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Abstract: Alzheimer’s type dementia (AD) exhibits clinical heterogeneity, as well as differences
in disease progression, as a subset of patients with a clinical diagnosis of AD progresses more
rapidly (rpAD) than the typical AD of slow progression (spAD). Previous findings indicate that low
cerebrospinal fluid (CSF) content of cell-free mitochondrial DNA (cf-mtDNA) precedes clinical signs
of AD. We have now investigated the relationship between cf-mtDNA and other biomarkers of AD to
determine whether a particular biomarker profile underlies the different rates of AD progression. We
measured the content of cf-mtDNA, beta-amyloid peptide 1–42 (Aβ), total tau protein (t-tau) and
phosphorylated tau (p-tau) in the CSF from a cohort of 95 subjects consisting of 49 controls with a
neurologic disorder without dementia, 30 patients with a clinical diagnosis of spAD and 16 patients
with rpAD. We found that 37% of controls met at least one AD biomarker criteria, while 53% and
44% of subjects with spAD and rpAD, respectively, did not fulfill the two core AD biomarker criteria:
high t-tau and low Aβ in CSF. In the whole cohort, patients with spAD, but not with rpAD, showed
a statistically significant 44% decrease of cf-mtDNA in CSF compared to control. When the cohort
included only subjects selected by Aβ and t-tau biomarker criteria, the spAD group showed a larger
decrease of cf-mtDNA (69%), whereas in the rpAD group cf-mtDNA levels remained unaltered. In
the whole cohort, the CSF levels of cf-mtDNA correlated positively with Aβ and negatively with
p-tau. Moreover, the ratio between cf-mtDNA and p-tau increased the sensitivity and specificity of
spAD diagnosis up to 93% and 94%, respectively, in the biomarker-selected cohort. These results
show that the content of cf-mtDNA in CSF correlates with the earliest pathological markers of the
disease, Aβ and p-tau, but not with the marker of neuronal damage t-tau. Moreover, these findings
confirm that low CSF content of cf-mtDNA is a biomarker for the early detection of AD and support
the hypothesis that low cf-mtDNA, together with low Aβ and high p-tau, constitute a distinctive CSF
biomarker profile that differentiates spAD from other neurological disorders.
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1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that exhibits marked
heterogeneity regarding its etiology and age of clinical onset. Moreover, different rates of progression
have been observed among patients with clinical signs of AD type dementia, suggesting the existence
of distinct disease subtypes [1–4]. A commonly used classification of AD subtypes based on rate of
cognitive decline defines rapid progressive AD (rpAD) as a decrease of six points per year in the
score of the mini-mental state examination test [5,6], although alternative definitions for rpAD have
also been proposed [7–9]. Converging lines of evidence indicate that differences in the speed and
slope of cognitive decline correlate with neuropathological hallmarks of AD, with clinical features of
brain atrophy or with genetic factors [1,4,5,10,11]. However, the pathophysiological mechanisms that
underlie the differences in progression rate of cognitive decline in AD type dementia are still unknown.

The diagnosis of possible or probable AD utilizes clinical criteria with increasing support from
neuroimaging and cerebrospinal fluid (CSF) core AD related biomarkers such as total-tau (t-tau),
phospho-tau (p-tau) and beta-amyloid 1-42 (Aβ). These CSF biomarkers are able to predict the rate of
cognitive decline in AD [12–14]. Additionally, CSF t-tau, and especially Aβ are altered years before
the appearance of clinical signs [14]. However, in relationship with AD progression, contradictory
data have been reported regarding differences in CSF profiles between slow (spAD) and rapid (rpAD)
progression of the disease [15]. The diagnosis of rpAD may be challenging due to partial clinical overlap
with other rapidly progressive neurodegenerative dementias such as Creutzfeldt-Jakob disease [15,16].
Despite the limited information about the molecular basis of rpAD, the rate of cognitive decline has
been associated with the presence of diverse structural assemblies of Aβ [17,18] and with a proteomic
content in amyloid plaques different that found in spAD [19]. However, whether these differences
result in a unique biomarker profile that distinguishes spAD from rpAD at the early stages of cognitive
decline has not been explored in detail.

