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Fully Automated Cardiac Assessment for 
Diagnostic and Prognostic Stratification 
Following Myocardial Infarction
Andreas Schuster , MD, PhD, MBA*; Torben Lange , MD*; Sören J. Backhaus, MD; Carolin Strohmeyer, BSc; 
Patricia C. Boom, BSc; Jonas Matz, BSc; Johannes T. Kowallick, MD; Joachim Lotz, MD; Michael Steinmetz, MD; 
Shelby Kutty, MD, PhD, MHCM; Boris Bigalke, MD, MBA, LLM; Matthias Gutberlet, MD; Suzanne de Waha-Thiele, MD; 
Steffen Desch, MD; Gerd Hasenfuß, MD; Holger Thiele, MD; Thomas Stiermaier , MD†; Ingo Eitel , MD†

BACKGROUND: Cardiovascular magnetic resonance imaging is considered the reference methodology for cardiac morphology 
and function but requires manual postprocessing. Whether novel artificial intelligence–based automated analyses deliver 
similar information for risk stratification is unknown. Therefore, this study aimed to investigate feasibility and prognostic impli-
cations of artificial intelligence–based, commercially available software analyses.

METHODS AND RESULTS: Cardiovascular magnetic resonance data (n=1017 patients) from 2 myocardial infarction multicenter 
trials were included. Analyses of biventricular parameters including ejection fraction (EF) were manually and automatically 
assessed using conventional and artificial intelligence–based software. Obtained parameters entered regression analyses 
for prediction of major adverse cardiac events, defined as death, reinfarction, or congestive heart failure, within 1 year after 
the acute event. Both manual and uncorrected automated volumetric assessments showed similar impact on outcome in 
univariate analyses (left ventricular EF, manual: hazard ratio [HR], 0.93 [95% CI 0.91–0.95]; P<0.001; automated: HR, 0.94 
[95% CI, 0.92–0.96]; P<0.001) and multivariable analyses (left ventricular EF, manual: HR, 0.95 [95% CI, 0.92–0.98]; P=0.001; 
automated: HR, 0.95 [95% CI, 0.92–0.98]; P=0.001). Manual correction of the automated contours did not lead to improved 
risk prediction (left ventricular EF, area under the curve: 0.67 automated versus 0.68 automated corrected; P=0.49). There 
was acceptable agreement (left ventricular EF: bias, 2.6%; 95% limits of agreement, −9.1% to 14.2%; intraclass correlation 
coefficient, 0.88 [95% CI, 0.77–0.93]) of manual and automated volumetric assessments.

CONCLUSIONS: User-independent volumetric analyses performed by fully automated software are feasible, and results are 
equally predictive of major adverse cardiac events compared with conventional analyses in patients following myocardial 
infarction.

REGISTRATION: URL: https://www.clini​caltr​ials.gov; Unique identifiers: NCT00712101 and NCT01612312.
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Because cardiovascular disease remains the 
major cause of premature death, risk strat-
ification plays a fundamental role in clinical 

practice.1 Cardiovascular magnetic resonance (CMR) 
has emerged as reference standard for left ventricu-
lar (LV) and right ventricular (RV) cardiac function and 
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infarct size (IS) quantification following acute myocardial 
infarction (AMI).2 LV and RV end-diastolic and end-sys-
tolic contours are usually manually delineated to de-
rive myocardial mass and volumetric data. Myocardial 
damage or IS quantification additionally requires man-
ual or semiautomated delineation of areas with gad-
olinium uptake on late gadolinium enhanced (LGE) 
images. Because this process is time consuming, tech-
nical developments have been directed at automation, 
less user interaction, and time saving. Novel artificial 
intelligence (AI)–based3 deep learning algorithms were 
recently introduced and may provide accurate, fully 
automated image analyses using convolutional neural 
networks.4 The accuracy of this machine-learning ap-
proach has been shown for scan-rescan examinations 
and different selected cardiac diseases.5,6 However, 
the comparability to manual analysis and the feasibility 

and diagnostic utility for risk prediction following AMI 
have not yet been demonstrated in a large patient data 
set following AMI. Therefore, the aim of this study was 
to perform fully automated biventricular volumetric and 
LV IS quantification in comparison to manual analyses 
using commercially available software and to study 
their relative prognostic implications in a large multi-
center cohort of patients after AMI.

