
Vol:.(1234567890)

Clinical Research in Cardiology (2021) 110:270–280
https://doi.org/10.1007/s00392-020-01747-1

1 3

ORIGINAL PAPER

Functional and prognostic implications of cardiac magnetic resonance 
feature tracking‑derived remote myocardial strain analyses in patients 
following acute myocardial infarction

Torben Lange1  · Thomas Stiermaier2,3  · Sören J. Backhaus1 · Patricia C. Boom1 · Johannes T. Kowallick4 · 
Suzanne de Waha‑Thiele2,3 · Joachim Lotz4 · Shelby Kutty5 · Boris Bigalke6 · Matthias Gutberlet7 · 
Hans‑Josef Feistritzer8 · Steffen Desch8 · Gerd Hasenfuß1 · Holger Thiele8 · Ingo Eitel2,3  · Andreas Schuster1 

Received: 30 June 2020 / Accepted: 14 September 2020 / Published online: 20 October 2020 
© The Author(s) 2020

Abstract
Background Cardiac magnetic resonance myocardial feature tracking (CMR-FT)-derived global strain assessments provide 
incremental prognostic information in patients following acute myocardial infarction (AMI). Functional analyses of the 
remote myocardium (RM) are scarce and whether they provide an additional prognostic value in these patients is unknown.
Methods 1034 patients following acute myocardial infarction were included. CMR imaging and strain analyses as well as 
infarct size quantification were performed after reperfusion by primary percutaneous coronary intervention. The occurrence 
of major adverse cardiac events (MACE) within 12 months after the index event was defined as primary clinical endpoint.
Results Patients with MACE had significantly lower RM circumferential strain (CS) compared to those without MACE. 
A cutoff value for RM CS of − 25.8% best identified high-risk patients (p < 0.001 on log-rank testing) and impaired RM 
CS was a strong predictor of MACE (HR 1.05, 95% CI 1.07–1.14, p = 0.003). RM CS provided further risk stratification 
among patients considered at risk according to established CMR parameters for (1) patients with reduced left ventricular 
ejection fraction (LVEF) ≤ 35% (p = 0.038 on log-rank testing), (2) patients with reduced global circumferential strain 
(GCS) > −  18.3% (p = 0.015 on log-rank testing), and (3) patients with large microvascular obstruction ≥ 1.46% (p = 0.002 
on log-rank testing).
Conclusion CMR-FT-derived RM CS is a useful parameter to characterize the response of the remote myocardium and allows 
improved stratification following AMI beyond commonly used parameters, especially of high-risk patients.
Trial registration ClinicalTrials.gov, NCT00712101 and NCT01612312
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Graphic abstract
Defining remote segments (R) in the presence of infarct areas (I) for the analysis of remote circumferential strain (CS). 
Remote CS was significantly lower in patients who suffered major adverse cardiac events (MACE) and a cutoff value for 
remote CS of − 25.8% best identified high-risk patients. In addition, impaired remote CS ≥ − 25.8 % (Remote −) and pre-
served remote CS < − 25.8 % (Remote +) enabled further risk stratification when added to established parameters like left 
ventricular ejection fraction (LVEF), global circumferential strain (GCS) or microvascular obstruction (MVO).

Keywords CMR · Feature tracking · Myocardial infarction · Remote strain · Risk prediction

Introduction

Cardiovascular diseases are a leading cause of premature 
death and require an accurate risk stratification for an opti-
mal guideline-based treatment strategy [1]. In patients with 
acute myocardial infarction (AMI) various methodologies 
for advanced risk stratification including left ventricular 
ejection fraction (LVEF), global strain analyses as well as 
morphologic quantifications are established. Cardiac mag-
netic resonance (CMR) imaging has emerged as a useful 
and widespread modality for the assessment of both myo-
cardial morphology and functional performance with an 
incremental prognostic value [2–6]. CMR feature tracking 
(CMR-FT)-derived strain analyses have been shown to pro-
vide useful and superior functional analyses in a wide range 
of cardiovascular diseases [7–10]. Tracing left-ventricular 
(LV) epi- and endocardial borders of the myocardium allows 
a comprehensive deformation assessment on a global and 
regional level. Additionally, CMR image analyses enable 
distinguishing between infarcted and remote non-infarcted 
myocardium (RM) based on late gadolinium enhancement 
(LGE) imaging [11]. While standard parameters such as 

