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Abstract
Oculomotor selection exerts a fundamental impact on our experience of the environment. To better understand the underlying
principles, researchers typically rely on behavioral data from humans, and electrophysiological recordings in macaque
monkeys. This approach rests on the assumption that the same selection processes are at play in both species. To test this
assumption, we compared the viewing behavior of 106 humans and 11 macaques in an unconstrained free-viewing task. Our
data-driven clustering analyses revealed distinct human and macaque clusters, indicating species-specific selection strategies.
Yet, cross-species predictions were found to be above chance, indicating some level of shared behavior. Analyses relying on
computational models of visual saliency indicate that such cross-species commonalities in free viewing are largely due to
similar low-level selection mechanisms, with only a small contribution by shared higher level selection mechanisms and with
consistent viewing behavior of monkeys being a subset of the consistent viewing behavior of humans.
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Introduction
Eye movements are an essential aspect of our everyday behav-
ior, because the direction of gaze determines what parts of our
visual environment are processed with high-accuracy foveal
vision. The importance of eye movements is reflected in their
ubiquity (saccades occur at a rate of ca. 3–5 Hz) and in viewing
strategies that are specifically tailored toward behavior (Land
and Hayhoe 2001; Land and Tatler 2001; Sullivan et al. 2012;

Johnson et al. 2014). Understanding the underlying cortical sac-
cade target selection process is therefore fundamental for
understanding vision and human cognition at a larger scale
(Petersen and Posner 2012).

The processes underlying such overt visual selection have
traditionally been approached by behavioral measurements,
mostly performed on humans, and by electrophysiology, per-
formed in macaque monkeys, which are the most prominent
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model system for studying attentional selection (Bisley 2011).
This approach rests on the fundamental assumption that com-
mon neural mechanisms are at play in both species. Only then
is the link of (monkey) neuronal mechanisms to (human) behav-
ior valid. To verify this assumption, it is crucial to investigate
whether the overall behavioral phenomenon to be understood,
overt visual attention, is comparable in human and macaque.
Here, we addressed this issue by comparing patterns of eye
movements recorded from 11 monkeys and 106 human obser-
vers, while they were performing a task that comes natural to
both species: free viewing. Free viewing has the advantage that
it does not require explicit instructions or training. Furthermore,
monkeys do not need to be externally rewarded because they
are intrinsically motivated to freely explore visual scenes. Thus,
free viewing can be completed without instructions, training, or
explicit reward and it therefore remains undefined which parts
of the stimuli should be attended. While tasks that require train-
ing can result in comparable behavior, they potentially mask the
natural modus operandi of overt visual selection. Consequently,
if free-viewing behavior is similar across humans and monkeys,
it is because both species have intrinsically chosen a selection
strategy that emphasizes the same locations, not because the
task dictates which locations promise success. Free viewing
therefore provides an unbiased view of the natural selection pro-
cesses of overt attention in macaques and humans.

To compare viewing behavior across species, we followed a 2-
staged approach. We first compared cross-species similarity in fix-
ation locations. Using data-driven agglomerative clustering, we
found that the 2 species form distinct clusters of viewing behavior,
indicating species-specific selection strategies. Despite these differ-
ences, cross-species predictions were clearly above chance, indicat-
ing shared behavior. Following these observations, we tested in
how far these differences and similarities in viewing behavior can
be understood in terms of different explanatory dimensions, com-
monly assumed to jointly contribute to the guidance of eye move-
ments. Distinctions are typically made between stimulus-
dependent, context-dependent, and geometrical factors. Stimulus-
dependent influences are, for example, the saliency conveyed by
low-level images features (Itti and Koch 2001; Parkhurst et al.
2002), objects (Einhäuser et al. 2008; Nuthmann and Henderson
2010), and stimulus interpretation (Kietzmann et al. 2011). Context-
dependent aspects include the task (Castelhano et al. 2009; Betz
et al. 2010) and scene context (Torralba et al. 2006; Kietzmann and
König 2015). Geometrical aspects include oculomotor biases, like
the center bias of fixations (Tatler and Vincent 2009) and saccadic
momentum (Smith and Henderson 2011; Wilming et al. 2013). All
of these aspects interact in the selection process and consistently
make strong contributions to the guidance of eye movements
(Kollmorgen et al. 2010). These well-established dimensions there-
fore provide a good starting point to understand the observed simi-
larities and dissimilarities across species. However, while low-level
stimulus features are a well-controlled and well-studied explana-
tory dimension, higher level factors are less clearly defined in the
context of free viewing on natural scenes, which comprises the
current data set. We therefore initiate our investigation by compar-
ing the relative contribution of low-level stimulus features and
subsequently test any other residual, presumably higher level, fac-
tors across both species.

To estimate the relative contribution of these different factors,
we first estimated the consistency of viewing behavior within
humans and monkeys. The consistency within a species measures
the similarity of viewing behavior across many observers and
thereby forms an upper bound for the similarity of fixation selec-
tion strategies (Wilming et al. 2011). The reliability of such

consistency estimates depends on the number of observers
(Wilming et al. 2011). In particular, small groups tend to underesti-
mate the consistency within a group of observers and consistency
estimates approach an asymptotic level as the group size increases.
In this study, we compare 11 monkey and 106 human observers
and, to our knowledge, our data set is the first to reach this asymp-
totic level. This analysis revealed an overall reduced consistency in
macaques compared with humans. We then decomposed the
respective upper bound into a stimulus-driven part and residual
viewing behavior that must be driven by the remaining explana-
tory dimensions. These analyses revealed that the predictive power
of low-level features is comparable across species. This implies
that low-level features can explain large parts of the consistent
macaque viewing behavior, but provide comparably limited pre-
dictive power in humans. However, the absolute impact of different
low-level feature dimensions exhibits large similarities across spe-
cies, suggesting that similar low-level selection mechanisms are at
play in both macaques and humans. Following this observation,
we tested whether commonalities across species can be observed
beyond these, presumably shared, low-level mechanisms. We
found that a joint model, combining low-level saliency and cross-
species predictions, that is, data from humans to predict macaques
and data frommacaques to predict humans, only yieldsmarginally
better prediction accuracy than the low-level model alone. Thus,
while our data suggest that human and macaque share common
low-level selection mechanisms, other, potentially higher level
effects only generalize to a small degree across species.

Materials and Methods
Participants

Eye movements were recorded from 11 rhesus monkeys (Macaca
mulatta, 8 male). Recordings were carried out across 3 different
locations. Data from 4 monkeys were recorded at the Yerkes
National Primate Research Center (YNPRC) in Atlanta, USA, in
accordance with National Institute of Health guidelines and pro-
tocols were approved by the Emory University Institutional
Animal Care and Use Committee. Data from 3 additional mon-
keys were recorded at the Washington National Primate
Research Center (WNPRC) in Seattle, USA, in accordance with
National Institute of Health guidelines and protocols were
approved by the Washington University Institutional Animal
Care and Use Committee. Data from 4 additional monkeys were
recorded at the German Primate Center (DPZ) in Goettingen,
Germany, in accordance with European Directive 2010/63/EU,
corresponding German animal welfare law and institutional
guidelines. The animals were group-housed with other macaque
monkeys. The facility provides the animals with an enriched
environment (including a multitude of toys and wooden struc-
tures, natural as well as artificial light, exceeding the size require-
ments of the European regulations, including access to outdoor
space; Calapai et al. 2016). All procedures were approved by the
appropriate regional government office (Niedersaechsisches
Landesamt fuer Verbraucherschutz und Lebensmittelsicherheit,
LAVES). Eye-movement recordings from humans came from 2
previous studies that used the same stimuli and comparable
tasks. We analyzed data from 106 observers, 58 from Açik et al.
(2010) and 48 from Onat et al. (2014). Açik et al. recruited partici-
pants from different age ranges (18 children with mean age 7.6
years, 6 female; 23 university students with mean age 22.1, 11
female; 17 older adults with mean age 80.6, 10 female). Onat
et al. recruited 48 students (mean age 23.1 years, 25 male). The
majority of participants were therefore recruited from the general
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student population at the University of Osnabrück. All partici-
pants (main and control experiments) gave written informed
consent and all experimental procedures for eye-movement
recordings from humans were in compliance with guidelines
described in the Declaration of Helsinki and approved by the eth-
ics committee of the University of Osnabrück.