We previously found that patients with spAD, and no other dementias, which have the two
core AD related biomarkers low Aβ and high t-tau in CSF, exhibited low CSF content of cell-free
mitochondrial DNA (cf-mtDNA) compared to control subjects without any AD-related biomarker
or known genetic AD risk factor such as ApoE4 [20,21]. In addition, subjects carrying pathogenic
mutations in the PSEN1 gene, but without clinical signs of AD or altered CSF biomarkers, also exhibited
low content of CSF cf-mtDNA [20]. Overall, these results suggested that a decrease in the CSF content
of cf-mtDNA precedes the clinical signs and differentiates the subgroup of spAD type dementia. As a
continuation of these previous studies, we have now investigated the relationship between the CSF
content of mtDNA and the other core AD biomarkers to assess whether there is a unique molecular
profile that may differentiate the two forms of AD disease progression.

2. Results

2.1. Characteristics of Study Cohort: AD Biomarkers in Patients and Neurological Disease Controls

Table 1 shows the characteristics and CSF levels of core AD-related biomarkers in the study cohort
distributed into neurological disease without dementia (ND-Control) and AD patient groups and
stratified according to the presence/absence of AD biomarker in the CSF and disease progression.
Overall, the AD patient group showed statistically significant increases of 101% in t-tau, a 115% in p-tau
and a decrease of 31% in Aβ CSF levels over the ND-Control group. In addition, the AD patient group,
all together, showed a decrease of 31% in CSF levels of cf-mtDNA-85 compared to the ND-Control
Group (Table 1).



Int. J. Mol. Sci. 2020, 21, 6298 3 of 14

Table 1. Cerebrospinal fluid (CSF) levels and Alzheimer’s disease (AD) Biomarkers in patients and
neurological disease controls.

n Gender
(f/m) Age cf-mtDNA-85

(copies/uL CSF)
t-tau

(pg/mL CSF)
Ab1-42

(pg/mL CSF)
p-tau

(pg/mL CSF)

ND-Controls 49 26/23 69 (66,72) 62 (47,77) 323 (260,387) 646 (564,729) 46 (38,53)

Absence of AD
Biomarker

(Ab1-42 > 450 &
t-tau < 450 (pg/mL))

31 16/15 71 (67,74) 69 (48,91) 243 (210,277) 772 (680,864) 37 (33,42)

Presence AD
Biomarker

(Ab1-42 ≤ 450 or
t-tau ≥ 450 (pg/mL)

18 10/8 66 (62,70) 49 (33,65) 460 (309,612) * 430 (327,533) * 61 (42,79) *

AD 46 25/21 68 (65,71) 43 (31,55) # 649 ± (538,759) # 444 (389,499) # 99 (84,113) #

Presence of AD
Biomarkers

(Ab1-42 ≤ 450 &
t-tau ≥ 450 (pg/mL))

23 13/10 66 (62,70) 35 (19,51) 846 (680,1012) * 338 (306,370) * 117 (91,143) *

spAD 14 7/7 66 (60,73) 22 (15,29) 753 (572,934) 336 (297,375) 106 (71,142)

rpAD 9 6/3 65 (60,70) 55 (14,96) 991 (642,1340) 341 (272,410) 133 (88,177)

Absence of AD
Biomarker

(Ab1-42 > 450 or
t-tau < 450 (pg/mL)

23 12/11 70 (66,74) 51 (33,69) 451 (349,553) 550 (463,638) 81 (70,92)

spAD 16 9/7 69 (64,74) 46 (26,66) 476 (346,606) 518 (418,619) 85 (73,97)

rpAD 7 3/4 71 (62,80) 61 (12,111) 394 (187,602) 623 (412,835) 71 (40,102)

The study cohort consisted of a total of 95 subjects recruited at the Clinical Dementia Center Göttingen (Germany)
and classified in two groups according to clinical diagnosis: patients diagnosed with neurological diseases without
dementia (ND, n = 49) and Alzheimer’s disease (AD, n = 46). Both groups were sub-classified according to the
presence or absence of AD Biomarkers (Aβ1-42 > 450 & t-tau < 450 (pg/mL)). The AD group was further stratified in
slow progressive AD (sAD) and rapidly progressive AD (rpAD). Values are mean ± 95% CI. * Significantly different
from the absence of AD biomarker group. # significantly different from ND-Controls. All p < 0.05. No significant
differences were observed in age and gender between groups.

Among the total 49 control patients diagnosed with diverse neurological diseases but without
clinical signs of AD type dementia, 18 patients (37%) presented at least one core biomarker of AD (Aβ ≤

450 or t-tau ≥ 450): five controls with only high t-tau, 10 controls with low Aβ, and three controls with
both biomarkers. On the other hand, among the total 46 patients with clinical signs of AD dementia,
23 (50%) did not accomplish the criteria of presence of two core AD biomarkers: high t-tau and low
Aβ in CSF. Of these clinical AD cases without two core AD biomarkers, 16 patients (70%) displayed
spAD while seven patients (30%) exhibited rpAD. No significant differences were observed in age and
gender representation between groups.