LVEF and LGE-based infarct size (IS) are well established 
for risk stratification, it is important to remember that they 
measure global functional performance and extent of irre-
versible injury, respectively. RM function assessment on the 
other hand allows insights into the remaining viable myo-
cardial tissue, which is not directly affected by a perfusion 
injury during AMI and may possess critical compensatory 
potential. Consequently, the aim of this study was to investi-
gate RM CMR-FT-derived strain patterns and to assess their 
functional and prognostic implications in a large cohort of 
patients following AMI.

Methods

Study population

Data from 1034 patients, who underwent CMR imaging 
after undergoing primary percutaneous coronary interven-
tion (PCI), were analyzed in this study. All patients were 
enrolled within the AIDA-STEMI (Abciximab Intracoronary 
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versus intravenously Drug Application in STEMI) and 
TATORT-NSTEMI (Thrombus Aspiration in Thrombus 
Containing Culprit Lesions in NSTEMI) trials. The aims of 
these previous studies were on the one hand to compare the 
value of intravenous versus intracoronary abciximab appli-
cation in STEMI patients, which did not reveal a consider-
able difference between both strategies (AIDA-STEMI trial), 
and on the other hand to examine the effect of aspiration 
thrombectomy versus conventional PCI, which also did not 
show significant differences regarding IS, MVO or clini-
cal outcome (TATORT-NSTEMI trial). More information 
including detailed study protocols and results have been pre-
viously reported [12, 13]. All patients gave written informed 
consent before participating. Both studies were approved by 
all involved local ethical committees and complied with the 
principles of the Helsinki Declaration.

CMR imaging protocol

All patients underwent an identical CMR protocol within 
10 days after the index event. This protocol was applied 
on 1.5 or 3.0 T scanners at every study site and included 
balanced steady-state free precession sequences (SSFP) of 
long-axis 2- and 4-chamber views (CV) as well as short-
axis (SAX) stacks. Typical SSFP sequence parameters were 
as follows: repetition time 3.2 ms, echo time 1.2 ms, flip 
angle 60°, 8 mm slice thickness in SAX. T2-weighted tri-
ple short-tau inversion recovery images (repetition time 2 
RR intervals; echo time 80 ms; flip angle 90°) were gener-
ated. For the analysis of myocardial salvage, infarct size and 
microvascular obstruction (MVO), inversion recovery gradi-
ent echo sequences were acquired 10–20 min after a gado-
linium bolus injection (0.15 mmol/kg bodyweight, repetition 
time 2.8 ms; echo time 1.1 ms; flip angle 15°; slice thickness 
8 mm, with individually adjusted inversion times typically 
between 200 and 300 ms). More detailed information regard-
ing study and scan protocols have been previously published 
[12, 13]. Typical contraindications to CMR applied to this 
study as previously detailed [13].

CMR analysis

SAX segments were defined according to the American 
Heart Association 16-segment model [14] with segments 
containing LGE considered as infarct segments. RM seg-
ments were defined as unenhanced segments with one unen-
hanced border segment between them and infarct segments, 
respectively (Fig. 1). For the purposes of this paper, we 
defined circumferential strain (CS) in RM segments as RM 
CS and CS of infarct segments as infarct CS. CS of all seg-
ments is indicated as global circumferential strain (GCS). 
Strain analysis was performed in balanced SSFP-derived 
SAX stacks using dedicated evaluation software (2D CPA 