Stimuli

Stimuli consisted of 192 images from 3 different categories
(64 images in each category). “Natural” scenes were taken from
the “McGill Calibrated Color Image Database” and depict mainly
bushes, flowers, and similar outdoor scenes. “Urban” scenes
depicted urban and manmade scenes taken around Zürich,
Switzerland. “Fractal” images were taken from Elena’s Fractal
Gallery, Maria’s Fractal Explorer Gallery, and Chaotic N-Space
Network available online, and depicted computer-generated
fractals. Figure 1A shows example stimuli from all categories.
Please see Açik et al. (2010) for more details.

Apparatus

Recordings at the Yerkes National Primate Center and the
Washington national primate center were carried out with an
ISCAN infrared eye-tracking system while each monkey sat in a
dimly illuminated room. Monkeys were head fixed during
recordings. Stimuli were presented on a CRT Monitor with a reso-
lution of 800 × 600 pixels and a refresh rate of 120Hz. The viewing
distance was 60 cm. Recordings at the German Primate Center
were carried out in similar conditions but an SR-Research EyeLink
1000 was used for recording of eye movements. The viewing dis-
tance was 57 cm and stimuli were presented on a TFT screen
(60Hz, 1920 × 1080 pixels). The size of the images in degrees of
visual angle was matched between all 3 setups (33.3° × 25°).

Human eye movements were recorded with an EyeLink 1000
system (Açik et al. 2010) or an EyeLink II system (Onat et al.
2014). Human eye-movement recordings were carried out at
the University of Osnabrück, Germany. Onat et al. presented
stimuli on a CRT Monitor with a resolution of 1280 × 960 pixels
and a refresh rate of 85 Hz. The viewing distance was 80 cm.

Figure 1. Study overview. (A) Nine example images from the categories natural scenes, urban scenes, and fractal scenes. (B) One example stimulus with one monkey

(blue) and one human (red) eye-movement trace. The next 3 plots show the density of human fixations on the example image, the density of monkey fixations, and a

predicted saliency map for the example stimulus. (C) The computation of AUC values. Left: Feature values at fixated locations (red) and non-fixated control locations

(black) are classified as fixated or not fixated by a simple threshold (green dotted line). Moving the threshold and plotting the false alarm rate (FPR) against the hit

rate (TPR) generates a receiver operating characteristic (ROC) curve which is shown on the right. The area under this curve (AUC) is a measure of classification quality.

(D) Different predictors and comparisons in this study.
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Açik et al. used a 60-Hz TFT screen with the same resolution
and a viewing distance of 65 cm. The size of the images in degrees
of visual angle was 35° × 26° (Açik et al. 2010) and 30° × 22°
(Onat et al. 2014) for the human recordings.

Procedure and Task

Monkeys performed a free-viewing task and were not explicitly
rewarded for image viewing. Images were shown until a total
looking time inside the image of 10 s had accumulated.
Monkeys at the Washington and Yerkes National Primate
Center carried out a color change task between free-viewing
trials. In this task, the monkey was required to hold a touch bar
and maintain fixation on a small rectangle (0.3°) that appeared
at various locations on the screen. The rectangle changed color
from gray to an equiluminant yellow at a randomly chosen
time between 500 and 1100ms. Upon release of the touch bar
within 500ms after the color change, a drop of blended chow
was delivered as reward (Jutras et al. 2009; Jutras and Buffalo
2010). Monkeys at the German Primate Center carried out a fix-
ation control task that required them to saccade to a point on
the screen and were rewarded for maintaining fixation for
1.25 s. Data from the control trials were not included in subse-
quent analyses.

Macaque recordings were carried out on 3 consecutive days.
This kept sessions short enough for monkeys to attend to all
images without losing interest. On the first 2 days, 66 randomly
sampled images were shown twice and on the last day, 60
images were shown twice. The order of presentation was the
same for all monkeys. Due to a technical error, the data from 1
day from one monkey was discarded. To increase the amount
of available data, and to potentially compare effects of memory
later on, 2 monkeys repeated the experiment after 4 weeks.

Human observers were instructed to “freely view” the same
images for 6 s (Onat et al. 2014). In contrast, Açik et al. (2010)
showed images for 5 s and instructed participants to “study the
image carefully”. After each image, participants were then
shown a 3.2° image patch and had to judge if it was taken from
the image presented just before. We consider the 2 tasks to be
comparable since the patch recognition task does not require
special viewing strategies. In particular, patch locations were
drawn uniformly from the entire image and patches are large
and easily identifiable such that freely inspecting the image
allows successful completion of the task. This was also reflected
by the high task performance of the participants (85% across all
age ranges). Both studies therefore used similar instructions,
and the data were pooled accordingly. All analyses were per-
formed on the first 5 s of image viewing.

Data Pre-processing

Saccade detection for humans was based on 3 measures: eye
movement of at least 0.10°, with a velocity of at least 30°/s, and
an acceleration of at least 8000°/s2. After saccade onset, minimal
saccade velocity was 25°/s. Saccade detection for monkeys was
carried out similarly but we additionally required that each sac-
cade lasted at least 21ms and traveled at least 0.35° of visual
angle. This was necessary to compensate for the lower sampling
rate of the ISCANN system (240Hz vs. 500Hz and 1 kHz).
Samples in between 2 saccades were labeled as fixations.

Monkey eye-tracking data recorded with the additional color
change task were calibrated in 2 steps. Before each recording
session, monkeys carried out a block of color change trials.

Since the color change was subtle, monkeys had to fixate the
rectangle in order to detect the color change. We manually
adjusted the gain and offset of the eye tracker until fixations
were on the color change rectangle. To improve the manual
calibration after the recording, we used the color change trials
between picture presentations. We fitted a 2D affine transform-
ation (least-squares fit) between average eye position after
onset of the color change rectangle and the position of the rect-
angle in visual space. This took care of translations and skew
in the monkey eye-tracking data. Monkeys from the German
Primate Center were calibrated using a 12-point calibration grid
before the task. Human eye tracking was calibrated with a 12-
point grid before the experiment started.

Since the stimulus presentation time was different between
experiments (5, 6, and 10 s), we only used the first 5 s of image
viewing for subsequent analysis. We rescaled all eye-tracking
data to the stimulus size used for monkeys in Atlanta and
Seattle (800 × 600 pixel).

Performance Measure: Computation of AUC Values

This study investigated how well different factors predicted
fixation locations of humans and monkeys. Specifically, we
were interested in the predictive power of bottom-up-salience,
within-species consistency and cross-species consistency and
fixation densities of individual observers. These factors were
quantified by “predictors” (described in detail below) that
assign a score to every location in an image, which scales with
the predicted likelihood of fixating this location. To assess the
quality of each predictor, we evaluated if fixated locations
(“actuals”) received higher predictor scores than non-fixated
control locations (“controls”). We computed the area under
the receiver operating characteristic (ROC) curve (AUC), separ-
ating feature values at actual and control locations, as our per-
formance measure.