2.2. cf-mtDNA in AD Disease Progression

First, we analyzed the CSF content of cf-mtDNA in relationship to clinical diagnosis, independently
of biomarker criteria, in all cohort subjects distributed in three different groups: control subjects
diagnosed with nonprimarily neurodegenerative neurological and psychiatric diseases without
dementia (ND-Controls); patients with clinical signs of AD type dementia of slow progression (spAD),
and patients with clinical signs of AD of rapid progression (rpAD). In this whole cohort, patients
with spAD showed a statistically significant decrease of 44% in CSF levels of cf-mtDNA-85 over the
ND-Control Group (ND-Ctrl = 62.0 cf-mtDNA-85 copies/ul CSF, 95% CI 47–77, n = 49; spAD = 34.6
cf-mtDNA-85 copies/ul CSF, 95% CI 23–46, n = 30, p = 0.02). In contrast, the levels of CSF cf-mtDNA-85
from patients with rpAD were not statistically significantly different from those found in ND-Controls
(rpAD = 57.6 cf-mtDNA-85 copies/ul CSF, 95% CI 30-85, n = 16, p = 0.9), (Figure 1A).
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AD type dementia of slow progression; rpAD: group composed of patients with clinical signs of AD 
of rapid progression. Numbers within squares show the number of patients in each group. Dots 
represent individual values. Bars represent mean ± 95% CI. ** Statistically significantly different p < 
0.01, * statistically significantly different p < 0.05; n.s = statistically nonsignificantly different. 
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Figure 1. CSF content of cf-mtDNA-85 in AD disease progression. The absolute number cf-mtDNA-85
copies was measured directly in CSF without nucleic acid extraction by droplet digital PCR (dPCR)
in the presence of a hydrolysis probe using the mtDNA-85 primer pair, which targets a region of the
cytochrome B gene producing an amplicon of 85 base pairs length. The CSF content of cf-mtDNA-85
from all subjects of the whole cohort is shown in (A) and from subjects selected using the indicated
cut-off values of the core AD biomarkers Aβ and t-tau is shown in (B). Subjects were distributed in
three different groups: ND-Ctrl, control group composed of patients with neurological diseases and
with no clinical signs of AD type dementia; spAD, group composed of patients with clinical signs
of AD type dementia of slow progression; rpAD: group composed of patients with clinical signs of
AD of rapid progression. Numbers within squares show the number of patients in each group. Dots
represent individual values. Bars represent mean ± 95% CI. ** Statistically significantly different
p < 0.01, * statistically significantly different p < 0.05; n.s = statistically nonsignificantly different.

Next, we analyzed the CSF content of cf-mtDNA in groups formed according to the AD biomarker
profile of the subjects. In the ND-Control group we included only those subjects who were biomarker
negative and did not show any of the two core CSF biomarkers of AD (Aβ ≤ 450 or t-tau ≥ 450), and in
the spAD and rpAD groups we included only those patients who were biomarker positive and had
both AD biomarkers. In this biomarker-selected cohort, the decrease in CSF content of cf-mtDNA
in patients with spAD was of higher magnitude than that observed in the unselected whole cohort.
Thus, cf-mtDNA-85 in the spAD group showed a statistically significantly reduction of 69% over the
ND-Control Group (ND-Ctrl = 69.4 cf-mtDNA-85 copies/uL CSF, 95% CI 48–91, n = 31; spAD = 21.7
cf-mtDNA-85 copies/uL CSF, 95% CI 15–29, n = 14, p = 0.003). Similar to what we observed previously
in the whole cohort, in this biomarker-positive cohort the levels of CSF cf-mtDNA-85 from patients
with rpAD were not statistically significantly different from those found in ND-Controls (rpAD = 54.8
cf-mtDNA-85 copies/uL CSF, 95% CI 14–96, n = 9, p = 0.8), (Figure 1B).
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2.3. Relationship between cf-mtDNA-85 and Core CSF Biomarkers of AD

Subsequently, we studied the relationship between CSF content of cf-mtDNA with other AD
biomarkers in the entire cohort, including all subjects, independently of biomarker or clinical criteria.
Regression analyses revealed a statistically significant positive correlation between CSF content of
cf-mtDNA-85 and Aβ levels (r = 0.38, 95% CI 0.19–0.54, p = 0.0001, n = 95, Figure 2A) and a statistically
significant negative correlation between cf-mtDNA-85 and levels of p-tau in CSF (r = −0.21, 95% CI
−0.40–0.01, p = 0.041, n = 95, Figure 2E). In contrast, we did not find significant relationship between
cf-mtDNA-85 and t-tau levels in CSF (r = 0.03, p = 0.78, n = 95, Figure 2C), as expected, as t-tau levels
are affected in later stages of disease progression.