MR, Cardiac Performance Analysis, Version 1.1.2, TomTec 
Imaging Systems, Unterschleissheim, Germany). To assess 
SAX-derived CS, LV epi- and endocardial borders were 
manually tracked in basal, midventricular and apical slices 
to obtain global as well as regional strain values. After man-
ual delineation of the myocardial borders at end-diastole, a 
semi-automated tracking algorithm was applied for tracing 
the contours throughout the cardiac cycle. Visual evaluations 
of the semi-automatically tracked contours were performed 
and, in case of insufficient border tracking, manual adjust-
ments to the delineations were made with subsequent reap-
plication of the algorithm. All peak strain measurements 
are presented in percent and based on an average of three 
repeated and independent tracking repetitions. 

For infarct area detection and quantification, dedicated 
post-processing software was used  (QMass®, Version 
3.1.16.0, Medis Medical Imaging Systems, Leiden, Nether-
lands) to manually segment LV epi- and endocardial borders 
in SAX orientation. LGE segments containing myocardial 
infarction area were defined using a full width at half maxi-
mum (FWHM) approach with excellent reproducibility [15]. 
The slice containing the highest signal intensity infarct area 
enhancement was chosen and regions of interest including 
infarct area and normal myocardium were marked to define 
thresholds for enhanced and non-enhanced myocardium. 
After applying semi-automated infarct area detection and 
performing a visual accuracy review, manual adjustments 
were made as required. Regions with MVO were manually 
included, since signal intensity is not increased in these 
areas.

Clinical endpoints and outcome

The occurrence of MACE was defined as the primary clini-
cal endpoint of this study. All-cause mortality, reinfarction 
or congestive heart failure associated with rehospitalization 
within the first year after AMI was counted as MACE. In 
case of multiple occurrences of MACE within one patient, 
a prioritization was made (death > reinfarction > conges-
tive heart failure) with each patient only accounting for one 
MACE.

Statistical analyses

Categorical parameters are presented in absolute num-
bers and percentages. Continuous parameters were tested 
for normal distribution using Shapiro–Wilk test and are 
reported as mean with interquartile range (IQR). For the 
assessment of correlations, the Spearman’s rank correla-
tion coefficient was used. Non-parametric Mann–Whitney 
U test was used for comparisons of continuous data sets. A 
previously determined cutoff value for GCS (> − 18.3%) 
based on area under the curve analyses was used [10]. 
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Similarly, an optimal dichotomization cutoff value for RM 
CS was determined by Youden’s Index. Moreover, high- 
and low-risk patient groups were categorized for LVEF, 
IS and MVO. For LVEF, subgroups with ≤ 35% and > 35% 
were analyzed according to established clinical practice. 
IS and MVO cutoff values were calculated using Youden’s 
Index. The Kaplan–Meier method was applied to analyze 
occurrence of clinical endpoints within predefined groups 
and log-rank testing for assessing differences between 
groups. Univariate hazard ratios (HRs) based on Cox pro-
portional regression models were calculated in the context 
of MACE and mortality evaluation. Only variables with 
a p value < 0.05 were included in further multivariable 
regression calculations. Multivariable calculations com-
prised a stepwise approach with thresholds of 0.05 and 
0.1 for p values to keep or remove variables, respectively. 
Due to significant correlations of CS values and LVEF, 
only one of these parameters was included in multivariable 
regression models in each case. All provided p values are 
two-sided with an alpha level < 0.05 considered statisti-
cally significant. IBM SPSS Statistic Software Version 24 
(International Business Machines, Armonk, New York, 

USA) and Microsoft Excel (Microsoft, Redmond, Wash-
ington, USA) were used for all statistical calculations.