The AUC is computed by classifying actual fixation locations
and control locations as fixated or non-fixated based on the
respective score at actual and control locations based on a sim-
ple threshold. Varying this threshold generated ROC curves for
each predictor and the AUC is computed as the area under this
ROC curve. The area sums to 1.0, if the classification is perfect,
that is, the distributions of score values at actual and control
locations are perfectly separated. A value of 0.5 indicates a clas-
sification at a chance level. Perfect misclassification results in
an area under the curve of zero. To account for the center bias
of fixations, control locations were drawn from the spatial bias
of each observer (Tatler et al. 2005; Tatler 2007; Tatler and
Vincent 2009). That is, control data were taken from the same
subject on all other stimuli of the same category. Each predictor
was evaluated for every observer and averaged over all stimuli
within a category. Finally, we here aim at understanding the
factors contributing to the consistent viewing behavior in each
species. We will therefore express the predictive power of indi-
vidual predictors relative to the within-species consistency,
which serves as an upper bound. Since an AUC of 0.5 implies
chance level performance, we subtract 0.5 from both AUC
values before computing the ratio.

The within- and cross-species predictions consist of fixation
densities that are generated by smoothing all fixations that
form a predictor (e.g. all fixations on an image of one species for
the cross-species predictor) with a Gaussian filter of FWHM = 2°
and subsequently normalizing the 2D map to unit volume.
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Consistency Between Individual Observers
and Hierarchical Clustering

To investigate the similarity of viewing behavior of all pairs of
observers, we computed AUC that indicate how well fixations
from observer A on one stimulus predict the fixations from
another observer B on the same stimulus. For each stimulus,
we computed a fixation density map from fixations of observer
A and computed how well the density values separate actual
and control locations from observer B. Averaging across stimuli
within a category yielded 3 similarity matrices with 117 × 117
AUC values each. These matrices are not symmetric since
observer A and B have different control locations that affect the
AUC value. We symmetrized the matrices by computing the
average AUC of A predicting B and B predicting A, as required
for the subsequent hierarchical clustering.

In a second step, we applied hierarchical agglomerative clus-
tering with Ward’s minimum variance criterion to each of the 3
category specific similarity matrices (Ward 1963). Agglomerative
hierarchical clustering starts with individual observers and
repeatedly merges them into clusters. In each iteration, clusters
from the previous iteration (starting with individual observers)
are merged such that the total within cluster variance increases
as little as possible.

For technical reasons, we could not include all human
observers in the clustering. Açik et al. (2010) balanced stimulus
presentation across observers, such that pairs of observers
saw the entire data set. This implies that these pairs cannot
predict each other since they did not see the same images.
Agglomerative hierarchical clustering cannot easily deal with
such missing values unless they are imputed, and the imput-
ation strategy used can affect the clustering. To circumvent
this ambiguity, we decided to use only a subset of the 117 × 117
similarity matrices, excluding observers that had missing
values. Notably, however, the main results reported here hold
true even if the additional observers are included, independent
of the imputation strategy.

Cross- and Within-Species Consistency

How well fixation locations from one species predicted loca-
tions from the other was quantified with a cross-species pre-
dictor. Computing a fixation density with all fixations from one
species on the image in question generated the cross-species
prediction for a specific image. This yielded a score for each
location in a visual stimulus, which was subsequently used to
compute the cross-species AUC. The within-species prediction
was similar, but used fixations from the own species (without
the subject currently being evaluated). This within-species con-
sistency forms an effective upper bound for the predictability
of viewing behavior (Wilming et al. 2011).

The within-species consistency AUC is a biased estimator
that tends to produce smaller values with fewer observers. To
allow meaningful comparisons between humans and monkeys,
we subsampled our human data set to fewer observers (see
Statistical Comparisons).

Feature-Fixation Correlations

To compare the influence of image features on viewing behav-
ior, we computed how well different features predicted fixation
locations. In total, we computed 16 different features on 3 spa-
tial scales. First, we computed luminance, blue-yellow, red-
green, and saturation channels of all stimuli. A first group of

features represents a smoothed (Gaussian filter, σ є {8 pixel, 16
pixel, 32 pixel}) version of these simple features. A second group
of features is computed by computing contrast in a Gaussian cir-
cular aperture (σ є {8 pixel, 16 pixel, 32 pixel}) on the luminance,
blue-yellow, red-green, and saturation channels. Contrast was
computed according to the following formula:

σ σ= ( ( ) − ( ) )C G X G X, , ,2 2 1/2

where G convolves the input X with a Gaussian kernel with
standard deviation σ. The third group represents the second-level
contrast maps (contrast of the contrast maps, σ є {38 pixel, 76 pix-
el, 151 pixel}), which describe texture contrast. A fourth group
consists of an edge detection filter (Sobel filter) and the intrinsic
dimensionality 0–2 of local image patches (cf. Onat et al. 2014).
Intrinsic dimensionality describes how well a local patch is
described by an edge, corner, or surface. Each feature was com-
puted on 3 different spatial scales. This was achieved by down
sampling of the original stimulus with a Gaussian pyramid up to
2 times. Each step of the pyramid halves the length and the
width of the stimulus yielding the high (no down sampling),
medium (once), and low (twice) spatial scale. We then computed
the AUC for predicting fixation locations from each feature. This
yielded a vector of 48 AUC values for each observer and category.

We then compared AUC values across monkey and human
observers to investigate to what extent different features indi-
cate similar predictive power, and therefore suggest similar
selection mechanisms. AUC values <0.5 indicate that a feature
is anti-predictive of fixation locations, that is, would be predict-
ive if feature maps were multiplied with −1. This has an
important implication for comparing features between species.
The AUC value of features that are more predictive, for
example, in monkeys, will be closer to one compared with the
human feature AUC values. Those features that are more anti-
predictive in monkeys will be closer to zero. If features are
more effective in one species, independent of whether they are
predictive or anti-predictive, feature AUCs will fall on a line
that pivots around 0.5. In a regression that predicts monkey
feature AUC values based on human feature AUC values such
an increase in effectiveness would be demonstrated with a
slope that is different from one. Regression coefficients larger
than one indicate that features effective in humans are more
effective in monkeys; coefficients smaller than one indicate
that humans are more driven by bottom-up features.

We therefore repeatedly (N = 1000) regressed the pattern of
average monkey feature-fixation AUCs onto an average of
feature-fixation AUC vectors from 11 randomly sampled human
observers. Subsampling AUC values from human observers
allowed us to partially estimate the variance introduced by only
having 11 monkey observers. Finally, we thus tested whether
regression coefficients were different from one with a 2-sided
t-test and computed the average variance explained by the
regression models.

Salience Model

The details of the salience model have been described previously
(Wilming et al. 2013). Briefly, the bottom-up salience model con-
sists of a weighted linear combination of the set of 48 features
described above. Weights were obtained by applying a logistic
regression, predicting whether an observation (vector of feature
values) was taken from a fixation or from a control location.
Control locations were sampled from the spatial bias of fixa-
tions, that is, data from the same subject recorded on other
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stimuli. The respective feature weights were obtained for each
species, observer and stimulus category separately. To evaluate
the performance of the saliency model, we performed a leave-
one-out cross-validation on the level of observers. This ensured
that data from the observer to be predicted were never used dur-
ing weight estimation. Thus, weights were estimated with data
from all other subjects, which allowed us to focus on bottom-up
influences that are shared across observers in each species.

