N ≥ 3.0 Å. Nonetheless, the results
partly support the comparison of SCO complexes based on GGA, given that the slope is almost the
same as the reference values. This in turn signals the possibility of reproducing trends across different
ligands or distortions.

Figure 2. Overview of the DFT ∆EHL in relation to the coupled cluster values (bars). In absolute values
the hybrid functionals as well as M06-L outperform the remaining GGA and meta-GGA functionals.
However, TPSS, BP86 and PBE0 correctly reproduce the coupled cluster trend of a further lowering of
the singlet-quintet gap at larger N-N distances.

2.2.1. Common Hybrid Functionals

We start by considering common hybrid functionals, which allow for an admixture of
Hartree–Fock (exact) exchange according to the general formula

Exc = EGGA
xc + a

(
EHF

x − EGGA
x

)
, (1)

whereby a percentage of the GGA exchange energy (PBE in the case of PBE0 [45,46],
the Slater–Dirac/B88 exchange energies in the case of B3LYP [47]) is replaced by the Hartree–Fock
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computed value according to a single parameter a. The latter is found to have a major impact on
a variety of properties, so much that one can potentially tune the DFT functional to a specific system.
Both functionals featured have relatively similar percentages of admixture, with a = 0.2 for B3LYP
and 0.25 for PBE0. The results for ∆EHL with varying a are provided in Figure 3. We will denote
a functional with a non-default admixture parameter, placing in parenthesis the value of the latter.
The B3LYP(0.15) variant, which has been popularized by Reiher and coworkers [48] is denoted as
B3LYP*, in line with the common literature nomenclature.

Figure 3. Comparison of ∆EHL values computed with refitted B3LYP (left panel) and PBE0 (right
panel) functionals. The bars depict the reference coupled cluster values.

The two profiles for B3LYP and PBE0 look rather similar, both revealing an optimal admixture
at 20% exchange. This observation is surprising in several senses. First, it is not too common to
observe the same optimal range of admixture for two different functionals. Secondly, at least for B3LYP
one would expect a lower optimal value. An admixture of 15% (B3LYP*) has been suggested for the
energetics of Fe-S complexes [48]. The latter parameterization has also been validated for the first
transition metal row [49]. Still, the overestimation of the LS state is quite visible. We find an almost
perfect linear relationship between ∆EHL and the value of a, a relation which has been hinted upon by
several authors but not confirmed for a fixed functional form [24,29,50].

Critically comparing the two functionals, the PBE0(0.20) variant slightly outperforms B3LYP.
The reason being that the slope is best reproduced by the parameterized PBE0. B3LYP underestimates
the relative stability of HS state by larger distances. This cannot be corrected by changing the parameter
a. For smaller values the slope will improve but the absolute values will diverge.

2.2.2. Range-Separated Hybrid Functionals

In the case of range-separated hybrid functionals, the two-electron operator for the exchange
calculations is split according to the general formula [51,52]

r−1
12 =

1− [α + βerf(µr12)]

r12
+

α + βerf(µr12)

r12
, (2)

whereby α, β and µ are adjustable parameters. The first term on the right stands for the short-range
regime, the second for the long range. At a zero interelectronic distance the admixture of exact exchange
is given by α. At larger distances, the value will be α+ β. For this study, we picked the CAM-B3LYP [52]
functional, which in its original form sets α = 0.19, β = 0.46 and µ = 0.33. The underlying functional
is the B3LYP hybrid. This class of functionals has been primarily developed for the calculation
of electronically excited states and spectra, and are regularly applied in the calculation of spin
energetics [20,28,53].

Figure 4 shows the values resulting from calculations with the original set of parameters (α0, µ0),
as well as slightly lower (α1 = 0.13, µ1 = 0.25) and slightly higher (α2 = 0.25, µ2 = 0.40) parameters.
Just as in the case of B3LYP, the original CAM-B3LYP functional closely reproduces the coupled cluster
reference values. The largest differences are observed again for distances above 2.9 Å, with the HS
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state being too unstable. With different variations of the two parameters we were, however, not able
to correct the biggest fault of the parent hybrid functional, the difference in the slope at these larger
distances, while maintaining a good accuracy for the absolute ∆EHL values.