Figure 2. Relationship between cf-mtDNA-85 and CSF biomarkers of AD. (A,C,E): linear regression
graphs and Pearson correlation (r) between CSF content values of cf-mtDNA-85 and Aβ (A), t-tau
(C) or p-tau (E). Dotted lines represent 95% CI. Values are from all subjects of the entire cohort (n
= 95). Dots represent individual values. All values were transformed to natural logarithm. n.s =

nonsignificant. (B,D,F): bar graphs showing the CSF cf-mtDNA-85 content from subjects of the entire
cohort segregated in two groups according to the cut-off value indicated for Aβ (B), t-tau (D) or p-tau
(F). Numbers within squares show the number of patients in each group. Dots represent individual
values. Bars represent mean ± 95% CI. ** Statistically significantly different, p < 0.01; * statistically
significantly different, p < 0.05. n.s = statistically nonsignificantly different.
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To confirm the predictive ability of cf-mtDNA-85, we analyzed the CSF content of cf-mtDNA-85
in the entire cohort of subjects segregated in two groups based on the cut-off value of each AD core
biomarker. In conformity with the relationship reported above, subjects with CSF levels of Aβ equal or
below the cut-off value of 450 pg/mL exhibited statistically significant low CSF content of cf-mtDNA-85
compared to the group with Aβ beyond the cut-off value. (Aβ > 450 = 67.7 cf-mtDNA-85 copies/uL
CSF, 95% CI 53–83, n = 50; Aβ ≤ 450 = 35.8 cf-mtDNA-85 copies/uL CSF, 95% CI 26–46, n = 45, p =

0.002, Figure 2B). In addition, subjects with CSF levels of p-tau equal or above the cut-off value of 61
pg/mL showed statistically significant low CSF content of cf-mtDNA-85 compared to the group with
p-tau below the cut-off value. (p-tau < 61 = 63.7 cf-mtDNA-85 copies/uL CSF, 95% CI 48–80, n = 48;
p-tau ≥ 61 = 41.3 cf-mtDNA-85 copies/uL CSF, 95% CI 31–52, n = 47, p = 0.03, Figure 2F). In contrast,
segregation of the cohort subjects by their CSF level of t-tau did not result in statistically significant
different content of cf-mtDNA-85 (Figure 2D).

2.4. Ratio of cf-mtDNA-85 over p-tau in AD Progression

Based on the opposite relationship between cf-mtDNA-85 and p-tau, we evaluated the specificity
and sensitivity of the ratio between cf-mtDNA-85 over p-tau to discriminate ND-control subjects from
patients with AD. In the whole cohort, the cf-mtDNA-85/p-tau ratio was statistically significantly low
in patients with spAD and rpAD by 33% and 21%, respectively (ND-Ctrl = 1.04, 95% CI 0.97–1.11,
n = 49; spAD = 0.70, 95% CI 0.61–0.79, n = 30, p < 0.0001; rpAD = 0.82, 95% CI 0.67–0.96, n = 16,
p = 0.04) (Figure 3A). Receiving operating curve analyses (ROC) in the whole cohort revealed that
using a cutoff value of <0.885 the cf-mtDNA-85/p-tau ratio distinguishes the diagnosis of AD (spAD
and rpAD combined) from ND-controls with a sensitivity of 70%, specificity of 69% and area under
the ROC of 0.791 (95% CI = 0.70–0.88, p < 0.0001) (Figure 3B). Similar ROC values were obtained in
distinguishing the diagnosis of rpAD alone with a sensitivity of 77%, specificity of 69%, and area under
the ROC of 0.839 (95% CI = 0.75–0.93, p < 0.0001) (Figure 3C).