Statistical Comparisons

Because we had different numbers of observers across species,
we needed to correct for potential statistical differences intro-
duced by this imbalance. We accomplished this in 2 ways. First,
we bootstrapped 95% confidence intervals (CIs) for human AUC
values by repeatedly selecting 11 random human observers
(with replacement) and averaging their AUC values. This esti-
mated the distribution of average AUC values to be expected
had only 11 human observers participated in the experiment.
Mean monkey AUC values falling outside of the 95% CI for
humans were interpreted as support for the hypothesis that
moneys and humans show a true species difference. For visual-
ization purposes, we also bootstrapped 95% CIs for monkey
observers by repeatedly sampling 11 monkey observers with
replacement. Furthermore, estimates of within-species consist-
ency, measured via AUC, exhibit a dependency on the number
of observers used for prediction: fewer observers produce on
average smaller AUC values than larger group sizes (Wilming
et al. 2011). When comparing humans with monkeys, any differ-
ence in within-species consistency is therefore potentially due
to different sample sizes. To account for this possibility, we esti-
mated the effect of smaller group sizes in our human data. We
sampled groups of observers with N = 11 observers 500 times. In
each group, we estimated the consistency between human
observers. We were also interested in the development of the
performance of within-humans consistency over the number of
observers used for computing the prediction. We therefore add-
itionally subsampled each group and predicted each observer in
the group with different numbers of observers from the same
group. We predicted each observer in a group with 1, 2, 3, …, 10
randomly sampled observers. These subsamplings yielded 500
estimates for each number of predicting observers, which we
used to determine intervals that contained 95% of the samples
around the estimated mean. Because the estimated mean
appeared to follow an exponential function across the number
of observers used for prediction, we also fitted an exponential
function to the data. This was done to aid data visualization.

Combined Cross-Species and Salience Model and Model
Comparison

We found that the bottom-up saliency prediction and the
cross-species prediction gave comparable AUC values for pre-
dicting fixation locations of both species. We were therefore
interested in evaluating whether the cross-species prediction
and the bottom-up saliency model explained unique or shared
aspects of the viewing behavior. To investigate this issue, we
estimated the predictive power of a combined model, including
both predictors in a logistic regression, again classifying image
locations as fixated or non-fixated. In detail, to classify fixation
and control locations of one human observer, we trained a sali-
ency model on all other human observers and used all monkey
fixation data to compute the cross-species prediction. The
resulting model therefore contained 2 predictors: bottom-up

saliency and cross-species predictions. Conversely, to classify
monkey fixation locations, we used the data of all other mon-
keys to train the saliency model together with all human fix-
ation data as cross-species prediction (for a schematically
depiction of the approach, see Fig. 1D). We predicted each indi-
vidual observer using a leave-one-observer-out cross-
validation. For each logistic regression computed, we standar-
dized the mean and standard deviation of the 2 predictors.

This analysis allowed us to assess whether the combination of
bottom-up salience and the cross-species prediction improves
over using either predictor alone. To ensure that a larger number
of free parameters in the combined model did not provide a pre-
dictive advantage, despite reporting cross-validated test perform-
ance, we fitted an additional model in which we combined 2
bottom-up salience models: one trained on the same-species data
and a second one trained on the cross-species data. This joint
model has the same number of free parameters as the original
joint model (combining bottom-up saliency and cross-species
predictions) and therefore allowed us to verify that any observed
improvements are due to additionally explained fixation loca-
tions, rather than being of pure technical nature. Our rationale for
combining the 2 bottom-up saliency models was that the cross-
species bottom-up salience model can only capture those aspects
of the cross-species prediction that are driven by bottom-up sali-
ence. Any improvements of the cross-species + salience model
over such a cross-salience + within-salience model must there-
fore be due to factors captured in the cross-species prediction
that are not due to bottom-up influences.

Control Experiment: Influence of Head Restraint

We conducted a control experiment to investigate whether the
difference in the usage of head restraints across species may
explain the results observed. Since the results of this experi-
ment are, strictly speaking, not necessary to evaluate the main
results we report them here. The influence of head restraints
was accomplished by comparing human viewing behavior with
and without head restraints (head-fixed vs. head-free condi-
tion). Participants freely viewed all images from the urban and
fractals category and additionally carried out a guided viewing
task, which required them to fixate a dot on the screen that
changed position as soon as the eyes landed on its location.

Participants, Apparatus, and Stimuli
We recruited 19 participants (12 female, 7 male, mean age 24,
ranging from 18 to 41). Participants watched all images from
the urban and fractals category. Stimuli were displayed on a
BenQ XL2420T with a resolution of 1920 × 1080 (53.7° × 30.2°).
Viewing distance was 60 cm. Gaze position was tracked with a
remote SR-Research EyeLink 1000 (SR Research Ltd., Ottawa,
ON, Canada) with a sampling rate of 500Hz. During the head-
fixed condition, participants bit into a mouth guard that was
individually fitted to their teeth. The mouth guard was then
attached to a chin rest that was used as an additional restraint.
During the head-free condition, chin rest and mouth guard
were removed and participants were only instructed to sit still.

Procedure and Task
During the experiment, participants viewed all images in 2
blocks of 64 images that corresponded to the 2 different condi-
tions. Stimuli, condition, and category order were randomized
but images from one category were kept as sub-blocks within
each condition block. Stimuli and condition order were counter-
balanced across subjects such that pairs of participants saw all
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128 images. Images were shown for 6 s and were preceded by a
cross that had to be fixated before a trial started. After partici-
pants viewed all images in a condition block they carried out 10
trials of a guided viewing task. A dot appeared on the screen,
which changed position as soon as the participants gaze loca-
tion was within 2.2° of the dot. Participants had to “chase” the
dot, which changed position 200 times. This allowed us to col-
lect data from 2000 saccades per subject per restraint condition.
Subjects were instructed to view images freely. The eye tracker
was calibrated before each condition block with a 13-point cali-
bration grid (validation error below 0.55°). The entire experiment
took about 60–70min with briefing, fitting of the mouth guard,
experiment, breaks, and debriefing.

Analysis and Results
We analyzed the timing of fixations, the distribution of fixation
locations, and the saccadic main sequence in both restraint con-
ditions. Fixation durations were analyzed by computing a cumu-
lative histogram for each participant and restraint condition
(Supplementary Fig. 1A). Plotting these against each other showed
almost perfectly straight lines along the diagonal. To statistically
corroborate this, we fitted a regression on a per subject basis and
computed the variance explained by the regression line. The line
fits had an average slope of 1.01 (SD = 0.05) and provided an
exceedingly good fit (r2 > 0.99). Systematic deviations caused by
condition differences would curve the relationship between
cumulative fixation durations and would therefore not be well
described by a linear relationship. The distribution of fixation
locations was analyzed by computing within-condition and
across-condition AUC prediction scores in analogy to the within-
species and cross-species AUC scores. Specifically, we computed
how well participants in the head-free and head-fixed condition
predicted each other and how well participants from the
head-fixed condition predicted the head-free condition and vice
versa. We used leave-one-out cross-validation for all AUC scores.
This yielded 19 AUC scores per comparison, which we compared
by plotting their cumulative histograms. Additionally, we com-
puted paired t-tests which did not reject the null hypothesis of no
difference between conditions (Supplementary Fig. 1B and C;
urbans: within <-> within: P > 0.4, cross <-> within head fixed:
P > 0.19, cross <-> within head free: P > 0.84; fractals: within <->
within: P > 0.21, cross <-> within head fixed: P > 0.14, cross <->
within head free: P > 0.38). We also compared the saccadic main
sequence, that is, saccade amplitude versus peak velocity,
between head-fixed and head-free conditions. The main
sequence in both conditions was highly similar within subject
(Supplementary Fig. 1D, r2 > 0.98). In summary, fixing the head in
a central position in front of the screen did not change viewing
behavior in an appreciable way in this experiment.