METHODS
Study Population
The data that support the findings of this study are 
available from the corresponding author on reason-
able request. The study population consisted of 
patients initially recruited for the trials AIDA STEMI 
(Abciximab i.v. versus i.c. in ST-elevation Myocardial 
Infarction; Clini​calTr​ials.gov ID: NCT00712101)7 
and TATORT-NSTEMI (Thrombus Aspiration in 
Thrombus Containing Culprit Lesions in Non-ST-
Elevation Myocardial Infarction; Clini​calTr​ials.gov ID: 
NCT01612312).8

The AIDA STEMI trial encompassed 2065 patients 
with ST-segment–elevation myocardial infarction 
(STEMI). After assigning the group to either intracor-
onary (n=1032) or intravenous (n=1033) abciximab 
application, a drug bolus (0.25  mg/kg body weight) 
was given during percutaneous coronary interven-
tion, followed by continuous intravenous infusion for 
12 hours (0.125 µg/kg per minute, maximum of 10 µg/
min). Subsequently, CMR imaging was performed at 8 
different sites in 795 patients.

The TATORT-NSTEMI trial enrolled 440 patients 
with non-STEMI (NSTEMI) and randomized them to ei-
ther treatment by percutaneous coronary intervention 
and aspiration thrombectomy (n=221) or percutane-
ous coronary intervention without thrombus aspiration 
(n=219). The study end points included microvascular 
injury as defined by CMR imaging. CMR imaging was 
performed within 10 days after symptom onset in both 
trials. There was no difference between intervention 
and control arms in both trials, respectively. All patients 
gave written informed consent before participation. 
Both studies were approved by the respective ethics 
committees of the lead institution at the University of 
Leipzig and all participating study sites and complied 
with the principles of the Helsinki Declaration.

Clinical End Points
The occurrence of major adverse cardiac events 
(MACE) was defined as the primary clinical end point of 
the study, which included all-cause mortality, reinfarc-
tion, and congestive heart failure. Only 1 MACE could 
be attributed to each patient. In case of the occur-
rence of ≥2 adverse events within 1 patient, an order of 

CLINICAL PERSPECTIVE

What Is New?
•	 In this study, fully automated myocardial seg-

mentation of cardiac magnetic resonance im-
ages provided risk prediction of hard clinical 
events similar to that of manual analyses in a 
large cohort of patients following myocardial 
infarction.

What Are the Clinical Implications?
•	 Fully automated myocardial segmentation has 

great potential for a more time-efficient post-
processing with automated delivery of prog-
nostically relevant cardiac magnetic resonance 
parameters, which may allow broad adoption of 
risk stratification without impeding diagnostic 
workflow in clinical practice.

Nonstandard Abbreviations and Acronyms

AI	 artificial intelligence
AMI	 acute myocardial infarction
CMR	 cardiovascular magnetic resonance
IS	 infarct size
LOA	 limits of agreement
LVEF	 left ventricular ejection fraction
MACE	 major adverse cardiac events
MVO	 microvascular obstruction
NSTEMI	 non–ST-segment–elevation myocardial 

infarction
SAX	 short axis
STEMI	 ST-segment–elevation myocardial 

infarction
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priority was set (in descending order: death, reinfarc-
tion, congestive heart failure).

CMR Imaging
CMR imaging was performed using standardized 
scanning protocols on 1.5- or 3.0-T scanners at the 
different study sites. The scan protocol included long- 
and short-axis (SAX) steady-state free precession im-
ages (repetition time, 3.2 ms; echo time, 1.2 ms; flip 
angle, 60°; slice thickness, 8 mm), T2-weighted triple 
short-τ inversion recovery images (repetition time, 2 
RR intervals; echo time, 80 ms; flip angle, 90°) and T1-
weighted LGE imaging (repetition time, 2.8 ms; echo 
time, 1.1 ms; flip angle, 15°; slice thickness, 8 mm, with 
individually adjusted inversion times typically between 
200 and 300  ms). LGE imaging was acquired 10 to 
20 minutes after injection of a gadolinium-based con-
trast agent bolus (0.15  mmol/kg).7,8 Participants with 

typical contraindications for CMR examination were 
excluded.8

Volumetric Analyses
All patients with SAX stacks covering base to apex with 
all slices of equal cardiac phases were included in the 
final analysis. Patients without coverage of the entire 
LV or uneven number of cardiac phases within respec-
tive slices were excluded. Manual volumetric analyses 
were performed based on SAX steady-state free pre-
cession–Cine images by an experienced investigator 
using commercially available postprocessing software 
(cvi42; Circle Cardiovascular Imaging; Figure 1).
Fully automated volumetric analyses were performed 
by applying commercially available AI software (suite-
HEART, v4.0.6; Neosoft).