Results

Study population

Among the overall cohort of 1235 patients enrolled in this 
CMR substudy (795 STEMI and 440 NSTEMI patients), 
1034 patients with both SSFP and corresponding inversion 
recovery gradient SAX stacks covering base to apex were 
identified and included in the final analysis. 869 patients 
(648 STEMI and 221 NSTEMI) had evidence of infarct 
area on LGE imaging with a maximum extent allowing 
the definition of at least one RM segment (Fig. 2). Base-
line characteristics of patients with RM are displayed in 
Table 1. The study cohort included mainly male patients 
(73.4%) with a median age of 64 years (IQR 52–72 years). 
Hypertension (p = 0.007) and diabetes (p = 0.03) were 
more frequent, whereas male patients (p = 0.008) and non-
smokers (p = 0.013) were less frequent among patients with 

Fig. 1  Definition of remote myocardium according to late gadolinium 
enhancement. Based on the AHA 16-segment model, myocardium 
was classified as infarcted (I) or remote (R) segments. After deline-
ation of epi- (green) and endocardial borders (red), infarct area was 
plotted (red area within myocardium) and a bull’s eye displaying 

affected myocardial tissue (in %) was generated. The adjacent seg-
ments next to a RM segment within one layer and the adjacent seg-
ments of more basal or apical slices had to be unaffected by infarct 
area enhancement to define RM myocardium. S septal, L lateral
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MACE during 1-year follow-up. Killip class on admission 
(p < 0.001) and the number of diseased vessels (p = 0.015) 
were significantly higher in patients with MACE.

RM functional analyses

CS was considerably higher in RM segments compared to 
infarct segments and GCS (− 29.7% [− 25.0% to − 34.4%] 
versus − 18.7% [− 14.7% to − 23.2%] for infarct segments 
versus − 23.8% [− 19.4% to − 28.2%] for GCS; p < 0.001 for 
both). Similar significant differences were present between 
patients with and without MACE (Table 2). All CS values 
were significantly reduced in patients with MACE during 
the 1-year follow-up (p < 0.001 for GCS and infarct CS; 
p = 0.007 for RM CS). IS and MVO were larger in patients 
with MACE (20.6% versus 14.2% for IS, p = 0.001 and 1.5% 
versus 0.4% for MVO, p = 0.01). Myocardial salvage index 
was higher in patients without MACE during follow-up 
(53.1 versus 41.8, p = 0.01). RM CS correlated significantly 
with LVEF (p < 0.001; r = − 0.3), whereas there was no sig-
nificant correlation with infarct size (p = 0.257; r = − 0.039) 
(Fig. 3).

Prognostic implications of RM strain

During the 1-year follow-up, 58 MACE were documented 
(death = 24, reinfarction = 16, congestive heart failure = 18). 
Using Youden’s Index, a cutoff value for RM CS of − 25.8% 
best classified the cohort into high- and low-risk groups 

according to RM function (Fig. 4). Further high- and low-
risk grading according to infarct characteristics resulted in 
optimal cutoff values for a dichotomization with 19.2% (of 
LV mass) for IS and 1.46% (of LV mass) for MVO. 

Univariable cox regression analyses in the overall 
cohort revealed an association of RM CS with MACE (HR 
1.05, 95% CI 1.07–1.14, p = 0.003). IS (HR 1.04, 95% CI 
1.02–1.06, p < 0.001), MVO (HR 1.1, 95% CI 1.03–1.17, 
p = 0.004) and myocardial salvage index (HR 0.99 (0.97–1.0, 
p = 0.013) were also associated with MACE (Table  3). 
Among patients considered at risk according to dichoto-
mization cutoffs using established parameters, univariable 
regression-based hazard calculations identified RM CS 
as a strong predictor of MACE in patients with reduced 
LVEF ≤ 35% (HR 1.07 95% CI 1.02–1.13, p = 0.01), with 
reduced GCS > − 18.2% (HR 1.05 95% CI 1.02–1.09, 
p = 0.03) and with large MVO > 1.46% (HR 1.07 95% CI 
1.02–1.1, p = 0.003). In patients with a small IS < 19.2% 
(HR 1.07 95% CI 1.04–1.2, p = 0.001), RM CS was also 
found to be a strong predictor of MACE. Applying mul-
tivariable regression calculations, Killip class (HR 1.49 
95% CI 1.00–2.22, p = 0.048) and LVEF (HR 0.93, 95% CI 
0.90–0.96, p < 0.001) remained significant after correction 
for all univariate significant parameters in the overall cohort 
(Table 3). 