Results
We began our comparisons of viewing behavior between spe-
cies by comparing how well the viewing behavior of individual
observers can be predicted by fixation locations from another
observer. Each observer in the study, monkey and human,
viewed 64 images from 3 different categories (natural, urban,
and fractal scenes; example images in Fig. 1A). For each image,
we computed the density of fixations across space from one
observer (see Fig. 1B for 2 example densities) and used this fix-
ation density as a predictor for fixation locations of another
observer. Prediction accuracy was quantified by computing the
AUC, separating fixation density values at fixation locations of
the predicted observer from density values at fixation locations

on other images viewed by the same observer (“control loca-
tions”; see Fig. 1C). The choice of control locations accounts for
the influence of the center bias in fixation selection (Tatler
et al. 2005; Tatler and Vincent 2009). AUC values around 0.5
indicate chance prediction performance, whereas values close
to 1 indicate perfect separation of actual and control fixations.
Thus, if the viewing behavior of one observer is similar to the
viewing behavior of another, high AUC values can be expected.
We computed AUC values for all pairs of observers, yielding 3
similarity matrices (Fig. 2A), one for each stimulus category,
that show how well each observer predicted each other obser-
ver. We then applied hierarchical agglomerative clustering to
these similarity data to test for groups of participants with
similar viewing behavior and rearranged the similarity matri-
ces accordingly (see Materials and Methods for more details).
This data-driven approach resulted in humans and monkeys
sorted into different top-level clusters for natural and urban
stimuli (Fig. 2B). The cluster structure for fractals is similar, but
3 human observers are part of the top-level monkey cluster and
are then separated at the next level. In all 3 categories, monkeys
and humans predicted each other less compared with the same
species predicting itself (unpaired t-tests comparing within-
species vs. cross-species, all Ps < 0.05 with Bonferroni–Holm cor-
rection for 6 comparisons; average AUC values; humans = H;
monkeys = M; naturals: H<->M = 0.539, H<->H = 0.579, M<->M =
0.615; urbans: H<->M = 0.589, H<->H = 0.699, M<->M = 0.626;
fractals: H<->M = 0.612, H<->H = 0.658, M<->M = 0.622).
Concentrating only on the monkey clusters, that is, the right
branch of the top-level cluster revealed that monkeys were
split into 2 groups in all stimulus categories. Interestingly, the
same monkeys are assigned to the 2 groups, with the exception
of the natural stimuli where one monkey switches clusters.
The 2 top-level monkey clusters separate monkeys from the US
laboratories (identical rearing conditions; cluster 1) from the
macaques at the DPZ, who are, however, joined by 2 other US
monkeys (cluster 2) on naturals and urbans and one other
monkey for fractals. Differences between monkeys might
therefore be in part explained by housing and rearing condi-
tions at the different recording sites. Yet, comparably small
numbers of monkeys in the respective clusters do not lend
themselves to reliable statistical inference and make it difficult
to distinguish natural variation from systematic influences. We
therefore do not explore distinctions between monkey clusters
any further in this manuscript. Overall, our findings suggest
that viewing behavior of monkeys and humans is only compar-
able to a limited extent, and that viewing behavior across mon-
keys is not homogeneous.

The clustering analysis raised the question of which aspects
of viewing behavior between humans and monkeys are com-
parable and which are not. To address this question, we inves-
tigated how well viewing behavior of both species can be
predicted by factors that are known to drive fixation selection
strategies in humans. Figure 1D shows a summary of all com-
parisons performed.

We started by quantifying the similarity of viewing behavior
across observers within each species individually (Fig. 1D, blue
line). In contrast to the cluster analysis, this “within-species
consistency” was computed by predicting individual observers
from the data of all other observers. Again using AUC, this
allowed us to estimate similarities in viewing behavior within a
group, not just behavior shared between pairs of observers
(Wilming et al. 2011). At the same time, the within-species
consistency is the best-known predictor of individual viewing
behavior in humans (Onat et al. 2014). Intuitively, the consistency
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is high when all individuals in a group share the same viewing
behavior and thus select the same fixation locations. Applied to
monkeys and humans, respectively, this analysis revealed that
the consistency between humans was higher than between mon-
keys (<H>naturals = 0.658, <H>urbans = 0.767, <H>fractals = 0.727,
<M>naturals = 0.598, <M>urbans = 0.680, <M>fractals = 0.664; Fig. 3
top panels, blue symbols, and bars; Table 1 summarizes AUC
values numerically; unpaired t-tests P < 0.05 with Bonferroni–
Holm correction). To exclude the possibility that the estimate
of the within-monkey consistency was lower simply because
we had less observers available to estimate shared viewing
behavior, we estimated the within-human consistency also
with fewer observers (Fig. 3, lower right plot in each panel).
The difference between within-human and within-monkey
consistency persisted even when the number of predicting
participants was kept identical in both species, that is, using
only 10 human observers for the prediction (Fig. 3, lower right
plot in each panel). In particular using groups of 11 humans
where each observer is predicted by the remaining 10 yielded
consistency estimates that were very close to those when 105
observer predicted 1 observer (mean difference in AUC: 0.002,
0.0001, 0.01). These results demonstrate that for equal sample
sizes intra-species predictability is higher for humans than
monkeys.

In a next step, we computed how well viewing behavior of
one species predicts that of the other species, that is, cross-
species consistency (Fig. 1D, red lines). For all observers and
images, we computed how well the fixation density of all fixa-
tions of the respective other species on the stimulus separated
actual and control fixation locations. We then averaged across
stimuli and members of the predicted species. This analysis
quantifies the amount of shared viewing behavior between spe-
cies. We found that the cross-species prediction was below the
within-species consistency for both species and all categories

(Fig. 3 top panels, red symbols and bars; <M->H>naturals = 0.579,
<M->H>urbans = 0.666, <M->H>fractals = 0.672, <H->M>naturals =
0.551, <H->M>urbans = 0.626, <H->M>fractals = 0.614; paired
t-tests all Ps < 0.05 with Bonferroni–Holm correction for 6 tests).
In total, the cross-species consistency (M->H) reached 50%,
62%, and 76% of the within-human consistency and 51%, 70%,
and 70% of the within-monkey consistency for the 3 stimulus
classes, respectively (we subtract the chance level of 0.5 from
each AUC value before computing ratios to avoid artificial infla-
tion of these scores). This observation holds not only on aver-
age, but for all individual observers, that is, the cross-species is
smaller than the within-species consistency for all 11 monkey
and all 106 human observers.

Interestingly, we observed that monkeys predicted each
other as well as they predicted humans, that is, the cross-
species (M->H) score is comparable to the within-monkey score
(unpaired t-tests all P > 0.05 with Bonferroni–Holm correction
for 3 tests; bootstrapped CIs are overlapping; mean differences
of AUC values are −0.019, −0.014, and 0.008 w.r.t to naturals,
urbans, and fractals). This is a first indication that the consist-
ent viewing behavior of monkeys is a subset of the consistent
viewing behavior of humans. In combination, the cross-species
scores and the extent to which monkeys predict humans
suggests that both species are driven by similar factors.
Furthermore, the larger consistency of human viewing behavior
signals the presence of additional factors that are not present
in monkeys. The presence of such factors would also explain
why the cross-species score is not symmetric.

To better understand similarities and differences across spe-
cies, we made use of a bottom-up salience model to test in how
far low-level factors could explain the effects observed. We
computed a set of 42 different visual features organized on 3 dif-
ferent spatial scales (see Materials and Methods). The resulting
saliency model consists of a weighted sum of these features.