Analyzed volumetric parameters included LV 
mass, LV ejection fraction (LVEF), RV ejection fraction, 

Figure 1.  Automated, automated corrected, and manual biventricular volumetric analyses.
Overview of a tracked short-axis stack from base to apex of 1 patient with and without MACE each using different analysis software 
types. MACE indicates major adverse cardiac events.
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end-diastolic volume (EDV), end-systolic volume (ESV), 
and stroke volume. For manual analyses, LV endo- and 
epicardial borders and RV endocardial borders were 
delineated at end-systole and end-diastole. In accor-
dance with current recommendations, the papillary 
muscles were excluded from the myocardium using 
both software types.9

For automated analysis, the software algorithm 
was run overnight with no further pre- or postpro-
cessing user interactions performed. In a second 
step, all automatically traced borders were evaluated 
visually and corrected if the delineation of the ven-
tricular borders was not in accordance with clinical 
practice recommendations.9 The extent of correc-
tions was documented, with a major tracking failure 
defined as false contouring on extracardiac struc-
tures or complete deviations of the endocardial or 
epicardial curvature. In addition, time needed for vi-
sual evaluation and, if necessary, for correction of the 
contours was documented. Image quality was evalu-
ated by using quality criteria defined by Klinke et al.10 
Depending on the presence and extent of artifacts 
(eg, wraparound, respiratory or cardiac ghost, image 
blurring, metal and shimming artifacts), a graduation 
based on a score 0 to 3 was made. For this purpose, 
1 point was given if more than one-third of the ven-
tricular endocardial border on a single SAX slice was 
affected by an artefact at end-systole or end-dias-
tole. If 2 or ≥3 slices were impeded by an artifact, 2 
or 3 points were given, respectively.

IS Analyses
Manual IS quantification was performed on T1-
weighted SAX LGE images from base to apex ac-
cording to current guidelines using dedicated 
software (QMass, v3.1.16.0; Medis Medical Imaging 
Systems).9 In addition to IS microvascular obstruc-
tion (MVO) was analyzed. For automated analyses, 
the software algorithm was applied overnight (suit-
eHEART, v4.0.7; Neosoft). Based on a full-width half-
maximum approach, which has been shown to be 
most comparable with manual LGE assessment to 
define thresholds for enhanced and nonenhanced 
myocardium,11 the algorithm automatically deline-
ated LV myocardium and identified enhanced areas. 
Hypointense infarct cores had to be manually in-
cluded if present. In a second step, the automated 
enhancement detection was corrected manually in 
case of erroneous contour delineation or identifica-
tion of artifacts or blood pool as LGE and named au-
tomated corrected IS (Figure 2).

Statistical Analysis
Statistical analyses were performed using SPSS 
Statistics v25 (IBM Corp) and Microsoft Excel, 