Figure 4. Comparison of ∆EHL values computed with refitted CAM-B3LYP. The bars depict the
reference coupled cluster values. α0, µ0 are the original parameters. α1 = 0.13, α2 = 0.25, µ1 = 0.25,
µ2 = 0.40.

2.2.3. Local Hybrid Functionals

The underlying idea of the local hybrid PBE0r functional is, first, to formulate the Fock term in
a basis of local orbitals |χα〉, and, secondly, to implement the range separation by truncating the sum
over four-center integrals, rather than by dividing the Coulomb interaction into short- and long-range
contributions. We start by dividing the local orbitals |χα〉 into sets α ∈ CR that are centered at a specific
atom identified by the index R. The orbital index α is a combined index holding atomic site, angular
momenta and spin indices as well as additional quantum numbers.

The exchange term in the local approximation [54,55] is then given by

EPBE0r
x = −1

2 ∑
R

∑
α,β,γ,δ∈CR

〈αβ|γδ〉ρ(1)γβ ρ
(1)
δ,α (3)

where 〈αβ|γδ〉 stands for 4-center, 2-electron integrals. The one-particle reduced density matrix is
given by the occupations fn and Kohn-Sham wave functions |ψn〉

ρ(1)(α, β) = ∑
n
〈πα|ψn〉 fn〈ψn|πβ〉 (4)

as well as the local orbital projector functions 〈πα|, which extract the weight of a local orbital in
a Kohn-Sham wave function, i.e.,

|ψn〉 ≈∑
α

|χα〉〈πα|ψn〉 (5)

The projector functions obey the bi-orthogonality condition 〈πα|χβ〉 = δα,β. The approximate
sign becomes an identity, if local orbitals span at least the same Hilbert space as the Kohn-Sham
wave functions. Equation (3) is an approximation of the exact exchange due to the limitation of the
four-center terms to quadruples that are centered on the same atom R, i.e., {|χα〉; α ∈ CR}. This breaks
up the Coulomb interaction into atomic contributions.

To avoid the double counting of the exchange term, the pendant of the exchange term in DFT
needs to be subtracted. The underlying idea [54] of the double counting term of the PBE0r is to divide
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up the Coulomb interaction into the contribution of individual atoms using cutoff functions gR(~r).
Specifically, we partition the electron density into local contributions

nR(~r) = ∑
α,β∈CR

∑
σ

〈~r, σ|χα〉ρ(1)α,β〈χβ|~r, σ〉 (6)

and define the cutoff functions as gR(~r) = nR(~r)/ ∑R′ nR′(~r).
In practice, we simplify the double counting correction by evaluating both cutoff functions at the

same position~r. This yields the simple expression

EPBE0r
DC,approx = −∑

R

∫
d3r

nR(~r)
n(~r)

nR(~r)εxc(~r) (7)

Within the PAW code, the density n(~r) is expressed in terms of partial wave expansion, while nR(~r)
is represented by local orbitals.

This PBE0r method is similar in spirit to the LDA+U method [56]. In contrast to the LDA + U
method however, all orbitals on a given site, including core states, are considered, while in the
LDA + U approach only a correlated shell such as the d-electrons of a specific atom are taken into
account. Furthermore, the double counting term of the PBE0r method differs from the ones used in
LDA + U.

Like other range-separated hybrid functionals, there is a close analogy to the GW method [57],
an approach based on Green’s function perturbation theory, which has been very successful for
describing spectral properties of materials. This is the underlying reason for the improvements of
spectral properties in the transition from gradient corrected functionals to hybrid functionals. The range
separation of hybrid functionals translates into screening of the long-ranged interaction by the relative
dielectric constant of the material. Contrary to CAM-B3LYP, the long-range exact exchange in PBE0r is
screened away, in the spirit of the Random-Phase approximation.