Figure 2. Similarity of viewing behavior between all observers for different categories of stimuli. (A) Schematic of a 4 × 4 similarity matrix to visualize who predicts

who in the full matrix below, for example, H->M depicts areas where human observers predict monkey observers. (B) Full similarity matrix constructed from AUC

values between pairs of observers (left = natural scenes, center = urban scenes, right = fractals). The intensity of individual points encode how well an observer pre-

dicts another. The species is encoded by different colors on the side of each matrix (purple = humans; red = monkeys). Rows and columns are sorted according to the

results of hierarchical clustering. The dendrogram on the top shows the cluster structure, links are colored according to their species composition (purple only

humans, red only monkeys, black mixed). Monkeys and humans are sorted into different clusters by the hierarchical clustering algorithm.
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We chose this type of model because it allowed us to estimate
weights for each observer and category independently with a
logistic regression that optimally separated actual and control
fixations based on their predicted empirical saliency values
(rightmost panel in Fig. 1B shows one example saliency map).
Furthermore, our model comprised “pure” bottom-up features
that do not exploit semantic aspects of the stimuli (e.g. faces,
objects, or text). Whereas more complex models can indeed
improve predictive performance (as indicated by the success of
deep network models, e.g. Kümmerer et al. 2014), they mix low-
er and higher level features in their prediction. This runs coun-
ter to the goal of the current work, which was to separate lower
and higher level factors. Our model is therefore designed to act
as a probe into bottom-up influences on viewing behavior, not
to maximize prediction accuracy. To ensure comparability to
the within and cross-species similarity, we use a leave-one-
observer-out cross-validation scheme to fit the saliency model.
That is, predictions for a specific observer are independent from

the data of that observer. The salience model therefore must
predict behavior of an observer it has not encountered before,
which implies that the salience models can only capitalize on
viewing behavior that is consistent between observers. The
within-species consistency therefore acts as an upper limit on
the performance of the salience model (Wilming et al. 2011).
Once fitted, the saliency model was applied in the same manner
as the within- and cross-species predictions (Fig. 1D, black line).
Correspondingly, the model prediction accuracy was computed
based on AUC values. Figure 3 shows the results of the bottom-
up saliency model. Black triangles and circles show the respective
mean performance for humans and monkeys (<H>naturals = 0.591,
<H>urbans = 0.669, <H>fractals = 0.646, <M>naturals = 0.565,
<M>urbans = 0.644, <M>fractals = 0.640). CIs for human and mon-
key bottom-up salience AUCs are largely overlapping (Fig. 3,
black bars, unpaired t-tests all P > 0.05 with Bonferroni–Holm
correction). To further investigate the similarity of the bottom-
up salience model in both species, we compared the predictive

Figure 3. Predicting monkey and human fixation locations with different predictors. Columns show results for natural, urban, and fractal scenes (from left to right).

The bar plots on the top show mean value and 95% CIs for individual predictors. CIs are computed by repeatedly sampling 11 observers to allow better comparison

between human and monkey data. Three scatter plots at the bottom show individual comparisons. Red dots show individual monkeys (monkeys are indexed by

hue). Green contours show a density estimate of the distribution of human AUC; each shade increases the contained amount of observers by 10%. Bottom right plots

in each panel show within-human estimates when the number of predicting observers is subsampled. Dashed blue lines indicate our adjusted estimate for the

within-human consistency had only 11 observers participated.

Table 1 Summary of AUC scores and percentages relative to the within-species consistency of different predictors

Category Within Cross Salience Salience + cross

Human Monkey Human Monkey Human Monkey Human Monkey

Natural 0.658 0.598 0.579 0.551 0.591 0.565 0.60 0.574
50% 51% 57% 67% 66% 75%

Urban 0.767 0.680 0.666 0.626 0.669 0.644 0.69 0.653
62% 70% 63% 80% 69% 85%

Fractal 0.727 0.664 0.672 0.614 0.646 0.640 0.67 0.649
76% 70% 64% 85% 76% 91%
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power of individual features that enter the salience model by
computing feature-specific AUC values. We found that the
resulting feature-fixation AUCs were highly correlated across
species on urban scenes and fractals and to some extent on
natural scenes (Fig. 4). A linear regression between feature AUC
values of humans and monkeys showed that the pattern of
human feature-fixation AUC values explained 94% and 97%
of the variance between the monkey feature-fixation AUC
values for urbans and fractals and 27% on natural scenes. To
estimate the distribution of regression slopes, we recalculated
the linear regression on randomly sampled subsets of 11
human and monkey observers (sampling with replacement,
see Materials and Methods for more details). The distributions
of slopes, across bootstrapping samples, on urban and fractal
scenes were approximately centered on 1 for urban and frac-
tal scenes but 1 was not contained in the 95% interval for
natural scenes (average slopes are: 0.52, 0.90, and 0.97 for nat-
urals, urbans, and fractal scenes, respectively). These results
show that feature-fixation AUCs were almost identical for
urban and fractal scenes and thus the models were nearly
identical for these stimulus categories. The finding of smaller
feature AUC values on naturals is in line with the observation
that, in general, all AUC values are lower on natural scenes
compared with urban and fractal scenes. Yet, the pattern of
results within this category is highly similar to the other 2
categories (see Fig. 3A). This suggests that the observed differ-
ences are not related to species differences but rather to an
overall category difference. In summary, the results of the
bottom-up saliency models and similarities in feature AUCs
suggest that viewing behavior that is shared between species
is to a large extent driven by bottom-up salience.

Interestingly, bottom-up salience reached 67%, 80%, and
85% of the within-monkey consistency AUC scores, suggesting
that bottom-up salience explains a large part of the consistent
viewing behavior between monkeys. In humans, however, we
observed only 57%, 63%, and 64%, indicating that human view-
ing behavior is strongly guided by factors beyond low-level fea-
tures (unpaired t-tests, all P < 0.05 with Bonferroni–Holm
correction for 3 tests). These numbers imply that, across cat-
egories, 23% of the consistent viewing behavior in monkeys
cannot be explained by bottom-up salience while the gap is
39% for humans. This demonstrates that although the bottom-
up saliency models of both species are similar and explain
viewing behavior to a comparable degree, the gap to the
respective within-species consistency leaves a large fraction of
human viewing behavior to be explained.

With this in mind, it is interesting to know whether there
are other factors contributing to successful cross-species pre-
dictions, besides a presumably shared bottom-up selection
mechanisms. Despite the fact that bottom-up salience AUC
values were larger than the cross-species prediction for the
majority of monkeys (8/11, 8/11, 10/11 w.r.t. naturals, urbans,
and fractals), both factors might explain different aspects of
viewing behavior. To explicitly investigate this possibility, we
tested one additional linear model that combined bottom-up
saliency and the cross-species prediction (Fig. 1D, yellow lines).
We reasoned that performance of the combined model could
only improve over the individual predictors, if both predictors
explain, at least in part, different aspects of the consistent
viewing behavior. The combined model used a logistic regres-
sion to obtain optimal weights for z-scored bottom-up salience
values (with the weighting of the individual features optimized

Figure 4. Comparison of bottom-up salience across species. Panels show feature-fixation AUC values for humans and monkeys (see Materials and Methods for feature

definitions). Red lines show the best fit linear model that explains monkey feature-fixation AUCs based on human feature-fixation AUCs. The shaded blue area con-

tains 95% of all bootstrapped regression lines created by repeatedly subsampling human and monkey observers with replacement. Small insets show the boot-

strapped distribution of slopes of the linear regression. The area between the red bars contains 95% of bootstrapped slopes. Columns show different categories