Furthermore, RM CS provided additional risk strati-
fication among high-risk patients by identifying sub-
groups with higher jeopardy for the occurrence of MACE 
using Kaplan–Meier plots (log-rank test p = 0.015 for 
GCS > − 18.3%; p = 0.038 for LVEF ≤ 35% and p = 0.002 
for MVO ≥ 1.46%). Regarding IS, RM CS provided addi-
tional risk stratification in small IS < 19.2% (p = 0.001). For 
both large IS and small MVO, a trend toward a statistical 
significance was documented (p = 0.085 for IS ≥ 19.2% and 
p = 0.074 for small MVO < 1.46%). Significant differences 
and trends are visualized by Kaplan–Meier plots in Fig. 5.

Discussion

This study investigated CMR-based RM functional strain 
characteristics and their prognostic implications in a large 
cohort of patients following AMI.

While commonly available CMR parameters assess the 
extent of irreversible damage (e.g., IS or MVO) or the over-
all global functional performance (e.g., LVEF or global 
strain), we suggest focusing on the compensatory capacity of 
the remaining viable myocardium using remote strain CMR-
FT. Indeed, RM CS strongly predicts MACE and moreover 
enables an extended risk stratification by better stratifying 
high-risk patients following AMI exceeding the information 
derived from irreversible damage or global performance. 
A failing or compensating RM may represent an important 

Fig. 2  Flowchart
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Table 1  Baseline characteristics

Data are presented as n/N (%) or median (interquartile range). For comparison of patients with MACE and 
no MACE, p values were calculated; bold numbers indicate a statistically significant difference. Mann–
Whitney U test was used for testing continuous variables, and categorical variables were tested using Chi 

Variables All patients
(n = 869)

MACE
(n = 58)

No MACE
(n = 811)

p value

Age 64 (52–72) 72 (61.8–77.3) 63 (52–72) < 0.001
Sex (male) 638/869 (73.4) 34/58 (58.6) 604/811 (74.5) 0.008
Cardiovascular risk factors
 Active smoking 354/801 (44.2) 14/51 (27.5) 340/750 (45.3) 0.013
 Hypertension 613/868 (70.6) 50/58 (86.2) 563/810 (69.5) 0.007
 Hyperlipoproteinemia 322/864 (37.3) 19/58 (32.8) 303/806 (37.6) 0.462
 Diabetes 199/868 (22.9) 20/58 (34.5) 179/810 (22.0) 0.03
 Body mass index (kg/m2) 27.5 (25–30.5) 27 (25.2–31.2) 27.5 (25.0–30.5) 0.977

Previous myocardial infarction 59/869 (6.8) 5/58 (8.6) 54/811 (6.7) 0.566
Previous PCI 67/869 (7.7) 4/58 (6.9) 63/811 (7.8) 0.81
Previous CABG 14/869 (1.6) 1/58 (1.7) 13/811 (1.6) 0.944
ST-segment elevation 648/869 (74.6) 40/58 (69.0) 608/811 (75.0) 0.31
Systolic blood pressure (mmHg) 132 (117–150) 129 (104–144) 133 (118–150) 0.024
Diastolic blood pressure (mmHg) 80 (70–88) 75.5 (62–84) 80 (70–89) 0.025
Heart rate (bpm) 76 (68–86) 80 (70–96) 76 (67–86) 0.001
Time symptoms to balloon* (min) 180 (110–315) 191 (120–370) 180 (109–310) 0.354
Door-to-balloon time* (min) 30 (22–42) 28.5 (21.7–40) 30 (22–42) 0.609
Killip class on admission < 0.001
 1 772/869 (88.8) 39/58 (67.2) 733/811 (90.4)
 2 67/869 (7.7) 12/58 (20.7) 55/811 (6.8)
 3 18/869 (2.1) 3/58 (5.2) 15/811 (1.8)
 4 12/869 (1.4) 4/58 (6.9) 8/811 (1.0)