PBE0r achieves the range separation by excluding offsite four-center integrals from the exchange
and the corresponding double counting term. This provides a reasonable description of the atomic
physics, specifically the atomic self-interaction correction. It is thus useful for transition metal
compounds with partially filled d-shells. By dividing the hybrid terms into atomic contribution
it allows optimization of the admixture of the exact exchange atom by atom. This is the starting point
for our next series of parameterizations, whereby the exact exchange percentage is changed according
to the atom species. This leads to a 3-dimensional optimization problem, which we tackled with
an automated procedure.

With the aim of finding the ideal amount of Hartree–Fock exchange for iron, nitrogen and
hydrogen we employed Bayesian optimization (see Figure 5). This machine learning tool offers the
opportunity to efficiently find the global minimum of a reference by varying a set of parameters [58,59].
Tailored to our case the reference for the optimization is the root-mean-square error (RMSE) between
the UCCSD(T*)-F12B ∆EHL values and the reparametrized PBE0r functional. The parameters are
the element specific Hartree–Fock exchange amounts in percentage. The Bayesian optimization is
performed with a Gaussian process regression using a Matérn52 kernel and an expected improvement
acquisition function implemented in GPyOpt [60]. During the optimization the Hartree–Fock exchange
is varied in the range of 1–25%. For an effective optimization it is crucial to provide a well sampled
space to minimize the uncertainty. Therefore, prior to the optimization the whole space is explored
with 50 points determined by Latin hypercube sampling [61]. Afterwards additional 50 points are
iteratively chosen based on the acquisition function, which is illustrated in Figure 6.
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Figure 5. Diagram with an overview of the automated Bayesian optimization of PBE0r HF-exchange
weights with the target function being the RMSE relative to the coupled cluster ∆EHL values.
The process starts with a sampling of different parameter values, computing the DFT ∆EHL for
the benchmark set. After computing the RMSE a Gaussian process regression is used to provide
an acquisition function, selecting new values for the reparameterization and repeating the process.

Figure 6. (Left panel) sampled points during Bayesian optimization of the HF-exchange percentages
for the three atom types. The points are color coded according to the root mean-square error (RMSE)
between the computed to the coupled cluster reference. (Right panel) 2D-cut of the posterior
distribution (at a fixed 9% HF-exchange for Fe) after 80 sampled points. A valley around 11% is
clearly identifiable for the N atom scaling.

The Bayesian optimization clearly identifies 9% as an ideal value for the HF-exchange by the Fe
center. This is found in a range consistent with several previous studies on various classes of transition
metal compounds and materials. This includes a recent study on lithium manganese oxides (with the
final value for Mn in this particular case also at 9%) [62] and DFT studies of perovskites [34,63].

The HF correction of PBE0r is most important for transition metal ions with partially filled d-shells
such as Fe. The influence of the hydrogen parameterization should always be marginal, and this is
clear in the posterior distribution plotted in Figure 6 Nonetheless, considering the direct coordination
to the metal, the description of the nitrogen centers should be looked upon with some care, even if the
first results hint at a small influence on the RMSE.

To observe if this (lack of) dependence on the nitrogen HF-exchange fraction is kept
when considering more realistic models of SCO complexes, we devised a second model with
ethane-1,2-diimine (with the chemical formula C2H4N2) as ligand. The latter is a small bidentate
ligand molecule which will more closely mimic SCO complexes. In a new series of calculations,
we varied the percentage of local exchange at the nitrogen atoms while keeping every other center at
9%. The results are shown in Figure 7. Although we do not provide reference data for the diimine
model [FeII(C2H4N2)3]2+, one can straightforwardly compare the dependence of ∆EHL on the exchange
admixture. It is visible in Figure 7 that the dependence is larger than in our simplest model system.
Changes in the exchange functional for the local density located at the nitrogen atoms will impact the
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charge distribution along the double bond to the carbon, in turn affecting the coordination to the metal.
In the simpler hexaamino ion, one only had protons which take up little density.