(naturals, urbans, and fractals).
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as before, that is, by leave-one-observer-out cross-validation),
and z-scored cross-species predictions. Figure 5 plots the
bottom-up salience values against cross-species predictions
for fixated locations and non-fixated locations. Model predic-
tions can best be understood in terms of a classifier that com-
pares the respective bottom-up salience and cross-species
values of a test fixation against a given threshold (here zero for
both models). Fixations with values exceeding the threshold
are classified as “fixated”, all others as “non-fixated” (thresh-
olds shown in Fig. 5 as dashed black lines; red coloring indi-
cates more actuals than control fixations, blue the reverse). As
can be seen in Fig. 5, a model combining low-level saliency and
cross-species predictions can only improve over the 2 individual
models when a combination of both models, that is, a slanted
decision function, classifies more points correctly (i.e. better
separates red from blue points). We found that the combined
model exhibited only small, but consistent, improvements over
bottom-up salience and the cross-species prediction alone, for
all monkeys on all categories (paired t-tests all P < 0.05 with
Bonferroni–Holm correction for 6 tests; differences of combined-
salience AUC values, naturals: 0.008, urbans: 0.009, fractals:
0.009). The facts that the decision function of the combined

model is slanted (Fig. 5B, green lines), and that the combined
model improves over its constituent models, together imply that
bottom-up salience and the cross-species prediction both signifi-
cantly contribute to the prediction. Yet, it has to be considered
that the dynamic range, that is, the difference between the
bottom-up saliency model and the intra-species predictability is
rather small. As a consequence, the performance of the com-
bined model was very close to the within-monkey estimate
(naturals: 0.574 vs. 0.598; urbans: 0.653 vs. 0.68, fractals: 0.649
vs. 0.664; 75%, 85%, and 91%, respectively). For humans, the
combined model showed marginal improvements over either
bottom-up salience or the cross-species prediction (naturals:
0.01, paired t-tests against bottom-up salience P < 0.05; urbans:
0.02, paired t-tests against bottom-up salience P < 0.05; frac-
tals: 0.001, paired t-tests against bottom-up salience P < 0.05;
Bonferroni–Holm correction for 6 tests) but was still far away
from the within-human estimate (naturals: 0.60 vs. 0.66,
urbans: 0.69 vs. 0.77, fractals: 0.67 vs. 0.73; 66%, 69%, 76% rela-
tive to the within-human estimate). For both species, these
results demonstrate that shared factors, beyond bottom-up
selection, are very limited. Rather, shared viewing behavior is
predominantly driven by low-level selection.

Although very little improvement was observed with the
combined model, with respect to the question whether or not
monkeys are a good model system for human fixation behav-
ior, it is nevertheless interesting to investigate why the com-
bined cross-species + salience predicts monkey fixations better
than bottom-up salience alone. In particular, we wanted to test
whether the human-cross-species prediction contains explana-
tory power beyond its bottom-up salience component. As a ref-
erence, we compared the combined model (saliency + cross-
species) with a model that combines 2 saliency models: a
cross-species (trained on all human observers) and a within-
species model (trained on leave-one-observer-out data from
monkey observers), as described earlier. We found that the
combined-salience model did not use the cross-species salience
values for its prediction. This implies that the combined-
salience model is identical to the one obtained by using
within-monkey salience only (the decision function of the
combined-salience model falls onto the decision function of
the within-monkey salience model in Fig. 5; put differently,
the weight assigned to the cross-species bottom-up saliency
model by the logistic regression is close to zero). This suggests
that the little improvement of the combination of the cross-
species prediction and bottom-up salience over bottom-up
salience alone is due to factors that are contained in human
viewing behavior but not in our bottom-up salience model.

Taken together, bottom-up salience is able to account for
most of the consistent viewing behavior between monkeys,
while human viewing behavior makes only a small contribu-
tion when predicting monkey behavior. For humans, too, the
addition of monkey data adds little to improve predictive per-
formance beyond a pure bottom-up model. Moreover, while
consistent macaque viewing behavior is well understood in
terms of low-level salience, human viewing behavior is more
complex. Thus, our data indicate that both species share simi-
lar low-level selection mechanisms, whereas similarities
beyond low-level are very limited.

Discussion
The present data revealed that humans and monkeys form dis-
tinct clusters of viewing behavior, where predictions within
each species are significantly better than predictions across

Figure 5. Combination of different models to predict monkey fixation locations.

(A) Cartoon drawing to exemplify how 2 models form a combined model. Model

A and B both project data into a space in which samples are classified as fixated

or non-fixated based on their position w.r.t a threshold (dashed lines). The com-

bined model weights and sums both models to potentially improve its predic-

tion. The slope of the resulting decision function (green line) depicts the relative

impact of the 2 combined models. (B) Performance of the combined model on

different stimulus categories (naturals, urbans, fractals). Color encodes the log

likelihood of observing fixations with a specific combination of predictor values

in the data set (e.g. log(P(fix | cross prediction, within salience)/P(control | cross

prediction, within salience)) in the top row and log(P(fix | cross-salience, within

salience)/P(control | cross-salience, within salience)) in the bottom row), that is,

redish colors imply more actual fixations and blueish colors non-fixated

locations. Top row: Each panel shows the seperating decision function of a

within-species bottom-up model and the cross-species prediction (vertical and

horizontal dashed lines, respectively). Diagonal green lines show the decision

function of the model that combines within-species saliency and the cross-

species prediction. The bottom row shows decision functions for within-species

salience and cross-species salience models. Here, the decision function (green

line) for a model that combines within-species and cross-species salience falls

onto the function for the within-species salience model, that is, the combined

model utilizes exclusively the species-specific saliency model, neglecting the

respective model derived from the other species.

Contribution of Low- and High-Level Image Content to Eye Movements Wilming et al. | 289



species. Within species, we found that patterns of human fix-
ation locations are more consistent than those of monkeys,
even when we account for the low number of monkey obser-
vers. This implies that humans and monkeys do not use identi-
cal selection strategies in a free-viewing task; a task that
requires no training for monkeys or humans. Despite these
overall differences, prediction accuracies across species are sig-
nificantly above-chance level. This implies that monkeys and
humans do share some degree of fixation selection strategies.
To investigate in what aspects the selection strategies of these
species overlap we compared the predictive power of a set
of low-level stimulus features. This revealed remarkable simi-
larities across species. First, the overall predictive power of
low-level saliency models is comparable. Additionally, the pre-
dictive power of individual low-level features was strongly cor-
related between species, indicating that similar low-level
selection mechanisms are at work in both species. Following
this, we compared whether the fixation data of one species
adds explanatory power beyond such low-level factors for the
respective other species. Here we found only small improve-
ments in predictive power, indicating that, at least in the cur-
rent data set, low-level salience is the most important shared
component in the guidance of eye movements across species.
Taken together, our findings show that free viewing of pictures
produces consistent behavior in monkeys that can be related to
human behavior in a meaningful way. The large influence of
bottom-up salience in both monkeys and humans, the large
number of data points that can be acquired in a short period of
time and the fact that no training is required, make free view-
ing in monkeys very well suited to the study of the neural basis
of low-level stimulus-driven oculomotor control. Yet, our
results reveal important limitations, as viewing commonalities
were limited to low-level selection, excluding shared higher
level selection mechanisms. They, therefore, have large impli-
cations for future electrophysiological studies in macaques and
behavioral comparisons across species.

Although the current study is the largest to date, it is not the
first to compare viewing behavior in macaques and humans.
Consistent with our findings, other groups, too, reported above-
chance predictions of fixation points by salience models in both
humans and monkeys for videos clips (Berg et al. 2009) and gray
scale images (Einhäuser et al. 2006). However, there is disagree-
ment in how far the effects are qualitatively comparable in
humans and monkeys. Einhäuser et al. (2006) argue that both
species are equally driven by bottom-up salience, while Berg
et al. (2009) report that bottom-up salience is more predictive for
human eye-movement behavior. Using a considerably larger set
of observers and colored stimuli from 3 different categories, we
do not find consistent differences across species that would
argue for a true species differences. It should be noted that the
low-level AUC values reported previously (Einhäuser et al. 2006;
Berg et al. 2009) indicate only a small influence of stimulus fea-
tures (AUC ≤ 0.59) in monkeys during free viewing. This is in
line with the current monkey data for natural scenes. However,
looking at urbans and fractals, we observe larger AUC values for
a bottom-up salience model (AUC = 0.65 and 0.64). Bottom-up
salience could therefore be more prominent in guiding monkey
eye movements than previously thought, dependent on the
stimulus category used. Together with the large correlations in
the feature AUCs across species, this data suggest comparable
low-level selection mechanisms in macaques and humans.
Moreover, while we only observe very small similarities beyond
low-level stimulus features in the current free-viewing para-
digm, it is possible that other experimental settings or

categories reveal larger consistencies. For instance, similarities
between monkeys and humans exist during the viewing of
faces (Guo et al. 2003, 2009; Ghazanfar et al. 2006; Shepherd
et al. 2010) and scenes containing simple social interactions
(McFarland et al. 2013; Solyst and Buffalo 2014). It should be
noted, however, that these studies did not estimate the contri-
bution of low-level saliency. It therefore remains unclear in
how far the shared viewing behavior observed was driven by
shared low-level selection mechanisms.