Diseased vessels 0.015
 1 444/869 (51.1) 23/58 (39.7) 421/811 (51.9)
 2 263/869 (30.3) 16/58 (27.6) 247/811 (30.5)
 3 162/869 (18.6) 19/58 (32.8) 143/811 (17.6)

Affected artery 0.089
 Left anterior descending 360/869 (41.4) 29/58 (50.0) 331/811 (40.8)
 Left circumflex 162/869 (18.6) 13/58 (22.4) 149/811 (18.4)
 Left main 4/869 (0.5) 0/58 (0.0) 4/811 (0.5)
 Right coronary artery 340/869 (39.1) 15/58 (25.9) 325/811 (40.1)
 Bypass graft 3/869 (0.3) 1/58 (1.7) 2/811 (0.2)

TIMI flow grade before PCI 0.81
 0 489/869 (56.3) 36/58 (62.1) 453/811 (55.9)
 1 93/869 (10.7) 5/58 (8.6) 88/811 (10.9)
 2 162/869 (18.6) 9/58 (15.5) 153/811 (18.9)
 3 125/869 (14.4) 8/58 (13.8) 117/811 (14.4)

Stent implanted 853/869 (98.2) 57/58 (98.3) 796/811 (98.2) 0.485
TIMI flow grade after PCI 0.314
 0 16/869 (1.8) 0/58 (0.0) 16/811 (2.0)
 1 19/869 (2.2) 2/58 (3.4) 17/811 (2.1)
 2 76/869 (8.7) 8/58 (13.8) 68/811 (8.4)
 3 758/869 (87.2) 48/58 (82.8) 710/811 (87.5)

Medication
 Aspirin 869/869 (100.0) 58/58 (100.0) 811/811 (99.9)
 Clopidogrel/prasugrel/ticagrelor 869/869 (100.0) 58/58 (100.0) 811/811 (100.0)
 Beta-blocker 829/867 (95.6) 56/58 (96.6) 773/809 (95.6) 0.719
 ACE-inhibitor/AT1 antagonist 813/867 (93.8) 55/58 (94.8) 758/809 (93.5) 0.73
 Aldosterone antagonist 111/867 (12.8) 21/58 (36.2) 90/809 (11.1) < 0.001
 Statin 828/867 (95.5) 55/58 (94.8) 773/809 (95.6) 0.798

Time to MRI (days) 3 (2–4) 3 (2–4) 3 (2–4) 0.262
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target for a more tailored therapeutic treatment using inten-
sified heart failure medication or device therapy following 
AMI. Therefore, we believe that RM CS should complement 
the available CMR risk stratification armamentarium, allow-
ing a more in-depth functional and prognostic characteriza-
tion of the myocardium after AMI.

CMR-FT-derived strain and tissue assessments are estab-
lished techniques with increasing diagnostic and prognostic 
implications in various cardiac diseases [16]. Considering 
both functional myocardial performance parameters and tis-
sue characterization, there is a fundamental debate about 
which method is superior to analyze myocardial viability. 
Kim et al. demonstrated the prediction of improved myocar-
dial contractility following revascularization depending on 
the transmurality of hyperenhanced areas on late gadolinium 
enhanced images [17]. On the contrary, myocardial func-
tional performance, especially of the remaining viable tissue, 
was found to be superior to IS quantification by Wellnhofer 

square test
CABG coronary artery bypass graft, MACE major adverse cardiac event, PCI percutaneous coronary inter-
vention, TIMI thrombolysis in myocardial infarction
*Only assessed in ST-segment elevation myocardial infarction patients (n = 648)

Table 1  (continued)