Microsoft Office 2019 (Microsoft). Categorical varia-
bles are presented as absolute numbers and percent-
ages. Continuous parameters were tested for normal 
distribution using the Shapiro–Wilk test and reported 
as median and interquartile range. The Mann–Whitney 
U test was performed to compare continuous parame-
ters, and the χ2 test was applied for categorical values. 
Dependent variables were tested using the Wilcoxon 
signed rank test. Statistical calculations were made 
both for the overall collective and for predefined sub-
groups of patients with STEMI or NSTEMI. Correlations 
were assessed using the Spearman rank correlation 
coefficient. For assessing concurrence of manual and 
automated analyses, the following calculations were 
made: according to established Bland-Altman analy-
sis, the difference between measurements of both 
approaches was defined as bias estimated by the 
mean difference. In addition, the 95% limits of agree-
ment calculated by the mean difference ±1.96 SD of 
the mean difference were reported. Furthermore, 
corresponding Bland-Altman plots were generated.12 
Intraclass correlation coefficients (ICC) using a model 
of absolute agreement considered as excellent if ICC 
was >0.74, good between 0.60 and 0.74, fair at 0.40 
to 0.59, and poor at <0.40.13,14 The coefficient of vari-
ation, defined as the standard deviation of the differ-
ences divided by the mean, was implemented.15 The 
Kaplan–Meier method was applied for clinical end 
point assessment, with the cohort dichotomized at 
LVEF 35% as a clinically relevant cutoff value in each 
manual and automated group. To identify independent 
predictors of MACE, univariate and multivariable Cox 
regression calculations providing hazard ratios (HR) 
with corresponding 95% CIs were performed. Only 
parameters with P<0.05 on univariate analyses were 
included in further multivariable modeling. Although 
model 1 included LVEF, a second statistical model 
was implemented to identify associations of manual 
and automated IS with MACE. Given high correlation, 
and to enable a focused calculation for prognostic im-
plementation of IS, LVEF was not included in model 2.

To assess the additional predictive value of auto-
matically generated volumetric parameters, receiver 
operator characteristics were implemented. For both 
methods, area under the curve (AUC) values for MACE 
prediction were calculated and compared using the 
nonparametric approach by DeLong et al.16 All P val-
ues provided are 2-sided, and P<0.05 was considered 
statistically significant.

RESULTS
Study Population
For overall volumetric analyses, 1017 patient data sets 
were available. Among this cohort, 795 patients had 
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STEMI and 292 had NSTEMI. Overall, 913 patients had 
presence of LGE (668 STEMI and 245 NSTEMI) and 
entered manual and automated LGE quantification 
(Figure 3). A detailed overview of the baseline charac-
teristics is presented in Table 1. All patients underwent 
CMR scanning in a median of 3  days (interquartile 
range, 2–4 days) after the acute event. Cardiovascular 
risk factors were more frequent in patients with MACE 
during follow-up (hypertension, P=0.01; diabetes mel-
litus, P=0.02). Moreover, Killip class on admission and 
the number of diseased vessels were significantly 
higher in patients with MACE (P<0.001 and P=0.004, 
respectively). Neither the affected artery nor the TIMI 
(Thrombolysis in Myocardial Infarction) flow before or 
after the coronary intervention demonstrated a sig-
nificant difference between patients with and without 
MACE.

Automatically and Manually Derived 
Volumetric Parameters
Automated segmentation was feasible in all patients, 
and no major tracking failure was documented. 

Volumetric analyses revealed considerable differ-
ences in absolute numbers between manual and au-
tomatic biventricular segmentation that are reported 
in Table 2. Both LV and RV volumes were estimated 
higher by automatic software analysis, whereas LV 
mass and biventricular ejection fraction were com-
puted lower than manual evaluation (P<0.001 for 
all). Bias with 95% limits of agreement (LOA), ICC, 
and coefficient of variation displaying agreement 
of automated and manual analyses for the overall 
collective are displayed in Table  3. Corresponding 
Bland-Altmann plots were generated and are pre-
sented in Figure 4. Agreement of both methods was 
better for LV parameters than for RV parameters. For 
all LV parameters, agreement was acceptable and 
best for LVEF (bias, 2.6%; 95% LOA, −9.1% to 14.2%; 
ICC, 0.89) followed by LV ESV (bias, −15.6 mL; 95% 
LOA, −46.0 to 15.6 mL; ICC, 0.87) and LV EDV (bias, 
−22.4 mL; 95% LOA, −59.7 to 14.9 mL; ICC, 0.86). 
Regarding RV volumetric analysis, agreement was 
best for ESV (bias, −13.4  mL/m2; 95% LOA, −42.9 
to 15.9  mL; ICC, 0.80) and EDV (bias, −23.2  mL; 
95% LOA, −64.8 to 18.1 mL; ICC, 0.79), followed by 

Figure 2.  Automated, automated corrected, and manual quantification of enhancement detection.
Overview of IS detection in short-axis orientation from base to apex of 1 patient with and without MACE. IS indicates infarct size; 
MACE indicates major adverse cardiac events.
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ejection fraction (bias, 3.0%; 95% LOA, −40.4% to 
20.8%; ICC, 0.71) and stroke volume (bias, −9.8 mL; 
95% LOA, −13.9 to 19.9 mL; ICC, 0.73).