Figure 7. (Left panel) Comparison of ∆EHL values computed with PBE0r. The numbers indicate the
amount of exact exchange for all atom types. The bars depict the reference coupled cluster values.
(Right panel) Comparison of the dependence of the ∆EHL on the exchange admixture.

3. Discussion

The evidence presented from our wave function analysis strongly hints at the single-reference
character of both singlet and quintet states in the [FeII(NH3)6]2+ model. This further supports coupled
cluster as an adequate reference method in the discussion of spin-state energetics for these systems.
We were able to confirm for the most part the local coupled cluster results of Flöser et al. [33], but took
a different approach in the benchmarking of DFT functionals. The changes in coordination while
keeping the same ligands provides insight into how the DFT method performs when structural changes
occur in the complex, a fundamental issue in the theoretical description of SCO complexes.

The results show that although many functionals can be tuned to replicate a reference
singlet-quintet gap ∆EHL, the trends upon structural changes are much harder to capture. It is also
observed that only the GGA functionals or hybrids with starkly reduced percentages of non-local
exchange obtain an agreement with the coupled cluster ∆EHL slope (energy gap as a function of the
ligand structure). This observation certainly validates the approach of Jakubikova [9], bearing in mind
that the model system is quite small.

The best performing (parameterized) functionals were the hybrid PBE0(0.20) and the local hybrid
PBE0r with an admixture of 0.09 at the Fe center. The latter has a much-reduced computational cost
and could be readily employed for the simulation of larger systems, even oligo-nuclear SCO complexes.
This is current work in progress in our labs. However, the results also raise some red flags. As it is
visible in Figure 7, the hexaamino complex may only tell part of the story. One could increase the
chemical diversity with other model systems, such as [Fe(H2O)6]2+, [Fe(NCH)6]2+) but these will
not suffice. They lack some very important factors weighing on common SCO complexes, such as
the coordination to conjugated systems or the distortion of the octahedral geometry (due to ligand
constraints and steric effects). Our model distortions provide a proof of principle but only scratch the
surface. The way forward might warrant the inclusion of more realistic models and be more demanding
regarding the multi-dimensional tuning of the local hybrid functional. Imine-based ligands would
be a clear priority in this respect, given the ease in their synthesis and the widespread use in tailored
Fe(II) SCO complexes. One would also have to consider coordination to oxygen (for a recent example
of ligands combining imine and alcohol coordinating moieties, see Ref. [64]), and that alone brings the
number of elements to a total of four, disregarding the hydrogens.

The automated parameterization procedure here applied should effectively deal with increased
dimensionality, when moving to more realistic ligands involving other atom types. In fact,
the [FeII(NH3)6]2+ parameterization was rather trivial and there is room for added challenges.
The question lies more in obtaining the needed reference data. On the basis of coupled cluster,
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if static correlation is kept at bay, explicit correlated local wave function methods [65] could be applied
to extend the study range while sacrificing very little in terms of accuracy.

4. Materials and Methods

4.1. Coupled Cluster Calculations

To reach almost complete basis set limit accuracy and to keep the computational costs as
manageable as possible, explicit correlation methods have been employed [66]. The reference results
for the benchmark have been obtained with the unrestricted coupled cluster F12B method [67]
including single, double and perturbative triple excitations with the fixed amplitude 3C(FIX)
ansatz [68] implemented in MOLPRO [69]. Additional complementary auxiliary basis set (CABS)
singles correction and scaling of the perturbative triples were applied [70]. For the ammonia ligands
the method specific cc-pVTZ-F12 basis sets was used [71]. For iron, the aug-cc-pwCVTZ basis was
chosen [72], which allows for an adequate recovery of the 3s3p correlation. Following the prior work
on explicit correlation methods on transition metal complexes from Bross et al. [73], we used their
aug-cc-pwCVTZ/MP2FIT as the density fitting basis and as the CABS for the resolution of the identity.
For the density fitting of the Fock and exchange matrices def2-QZVPP [74] was used. The Hartree–Fock
calculations, for the recovery of the relativistic contributions to the F12B energy, were carried out with
a cc-pwCVQZ-DK/cc-pwCVQZ [72] basis for iron and cc-pVQZ-DK/cc-pVQZ [75] for the remainder.