The interpretation of our results depends on how similar
recording conditions were between species. Naturally, there are
a few differences between humans and monkeys that we were
not able to control. These include the fact that monkeys needed
to be head fixed during recordings, that monkeys had less
exposure to the kinds of stimuli that were presented, and that
monkeys received reward during calibration trials and, more
generally, underwent extensive training regimes for other tasks.
We will discuss these issues in turn in the next paragraphs.

First, all of the monkeys were head fixed during the record-
ings. The human participants, however, were only instructed
not to move their head, but were otherwise not constrained. To
rule out the possibility that a head restraint interferes with fix-
ation selection, we conducted a control experiment in which
participants viewed urban scenes and fractals, with and with-
out a head restraint (custom molded bite-bar and chin rest). We
analyzed 3 aspects of fixation behavior: fixation durations,
selected fixation locations, and the saccadic main sequence.
Fixation durations were almost identical between conditions
(linear fits had an average slope of 1.01 with SD = 0.05, r2 > 0.99,
Supplementary Fig. 1). We compared fixated locations across
conditions by computing within-condition and across-
condition AUC prediction scores, in analogy to the within-
species and cross-species AUC scores. The resulting AUC values
were very similar (Supplementary Fig. 1B and C; P > 0.21 for all
comparisons), again indicating no systematic differences across
conditions. Finally, no significant differences were observed
between the saccadic main sequence between species in both
conditions (within subject r2 > 0.98). In summary, fixing the
head in a central position in front of the screen did not change
the overall pattern of viewing behavior. We therefore conclude
that the difference in head restraint between species is not
relevant for the interpretation of our results.

Second, compared with humans, monkeys have limited prior
exposure to the kind of stimuli shown in this study (urban and
natural stimulus categories). Thus, differences in specific asso-
ciations, memories, and emotions, triggered for humans but not
for macaques, might explain why we find consistent viewing
behavior beyond bottom-up salience in humans but not in mon-
keys. What speaks against this possibility is the fact that we
observed a very similar pattern of results across all categories,
including fractal stimuli, for which both species have little to no
prior exposure. Accordingly, our results with fractal stimuli cor-
roborate our conclusions even for previously unknown stimulus
categories.

Third, to achieve successful calibration, monkeys needed
either to detect a color change of a rectangle located at random
screen locations or fixate a cross at random screen locations.
More generally, monkeys were previously trained in a wide var-
iety of tasks that associated specific actions with rewards (DPZ
monkeys: classification of 2D and 3D random dot stimuli,
grasping tasks, and fixation task; YNPRC and WNPRC: delayed
match to sample, change detection, visual search, and covert
attention task). Is it therefore conceivable that monkeys
searched the free-viewing stimuli for reward? We believe that
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this is unlikely for several reasons. First, monkey fixation dura-
tions on free-viewing images are much shorter than the min-
imum fixation requirements during reward trials (color change
task: 500–1100ms required, average fixation duration: 225± 153
ms; fixation task: 1250ms required, average fixation duration:
257± 214ms). This shows that the monkeys did not simply
transfer the temporal properties of reward providing actions to
the free-viewing trials. Second, if operant conditioning engen-
dered specific consistent viewing strategies, we should have
observed elevated within-monkey AUC scores. In contrast,
within-monkey AUC scores did not substantially exceed the
scores for bottom-up saliency. Finally, speaking specifically
against an influence of interleaved calibration, the fixation
epochs during calibration trials are in close analogy to drift cor-
rection procedures that preceded stimulus presentation in the
human experiments. Forced fixation epochs were therefore
present in both human and monkey experiments. Hence, we
believe that neither training for other tasks nor calibration pro-
cedures undermine the interpretation of our results.

Our results suggest an effective, and comparable saliency
model in both species. However, whether or not bottom-up sali-
ence has a causal influence on eye movements is a matter of
ongoing debate (Li 2002; Einhäuser and König 2003; Mazer and
Gallant 2003; Henderson et al. 2007; Einhäuser et al. 2008; Arcizet
et al. 2011; Schütz et al. 2011; Betz et al. 2013). In many cases,
salience models have been used successfully to predict eye-
movement targets during free viewing of images (Itti and Baldi
2005; Kienzle et al. 2007; Zhang et al. 2008; Bruce and Tsotsos
2009; Hwang et al. 2009; Judd et al. 2009; Zhao and Koch 2011).
Furthermore, recent reports provided evidence for the existence
of a functional saliency map in the human brain (Bogler et al.
2011; Ossandón et al. 2012). In summary, there is good evidence
for the existence of saliency-like selection mechanisms in the
brain. However, even if saliency turns out to be a correlate, for
example, of object detection (Einhäuser et al. 2008; Nuthmann
and Henderson 2010), rather than a true selection mechanism,
the current finding of above-chance cross-species predictions,
and comparable low-level AUC values still indicate shared
mechanisms in the guidance of overt visual attention.

The results that we have observed are on a purely behav-
ioral level, and it therefore remains an open question as to how
these map onto the neural level. On the one hand, it is known
that large homologies exist between human and monkey early
visual (Orban et al. 2004) and higher level ventral visual areas
(Kriegeskorte et al. 2008; Kornblith et al. 2013; Yovel and
Freiwald 2013; Cichy et al. 2014). It is therefore tempting to
hypothesize that the observed similarities in viewing behavior
are the result of similar neural processing of visual space. On
the other hand, marked differences exist across species. The
temporal lobe is much larger in humans (Rilling and Seligman
2002) and at the same time, fewer and less clear homologous
brain structures exist in dorsal areas (Orban et al. 2004). For
example, human LIP possesses more retinotopically organized
areas than monkey LIP (Patel et al. 2010). And, on a larger scale,
oculomotor control in the human brain appears to be more
lateralized while the monkey brain shows more contralateral
specificity (Kagan et al. 2010; Oleksiak et al. 2011). It is therefore
possible that the human brain possesses different mechanisms
to drive eye-movement behavior. In this context, our behav-
ioral findings also resonate well with the absence of a ventral
attention network in macaque monkeys but overlap of the dor-
sal attention network in both species during a paradigm that
required detection of target images in a rapidly presented
stream of images (Patel et al. 2015). Many areas in the dorsal

attention network are retinotopically organized and the net-
work likely contains a priority map for guiding eye movements
(Bisley 2011), making it a plausible candidate for stimulus-
driven control of eye movements. Thus, while the current set
of results suggests similar low-level selection mechanisms, our
analyses additionally suggest that homologies w.r.t. higher
level selection of fixation locations are limited and cannot be
assumed a priori for electrophysiological studies on macaques.
Comparisons of the neural basis of higher level oculomotor
selection mechanisms across species should therefore be valid-
ated by behavioral comparisons—ideally with tasks that
require the same amount of training for both species. Finally,
we would like to emphasize that our results do not preclude
similarities between species during other cognitive tasks (e.g.
Wisconsin Card Sorting Task (Nakahara et al. 2002) or covert
attention tasks (Caspari et al. 2015)).

Supplementary Material
Supplementary material are available at Cerebral Cortex online.
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