When control and patient groups were selected by biomarker criteria, the specificity and sensitivity
values improved. In the biomarker-selected groups, the cf-mtDNA-85/p-tau ratio was statistically
significantly reduced in patients with spAD and rpAD by 44% and 34%, respectively, compared to
the ND-Control group (ND-Ctrl = 1.11, 95% CI 1.02–1.21, n = 31; spAD = 0.62, 95% CI 0.52–0.72, n
= 14, p < 0.0001; rpAD = 0.73, 95% CI 0.55–0.91, n = 9, p = 0.007) (Figure 3D). ROC analyses in these
biomarker-selected groups showed that the cf-mtDNA-85/p-tau ratio distinguishes the diagnosis of AD
from ND-Controls with a sensitivity of 83%, specificity of 81% and area under the ROC of 0.920 (95% CI
= 0.85–0.99, p < 0.0001) (Figure 3E). Likewise, improved ROC values were obtained in distinguishing
the diagnosis of spAD alone with a sensitivity of 93%, specificity of 94%, and area under the ROC of
0.972 (95% CI = 0.93–1.01, p < 0.0001) (Figure 3F).
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Figure 3. Sensitivity and specificity of cf-mtDNA-85/p-tau ratio. (A,D): bar graphs showing the ratio of
cf-mtDNA-85/p-tau from each group, including all subjects of the entire cohort in (A) and from the
groups of the AD biomarker-selected cohort in (D). ND-Ctrl, patients with neurological diseases and
with no clinical signs of AD type dementia; spAD, patients with clinical signs of AD type dementia of
slow progression; rpAD: patients with clinical signs of AD of rapid progression. Within squares is the
number of patients in each group. Dots represent individual values. Bars represent mean ± 95% CI.
BM- = ND-Ctrl patients without AD biomarkers in CSF. BM+ = spAD or AD patients with both low
Aβ and high t-tau levels in CSF. (B–F) Receiving operating curve analyses (ROC) of the whole cohort
(B,C) and the biomarker-selected cohort (D) and (F). Using the cut-off value of < 0.885, the sensitivity
and specificity of cf-mtDNA-85/p-tau ratio are higher for patients with spAD in the biomarker-selected
cohort (F). *** Statistically significantly different, p < 0.001; ** statistically significantly different, p < 0.01;
* statistically significantly different p < 0.05; n.s = nonsignificantly different.

3. Discussion

Previous studies reported low cf-mtDNA content in the CSF from patients with AD and unveiled
the potential of cf-mtDNA quantification as a potential biomarker for the early detection of preclinical
AD [20,21]. Nonetheless, another study in a wide series of patients and controls found a high
interindividual variability in CSF cf-mtDNA content [22]. Given the high molecular and clinical
heterogeneity of AD, we investigated whether the content of cf-mtDNA in CSF was associated with
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core AD biomarkers and influenced by disease progression rate; with the aim to determine whether a
particular cf-mtDNA profile underlies the biomarker variability found in the different forms of AD.

First, the present results confirm our previous observations showing that the CSF of AD patients
contains statistically significantly lower concentrations of cf-mtDNA compared to controls, adding
another line of evidence for the association between cf-mtDNA and AD pathology. Secondly, in the
present study we observed that cf-mtDNA in CSF correlates positively with Aβ and negatively with
p-tau, but not with t-tau. Indeed, cf-mtDNA concentrations were statistically significantly lower in
cases with pathogenic CSF concentration of Aβ (<450 pg/mL) and p-tau (>61 pg/mL) compared to
those with normal CSF values of both biomarkers. On the one hand, low CSF content of Aβ is the core
AD biomarker that appears earliest in the CSF during the clinical course of the disease [18]. In this
regard, it is well stablished that amyloid accumulation precedes alterations in brain structure, cognition
and clinical signs of AD, which may result in changes in the CSF content of Aβ and p-tau [23,24].
Consequently, the positive relationship between cf-mtDNA and Aβ levels in the CSF found in the
present study is consistent with our previous report showing low CSF cf-mtDNA content in both
presymptomatic carriers of pathogenic PSEN1 mutations and asymptomatic patients at risk of AD [20].

On the other hand, it has also been shown that the CSF content of p-tau, a marker of tau-related
pathology in brain tissue, is already altered at preclinical AD stages. While some studies suggest that
changes in the content of p-tau in CSF occur later in the disease process than those of Aβ, there is strong
evidence showing that the CSF levels of Aβ, but not those of t-tau, are altered already five to ten years
before the appearance of the clinical signs of Alzheimer’s dementia. [25]. Furthermore, other studies
postulate that CSF levels of p-tau may change as soon as Aβ levels in preclinical AD [26]. Hence, the
negative correlation found in the present study between cf-mtDNA and p-tau provides further evidence
to support the hypothesis that a decrease in the CSF content of cf-mtDNA is a pathophysiological
biomarker of AD.