4.2. Density Functional Calculations

The ORCA 4.2.0 program package [76,77] was employed for all DFT calculations except the local
hybrid functional PBE0r. The range of functionals in these single point energy calculations included
the GGAs PBE [35] and BP86 [36,37], the meta-GGAs TPSS [38] and M06-L [39], the hybrid GGAs
PBE0 [45,46] and B3LYP [47] (both with varying amounts of exact exchange), and the range-separated
hybrid functional CAM-B3LYP [52] (with variation in the amount of initial exact exchange and in the
distance parameter). The cc-pwCVQZ-DK [72] basis set was used for the Fe atom and cc-pVQZ-DK [75]
for the remaining atoms. Relativistic effects are taken into account by using the second-order
Douglas-Kroll-Hess Hamiltonian (DKH2) [78,79]. The RIJCOSX approximation [80] was used to
speed up calculation time. Grimme’s D3 method with Becke–Johnson damping [40,41] was used
for dispersion correction. By using the ’verytightscf’ keyword, the convergence threshold was
set to 10−9 H.

The calculations with PBE0r were carried out using the Car–Parinello Projector Augmented-Wave
(CP-PAW) code package [81,82]. Initial geometry optimizations were carried out using 12.5%
exact exchange for all atom types. An example of a corresponding input file is given in the
Supplementary Materials.

Supplementary Materials: The following are available online, sample input of CP-PAW calculation, structures of
the hexaamino model under N-N restraints, absolute DFT energies for the different structures.
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Abbreviations

The following abbreviations are used in this manuscript:

SCO spin crossover
HS high spin
LS low spin
DFT density functional theory
RASSCF restricted active space self-consistent field
RASPT2 restricted active space second-order perturbation
CASSCF complete active space self-consistent field
CASPT2 complete active space second-order perturbation
NEVPT2 N-electron valence state perturbation theory
SORCI spectroscopy-oriented configuration interaction
CCSD(T) coupled cluster with single, double and perturbative triple excitations
DMC diffusion Monte Carlo
GGA generalized gradient approximation
LDA local-density approximation
RMSE root-mean-square error
HF Hartree–Fock
CBS complete basis set
CABS complementary auxiliary basis set
DKH2 Douglas-Kroll-Hess Hamiltonian
CP-PAW Car–Parinello Projector Augmented-Wave

Appendix A

As shown in Figure A1 (left panel) the primary trend of the reference energy in dependence
of the nitrogen pair distance is mainly given by the CCSD energy for distances shorter than 2.9 Å.
However, for larger distances the CCSD energy goes into saturation and the overall trend is given by
the decreasing energy contribution of the perturbative triple excitations. Furthermore, the corrections
for the perturbative triples and the relativistic effects are largely geometry-independent.

Figure A1. (Left panel) different energy contributions to the UCCSD(T*)-F12B reference. (Right panel)
energy difference between a relativistic and non-relativistic CCSD(T) calculation for the reference complex.

On the right side of Figure A1 the energy difference between a relativistic and non-relativistic
canonical CCSD(T) calculations for the Fe(II) hexaamino complex is shown. The computation
was performed with a second-order Douglas-Kroll-Hess Hamiltonian (DKH2) [78,79] using
a cc-pwCVTZ-DK/cc-pwCVTZ [72] basis set for the iron atom and a cc-pVDZ-DK/cc-pVDZ [75] basis
for the ligand atoms. The energy difference shows that the correlation energy is largely independent
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from relativistic effects, albeit the reference energy is strongly affected. Thus, it is confirmed as
a reasonable approximation to recover the relativistic effects solely from the reference calculations.
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15. Radoń, M.; Broclawik, E.; Pierloot, K. Electronic Structure of Selected FeNO7 Complexes in Heme and
Non-Heme Architectures: A Density Functional and Multireference ab Initio Study. J. Phys. Chem. B 2010,
114, 1518–1528. [CrossRef] [PubMed]
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