Table 2  Cardiac magnetic resonance results

Values are displayed as median (interquartile range). p values were calculated for the comparison between patients with and without MACE 
using the Mann–Whitney U test. Numbers in bold indicate a statistical significance in difference. CS circumferential strain, GCS global circum-
ferential strain, MACE major adverse cardiac events

All patients MACE No MACE p value

GCS % − 23.8 (− 19.4 to − 28.2) − 18.3 (− 14.4 to − 22.3) − 24.2 (− 19.8 to − 28.6) < 0.001
Remote CS % − 29.7 (− 25.0 to − 34.4) − 26.0 (− 20.6 to − 33.8) − 30.0 (− 25.2 to − 34.5) 0.007
Infarct CS % − 18.7 (− 14.7 to − 23.2) − 14.5 (− 11.1 to − 19.0) − 19.0 (− 15.1 to − 23.4) < 0.001
Area at risk, % LV mass 30.4 (21.5–43.6) 33.9 (24.7–46.2) 30.2 (21.2–43.2) 0.105
Infarct size, % LV mass 14.5 (7.7–22.0) 20.6 (10.7–28.9) 14.2 (7.5–21.7) 0.001
Microvascular obstruction, % LV mass 0.4 (0.0–2.0) 1.5 (0.0–3.3) 0.4 (0.0–1.9) 0.011
Myocardial salvage, % LV mass 14.3 (8.2–23.1) 15.2 (7.8–19.7) 14.2 (8.3–23.6) 0.525
Myocardial salvage index 52.6 (33.6–68.4) 41.8 (22.8–59.7) 53.1 (35.0–68.8) 0.012

Fig. 3  Correlation of remote CS 
with left ventricular (LV) ejec-
tion fraction and infarct size. 
Correlation of remote CS with 
left ventricular ejection fraction 
(left) and infarct size (right). CS 
global circumferential strain, % 
LV percent left ventricular mass

Fig. 4  Remote CS and survival after acute myocardial infarction. 
Incidence of MACE (major adverse cardiac events) according to high 
and low remote circumferential strain (CS)
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et al. [18]. These landmark studies have implications beyond 
the diagnosis of viable myocardium and prediction of func-
tional recovery in chronic coronary artery disease [19] and 
it is interesting to interpret their findings in the context of 
AMI. A combination of regional functional and morphologic 
CMR parameters provides a more in-depth characterization 
of AMI-related injury which cannot be entirely captured 
with just injury (e.g., IS, MVO or myocardial salvage) or 
function (e.g., LVEF or GCS) quantification.

While global strain values or IS only indirectly repre-
sents the compensatory capacity of the post-infarct heart, 
functional remote area analyses may provide the tools to 
identify patients at high risk and patients that are likely to 
overcome the acute event [20]. Based on our data showing 
distinct differences between RM, infarct and global strain as 
well as the association of high remote strain with favorable 
outcome supports the assumption of a compensatory role of 
RM strain following AMI.

There is a clear need to improve the identification of 
patients at risk and recent evidence suggests that cur-
rent approaches such as an LVEF cutoff of 35% for ICD 
device therapy may not be sufficient for this purpose [21]. 
RM CS, especially, allowed further risk stratification 
in patients that are already considered high-risk based 
on additional conventional CMR parameters including 
reduced LVEF, GCS and MVO. However, RM CS did 
not provide significantly better discrimination of patients 

with large IS. This may be explained by the definition 
of RM CS requiring non-infarcted segments between 
infarcted and remote segments which limits the number 
of remote segments particularly in patients having large 
IS. Notwithstanding it is important to note that there was 
no association of RM CS and IS, suggesting that the com-
pensation of AMI by remote function is a distinct patho-
physiological feature, which is irrespective of the size of 
myocardial injury.

Considering RM as a potential target for treatment strat-
egies, several studies have demonstrated the beneficiary 
effects of therapeutic approaches, for example inducing 
a reduced heart rate, [22], anti-apoptotic effects in RM 
[23] or remodeling prevention via an angiotensin–AT1-
receptor-dependent mechanism [24]. Further explorations 
of RM strain characteristics and their features as targets of 
pharmacological treatment are necessary in future studies.