Moreover, the positive correlation between cf-mtDNA and Aβ, together with the lack of association
between cf-mtDNA and t-tau, a surrogate marker of neuro-axonal damage, indicates that a decrease in
cf-mtDNA is a marker of AD pathogenesis independent of the degree of neuronal damage. These results
are also in line with the observation that cf-mtDNA is not altered in Creutzfeldt-Jakob disease (CJD), a
rapidly progressive neurodegenerative dementia characterized by the presence of massive synaptic
and neuronal damage and with the absence of correlation between the CSF content of cf-mtDNA
and t-tau in CJD [21]. Altogether, the present results provide further evidence for the hypothesis
that alterations in CSF content of cf-mtDNA precede the neurodegenerative process that leads to the
emergence of clinical signs of dementia.

Notably, in the present study, we found that 37% of nonAD dementia controls had at least
one AD biomarker. Furthermore, 53% and 44% of subjects with clinical signs of spAD and rpAD,
respectively, did not fulfill the two core AD biomarker criteria of high t-tau and low Aβ in CSF. These
observations are consistent with previous evidence indicating that purely clinical diagnostic criteria
for AD have poor accuracy, with specificity and sensitivity values between 70–80% when compared
with neuropathology [18,27]. This is likely due to the dynamic nature of biomarkers: those linked to
the pathophysiology of the disease emerging in the prodromal stage, while those more associated
with disease progression increasing at later disease stages. More longitudinal studies are necessary to
stablish the dynamics of CSF biomarkers during the evolution of different clinical dementia subtypes.
The presence of at least one AD biomarker in subjects from the control group (21% of controls had low
Aβ, 10% had high t-tau, and 6% both), together with the absence of one of these biomarkers in subjects
with clinical signs of dementia, underscores the need to use a combined biomarker profile to improve
accuracy of the diagnosis of AD.

According to this necessity, and based on the relationship we found between cf-mtDNA and
p-tau, we evaluated the accuracy of their ratio to discriminate between ND-Control subjects and AD.
Interestingly, the sensitivity and specificity of the cf-mtDNA/p-tau ratio to distinguish the diagnosis
of AD was markedly higher in the core AD biomarker-selected cohort than in the unselected whole
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cohort (83% and 81% in biomarker-selected cohort vs 70% and 69% in whole cohort). The sensitivity
and specificity values increased further, up to 93% and 94%, respectively, when the ratio between
CSF content of cf-mtDNA-85 and p-tau was evaluated to discriminate the diagnosis of spAD without
rpAD in the biomarker-selected group (Figure 3F). These results support the hypothesis that the
ratio cf-mtDNA-85/p-tau constitutes a distinctive CSF biomarker profile that differentiates slow AD
progression from patients with other neurodegenerative diseases. Moreover, the present results indicate
that low content of CSF mtDNA defines a group of spAD cases characterized by a biomarker profile
of low levels of Aβ and high levels p-tau in CSF, and this biomarker profile may serve to stratify a
subgroup of AD type dementias different from other dementia subtypes.

With regard to the difference in disease progression, in contrast with spAD, the CSF content of
cf-mtDNA was not statistically significantly different in rpAD cases compared to controls, both in the
whole cohort and in the cohort of patients selected by the core AD biomarker criteria (Aβ and t-tau).
Despite mean cf-mtDNA concentrations being higher in rpAD compared to spAD, our results do not
support a role for mtDNA in the different rate of AD clinical progression. However, additional studies
are needed to ascertain why CSF values of cf-mtDNA are higher in some rpAD patients.

One significant limitation of the present study that might influence the lack of statistically
significant difference between spAD and rpAD groups is the small size of the rpAD group, both in the
whole cohort and in the biomarker-selected cohort. Nonetheless, the group with rpAD exhibits two
different types of patients, one with high and the other with low amount of CSF mtDNA suggesting
that the molecular mechanism involved in the rapid course of AD neurodegeneration is unrelated to
cf-mtDNA. Further studies analyzing the neuropathological differences between these two types of
patients with rpAD are necessary to determine whether they are affected by comorbidity with other
neurological diseases.