Image quality was good in the majority of patients 
(906 patients with score 0 [89%], 14 patients with score 
1 [1.4%], 22 patients with score 2 [2.2%], and 75 pa-
tients with score 3 [7.4%]). Agreement of the parame-
ters was better in data sets with high imaging quality 
(image quality, 0–1 point), lowering the LVEF’s mean 
difference from 2.6% (95% LOA, −9.1% to 14.2%) in 
the overall collective to 0.8% (LOA, −7.48% to 9.06%).

The mean postprocessing duration of core labo-
ratory masked conventional volumetric analysis by an 
experienced investigator took about 12 minutes. The 
mean time for contour computation using automated 
software took about 40  seconds. Reviewing the au-
tomated contours took about 1  minute, followed by 
an additional mean correction time of 1.2  minutes if 
needed. In total, 644 patients (63%) underwent mostly 
minor contour optimizations, which were more often 
required for the LV than in RV mostly because of infarct 

areas reducing the contrast between blood pool and 
myocardium. Among these 644 patients, 28.7% re-
ceived both LV and RV corrections, 47.1% underwent 
only LV corrections, and 24.2% underwent only RV 
corrections. The optimizations led to a numerically 
better agreement with manual analyses for all parame-
ters, with LVEF retaining highest agreement (bias, 0.96; 
95% LOA, −7.4% to 9.3%; ICC, 0.94) (Table 4).

Automatically and Manually Derived IS
Comparison of automated uncorrected and manu-
ally derived IS quantification revealed considerable 
differences in absolute numbers (P<0.001) (Table  2). 
Agreement of automated and manual enhancement 
quantification was acceptable (LV mass: bias, −7.98%, 
95% LOA, −22.9 to 6.9%; ICC, 0.75) and was further 
improved by correcting the automatically marked in-
farct area (LV mass: bias, −0.2%; 95% LOA, −6.8 to 
6.3%; ICC, 0.98) with no remaining difference com-
pared with the manual approach (P=0.07) (Figure S1).

Figure 3.  Study flow chart.
AIDA STEMI indicates Abciximab i.v. versus i.c. in ST-elevation Myocardial Infarction; CMR, cardiac 
magnetic resonance; FU, follow-up; MACE indicates major adverse cardiac events; NSTEMI, non–ST-
segment–elevation myocardial infarction; STEMI, ST-segment–elevation myocardial infarction; and 
TATORT NSTEMI, Thrombus Aspiration in Thrombus Containing Culprit Lesions in Non-ST-Elevation 
Myocardial Infarction.
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Table 1.  Baseline Characteristics

Variables
All Patients 

(n=1017)
STEMI 
(n=725)

NSTEMI 
(n=292)

MACE 
(n=71)

No MACE 
(n=945) P Value

Age, y 64 (53–72) 62 (51–71) 68 (56–74) 72 (61–77) 63 (52–72) <0.001*

Sex (male) 763/1017 (75.0) 547/725 (75.4) 216/292 (74.0) 45/71 (63.4) 718/945 (76.0) 0.018*

Cardiovascular risk factors

Active smoking 404/942 (42.9) 303/665 (45.6) 101/277 (36.5) 17/64 (27.1) 387/877 (44.1) 0.006*

Hypertension 721/1016 (71.0) 496/724 (68.5) 225/292 (77.1) 60/71 (84.5) 660/944 (69.9) 0.009*

Hyperlipoproteinemia 379/1011 (37.5) 274/719 (38.1) 105/292 (36.0) 24/71 (33.8) 355/939 (37.8) 0.502

Diabetes mellitus 233/1016 (22.9) 149/724 (20.6) 84/292 (28.8) 24/71 (33.8) 208/944 (22.0) 0.023*

Body mass index, kg/m2 27.4 (25–30.3) 27.3 (24.9–30.2) 27.7 (25–30.5) 27.3 (25.4–31.1) 27.4 (25.0–30.2) 0.569

Previous myocardial infarction 72/1016 (7.1) 43/725 (5.9) 29/292 (9.9) 5/71 (7.0) 67/944 (7.1) 0.986