On a technical level, RM CS analysis can be easily per-
formed within routinely acquired standard SSFP images 
using routine post-processing. Hence, no extra CMR 
sequences are required and data analyses can be easily 
conducted with clinically approved software solutions. 
Especially patients having reduced cardiac performance 
and being classified to high-risk groups according to com-
monly used parameters can be assessed precisely and effi-
ciently. Furthermore, since fully automatic strain and func-
tion quantification with dedicated post-processing software 
is feasible, these time-saving and highly reproducible 

Table 3  Univariate and 
multivariate Cox regression 
analysis for prediction of 
MACE

Bold values indicate statistical significance in difference
CI confidence interval, CS circumferential strain, GCS global circumferential strain, LVEF left ventricular 
ejection fraction

Variables Univariate hazard ratio (CI) p value Multivariate haz-
ard ratio (CI)

p value

Age 1.055 (1.031–1.080) < 0.001
Sex (male) 2.0 (1.186–3.373) 0.009
Smoking 0.472 (0.255–0.872) 0.017
Hypertension 2.661 (1.262–5.613) 0.01
Diabetes 1.804 (1.05–3.1) 0.033
Systolic blood pressure (mmHg) 0.984 (0.973–0.996) 0.008
Diastolic blood pressure (mmHg) 0.981 (0.962–1.0) 0.048
Heart rate (bpm) 1.027 (1.013–1.041) < 0.001
Killip class on admission 2.084 (1.588–2.735) < 0.001 1.49 (1.00–2.22) 0.048
Number of diseased vessels 1.507 (1.099–2.066) 0.01
Infarct size (% LV) 1.038 (1.018–1.058) < 0.001
Microvascular obstruction (% LV) 1.096 (1.030–1.166) 0.004
Myocardial salvage index 0.985 (0.974–0.997) 0.013
LV ejection fraction (%) 0.933 (0.913–0.953) < 0.001 0.93 (0.9–0.96) < 0.001
GCS (%) 1.106 (1.07–1.143) < 0.001
Remote CS (%) 1.054 (1.068–1.173) 0.003
Infarct CS (%) 1.12 (1.068–1.173) < 0.001
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Fig. 5  Remote circumferential strain (CS) and survival in sub-
group analyses. Incidence of MACE (major adverse cardiac events) 
according to high and low remote circumferential strain (cutoff value 
−  25.8%) in subgroups of global circumferential strain (GCS), left 

ventricular ejection fraction (LVEF), infarct size (IS) and microvas-
cular obstruction (MVO) dichotomized to high- and low-risk cohorts 
using optimal cutoff points
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methods might additionally facilitate the implementation 
of RM strain assessment in clinical routine [25–28].

Limitations

Several study sites performed CMR imaging using differ-
ent vendors. Nevertheless, all centers followed the same 
study protocol and image post-processing was performed 
centrally in an experienced core laboratory. Regional strain 
reproducibility is generally lower compared to global val-
ues [29]. Nevertheless, CS has the highest reproducibility 
among myocardial deformation indices on a regional level 
[30] and was found to correlate best with LGE [26] and 
therefore might represent the most valid strain parameter 
for RM assessment. When defining RM segments, the per-
centage of infarct area in infarcted segments is not con-
sidered. Effects of a minimally affected infarct segment 
might be different compared to a completely infarcted seg-
ment. However, defining RM in accordance with the AHA 
16-segment model allows an objective and standardized 
segment classification.

Conclusion

CMR-FT-derived RM CS represents a useful parameter 
for myocardial functional performance analysis and risk 
assessment in a large cohort of patients following AMI. 
RM CS analysis allows an extended risk stratification by 
identifying additional high-risk groups beyond commonly 
used parameters and therefore might allow better patient 
selection for optimized treatment strategies with subse-
quently improved outcome following AMI in the future.
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