4. Materials and Methods

4.1. Subjects

The study included 95 CSF samples from patients diagnosed with neurological diseases
without dementia (ND-Controls, n = 49) and Alzheimer’s disease (AD, n = 46). Control cases
included nonprimarily neurodegenerative neurological and psychiatric diseases (ND-Controls) and
encompassed the following diagnostic groups: psychosis, depression, polyneuropathy, bipolar
disorder, schizophrenia, postencephalitic epilepsia, meningitis, headache, vertigo, paraneoplasia,
inflammatory and autoimmune disease and pain syndromes. ND-Controls were diagnosed according
to acknowledged standard neurologic clinical and paraclinical findings assessment based on the
International Classification of Diseases and Related Health Problems, Tenth Edition definitions. Only
patients with either clinically or pathologically defined diagnoses were included. ND-Controls did not
present cognitive impairment or dementia at the time of sampling.

AD cases were collected in the framework of the rpAD study, an ongoing prospective study at the
Clinical Dementia Center Göttingen (Germany) [28,29]. AD cases were diagnosed according to the
National Institute on Aging–Alzheimer’s Association workgroups criteria [30] and further stratified in
slow progressive AD (sAD) and rapidly progressive AD (rpAD). rpAD was defined by a velocity of
cognitive decline of >6 points/year on the Mini-Mental Status Examination scale (MMSE) as proposed
by Schmidt et al. [5]. All other patients diagnosed with probable AD with MMSE cognitive decline
equal or lower than six points per year were considered with slow progression AD (spAD). Velocity of
decline was calculated using linear regression (least square method) in accordance with Villemagne et
al. [31]. The study was conducted according to the revised Declaration of Helsinki and Good Clinical
Practice guidelines. Ethics approval was obtained from the local Ethics Committee of the University
of Göttingen (Number 11/11/93 (+Amendments) and Number 9/6/08). All study participants or their
legal guardians provided written informed consent.
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4.2. AD Biomarker Analysis in CSF Samples

The amount of t-tau was quantitatively analyzed using the commercially available enzyme-linked
immunosorbent assay (ELISA) INNOTESThTAU-Ag kit from Fujirebio. The amount of p-tau
phosphorylated at Thr181 was measured with the INNOTEST PHOSPHO-TAU(181P) ELISA kit
from Fujirebio. The amount of Aβ was quantified using the INNOTEST ß-AMYLOID (1–42) ELISA kit
from Fujirebio. AD cut-offs for t-tau and Aβ were 450 pg/mL according to data from the rpAD study.

4.3. Droplet Digital PCR

The content of cf-mtDNA was measured directly in CSF without nucleic acid extraction by droplet
digital PCR (dPCR) using Bio-Rad QX200 platform (Bio-Rad Laboratories, Hercules, CA, USA) as
previously described [21,32]. The PCR reaction was performed in ddPCR Supermix for Probes (No
dUTP) (Ref: 186-3023, Bio-Rad) with the mtDNA-85 primer pair that targets a region of the cytochrome
B gene corresponding to bases 14848-14932 of the human mtDNA Cambridge reference sequence
NC_012920.1 and producing an amplicon of 85 base pair length. The sequences of the primers and
hydrolysis probe are:

Forward: mtDNA-85F (5′-CTCACTCCTTGGCGCCTGCC-3′);
Reverse: mtDNA-85R (5′-GGCGGTTGAGGCGTCTGGTG-3′);
Probe: (FAM) CCTCCAAATCACCACAGGACTATTCCTAGCCATGCA (BHQ1).

Each CSF sample was also tested for the presence of nuclear DNA to discard the possibility of
contamination with mtDNA from lysed cells. Nuclear DNA was assessed simultaneously with mtDNA
in the same CSF sample by measuring the single copy nuclear gene BAX in a multiplex assay. Forward
and reverse primers and hydrolysis probe BAX sequences are:

Forward: BAX-103F, (5′-TTCATCCAGGATCGAGCAGG-3′);
Reverse: BAX-103R, (5′-TGAGACACTCGCTCAGCTTC-3′);
Probe: HEX-BAX-103P, (HEX)-5′-CCCGAGCTGGCCCTGGACCCGGT-3′-BHQ1.