Previous PCI 84/1017 (8.3) 59/725 (8.1) 25/292 (8.6) 4/71 (5.6) 80/945 (8.3) 0.911

Previous CABG 19/1017 (1.9) 10/725 (1.4) 9/292 (3.1) 2/71 (2.9) 17/945 (1.8) 0.542

ST-segment elevation 725/1017 (71.3) 725/725 (100.0) 0/292 (0.0) 51/71 (71.8) 674/945 (71.3) 0.404

Systolic blood pressure, mm Hg 133 (118–150) 130 (117–148) 140 (120–159) 130 (110–144) 134 (120–150) 0.042*

Diastolic blood pressure, mm Hg 80 (70–89) 80 (70–88) 80 (70–90) 77 (64–84) 80 (70–90) 0.031*

Heart rate, beats/min 76 (67–86) 76 (67–87) 76 (66–85) 80 (70–94) 76 (66–85) 0.002*

Time symptoms to balloon,* min 180 (110–327) 180 (110–327) 191 (116–376) 180 (110–315) 0.423

Door-to-balloon time,* min 30 (22–42) 30 (22–42) 28 (22–40) 30 (22–42) 0.439

Killip class on admission <0.001*

1 908/1017 (89.3) 636/725 (87.7) 272/292 (93.2) 49/71 (69.0) 858/945 (90.8)

2 75/1017 (7.4) 56/725 (7.7) 19/272 (6.5) 14/71 (19.7) 61/945 (6.5)

3 20/1017 (2.0) 19/725 (2.6) 1/292 (0.3) 4/71 (5.6) 16/945 (1.7)

4 14/1017 (1.4) 14/725 (1.9) 0/292 (0.0) 4/71 (5.6) 10/945 (1.1)

Diseased vessels 0.004*

1 511/1016 (50.2) 383/726 (52.8) 128/292 (43.8) 26/71 (36.6) 484/945 (51.2)

2 306/1016 (30.1) 203/726 (28.0) 103/292 (35.2) 22/71 (31.0) 284/945 (30.1)

3 200/1016 (19.7) 139/726 (19.2) 61/292 (20.9) 23/71 (32.4) 177/945 (18.7)

Affected artery 0.233

Left anterior descending 432/1017 (42.5) 326/725 (45.0) 106/292 (36.3) 39/71 (54.9) 393/945 (41.6)

Left circumflex 195/1017 (19.2) 80/725 (11.0) 115/292 (39.4) 12/71 (16.9) 182/945 (19.3)

Left main 5/1017 (0.5) 5/725 (0.7) 0/292 (0.0) 0/71 (0.0) 5/945 (0.5)

Right coronary artery 379/1017 (37.3) 312/725 (43.0) 67/292 (22.9) 19/71 (26.8) 360/945 (38.1)

Bypass graft 6/1017 (0.6) 2/725 (0.3) 4/292 (1.4) 1/71 (1.4) 5/945 (0.5)

TIMI flow grade before PCI 0.217

0 512/1017 (50.3) 400/725 (55.2) 112/292 (38.4) 42/71 (57.2) 470/945 (49.7)

1 108/1017 (10.6) 91/725 (12.6) 17/292 (5.8) 5/71 (7.0) 103/945 (10.9)

2 210/1017 (20.6) 123/725 (17.0) 87/292 (29.8) 12/71 (16.9) 197/945 (20.8)

3 187/1017 (18.4) 111/725 (15.3) 76/292 (26.0) 12/71 (16.9) 175/945 (18.5)

Stent implanted 1002/1017 (98) 713/725 (98.2) 285/292 (97.6) 70/71 (98.6) 926/945 (98) 0.525

TIMI flow grade after PCI 0.173

0 18/1017 (1.8) 12/725 (1.7) 6/292 (2.1) 1/71 (1.4) 17/944 (1.8)

1 22/1017 (2.2) 19/725 (2.6) 3/292 (1.0) 3/71 (4.2) 19/944 (2.0)

2 80/1017 (7.9) 56/725 (7.7) 24/292 (8.2) 8/71 (11.3) 72/944 (7.6)

3 897/1017 (88.2) 638/725 (88.0) 259/292 (88.7) 59/71 (83.1) 837/944 (88.6)

Medication

Glycoprotein IIb/IIIa inhibitor 744/1022 (72.8) 725/725 (100.0) 274/292 (93.9) 53/71 (74.6) 690/945 (73.0) 0.765