Complete details of multiplex cf-mtDNA and BAX assay optimization in CSF using the mtDNA-85
and BAX-103 hydrolysis probes have been previously described [32]. Following dMIQE guidelines [33,34],
characterization studies showed that the optimum temperature to reach the maximum separation between
positive and negative droplets in our reaction conditions for both mtDNA-85 and BAX-103 amplicons is
60 ◦C. Accordingly, the PCR amplification was performed using the following thermal profile: 95 ◦C 10
min; (94 ◦C 30 s; 60 ◦C 1min) 40 repeats; 98 ◦C 10min; 4 ◦C infinite, in the C1000 Touch Deep Well Thermal
Cycler (Bio-Rad).The assay was performed directly in unpurified CSF samples. We found that up to three
freeze-thaw cycles did not significantly modify the measured concentration of mtDNA in CSF by dPCR.
Previous characterization studies showed that the volume of unpurified CSF sample that can be added to
the dPCR reaction without inhibition of the amplification due to factors present in CSF could be up to
6 uL in a total reaction volume of 20 uL. In the present study, we used 4.5 uL of CSF in a 20 uL dPCR
reaction, which provides the highest signal with the lowest possibility of amplification inhibition. To test
the possibility that different individual CSF samples might have different amounts of inhibitory factors,
we added known amounts of mtDNA and BAX to CSF samples with different concentrations of Aβ and
tau. Despite a difference in approximately two orders of magnitude in the concentration of these two
proteins, and possibly of many other proteins, we found no significant differences in the expected amount
of mtDNA-85 and BAX-1003 spiked in these samples. Measurement of mtDNA or BAX in a sample
volume of 4.5 uL of CSF was linear up to 3000 copies/uL of CSF, indicating that in the conditions of our
dPCR reaction there is no influence of the inhibitory factors present in the CSF. Moreover, the presence
of inhibition in the dPCR reaction results in a decrease in the fluorescence amplitude of the positive
droplets. In the present study, no significant difference was observed in fluorescence amplitude of positive
droplets between samples, neither within nor between groups, confirming the absence of differential
inhibition in our dPCR reaction conditions. The average amount of total droplets obtained in our assays
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was 16,500 ± 126, with a relative uncertainty of cf-mtDNA positive droplets below 10% due to the low
amount of cf-mtDNA found in CSF samples. The limit of detection was close to the theoretical limit of
three copies of target per reaction, corresponding to less than one copy of target per microliter of CSF
with a signal above the 95% confidence interval of average noise in nontemplate controls. Agarose gel
electrophoresis analyses confirmed that the dPCR reaction conditions used in our experiments produced
single amplicons of the corresponding size, 103 and 85 base pairs for Bax-103 and mtDNA-85 primer
combinations, respectively. Samples with a number of BAX copies > 1/uL CSF were not included in
analyses. Reactions were performed in triplicate in 96 well plates. Each analysis plate included a balanced
number of samples from all groups and nontemplate controls.

4.4. Statistical Analysis

We used GraphPad Prism software v7 for statistical tests. We performed receiving operating curve
analyses to evaluate the diagnostic sensitivity and specificity of cf-mtDNA content in CSF in classifying
AD patients versus ND-Control subjects. Values were expressed as mean and 95% confidence interval
CI. We balanced samples from all groups in all dPCR assays. No values were removed for statistical
purposes. For linear regression and receiving operating curve (ROC) analyses, values were transformed
to natural logarithm. Statistical analyses were performed using Kruskal-Wallis one-way analysis
of variance with Dunn’s multiple comparisons post hoc tests. Comparison between two groups
was performed with two-tailed Mann-Whitney U-tests or with two-tailed unpaired Student’s t-tests
depending on whether data passed D’Agostino & Pearson normality test. Differences were considered
statistically significant at a value of p < 0.05.

5. Conclusions

The present results indicate that the content of cf-mtDNA in CSF correlates with the pathological
markers of the disease Aβ and p-tau, but not with the marker of neuronal damage t-tau. In addition,
the present results support the hypothesis that low cf-mtDNA, together with low Aβ and high p-tau,
constitute a distinctive CSF biomarker profile that differentiates slow AD progression from patients
with other neurodegenerative diseases.
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Aβ Amyloid Beta peptide 1-42
AD Alzheimer’s disease
CSF Cerebrospinal fluid
cf-mtDNA Cell-free mitochondrial DNA
CJD Creutzfeldt-Jakob disease
dPCR Digital Polymerase Chain Reaction
ND-Ctrl Control patients diagnosed with neurological diseases without dementia
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rpAD Alzheimer’s disease of rapid clinical progression
spAD Alzheimer’s disease of slow clinical progression
p-tau Phosphorylated tau protein
t-tau Total amount of tau protein
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