Aspirin 1016/1017 (99.9) 725/725 (100.0) 291/292 (99.7) 71/71 (100.0) 943/945 (99.9) 0.784

Clopidogrel/prasugrel/ticagrelor 1017/1017 
(100.0)

726/726 (100.0) 292/292 (100.0) 71/71 (100.0) 944/944 (100.0)

 (Continued)
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Manual enhancement analysis took about 11 minutes  
by an experienced investigator. A review of the auto-
matically traced and marked LGE images took <1 min-
ute per patient. Manual editing of the automated IS 
quantification took an additional 1 minute and 59 sec-
onds on average. Overall, 169 cases required mini-
mal corrections of endo- or epicardial contours. In 
almost all patients (896/913), adjustments of the actual 
enhancement area was required (mean erased area, 
7.91%).

Prognostic Value of Automated and 
Manual Segmentation
Follow-up data revealed MACE in 71 patients within 
1 year after the index event (death, n=30; reinfarction, 

n=21; heart failure, n=20). In the statistical Cox regres-
sion model including LVEF, univariate analyses showed 
significant associations of cardiovascular risk fac-
tors and clinical status with MACE (age, P<0.001; 
sex, P=0.02; hypertension, P=0.01; diabetes melli-
tus, P=0.02; Killip class on admission, P<0.001). Both 
manual and automated LVEFs were associated with 
the occurrence of MACE during follow-up (manual: 
HR, 0.93 [95% CI, 0.91–0.95]; automated: HR, 0.94 
[95% CI, 0.92–0.96]; P<0.001 for both) (Table  5). If 
divided into STEMI and NSTEMI cohorts, similar re-
sults were observed (manual, STEMI: HR, 0.93 [95% 
CI, 0.91–0.96]; P≤0.001; NSTEMI: HR, 0.93 [95% CI, 
0.9–0.97]; P=0.001; automated, STEMI: HR, 0.94 
[95% CI, 0.92–0.97]; P<0.001; NSTEMI: HR, 0.93 [95% 
CI, 0.89–0.97]; P=0.001). Multivariable regression 

Variables
All Patients 

(n=1017)
STEMI 
(n=725)

NSTEMI 
(n=292)

MACE 
(n=71)

No MACE 
(n=945) P Value

Betablocker 973/1015 (95.9) 692/723 (95.7) 281/292 (96.2) 69/71 (97.2) 903/943 (95.8) 0.561

ACEI/ARB antagonist 937/1015 (92.3) 689/723 (95.3) 248/292 (84.9) 67/71 (94.4) 870/943 (92.3) 0.518

Aldosterone antagonist 134/1015 (13.2) 85//723 ( (11.8) 50/292 (16.9) 23/71 (32.4) 111/943 (11.8) <0.001*

Statin 976/1015 (96.2) 692/723 (95.7) 284/292 (97.3) 68/71 (95.8) 907/943 (96.2) 0.863

Time to MRI, d 3 (2–4) 3 (2–4) 3 (2–4) 3 (2–4) 3 (2–4) 0.036*

Data are presented as n/N (%) or median (interquartile range). For comparison of patients with MACE and no MACE, P values were calculated. One patient 
was lost to follow-up regarding MACE. ACEI indicates angiotensin-converting enzyme inhibitor; CABG, coronary artery bypass grafting; MACE, major adverse 
cardiac event; MRI, magnetic resonance imaging; NSTEMI, non–ST-segment–elevation myocardial infarction; PCI, percutaneous coronary intervention; STEMI, 
ST-segment–elevation myocardial infarction; and TIMI, Thrombolysis in Myocardial Infarction.

*Indicates a statistically significant difference. Mann–Whitney U test was used for testing continuous variables. Categorical variables were tested using the 
χ2 test. One patient of the overall collective was lost to follow-up and thus was not considered in MACE analysis.

Table 1.  Continued

Table 2.  Biventricular Volumes and LV IS Characteristics

Parameter Study Population

Sex (female/male) 255/767

Age, y 64 (53–72)

Body surface area, m2 1.95 (1.82–2.08)

Automated Manual P Value

LV mass, g 114 (97.0–132.0) 129.3 (108.5–153.2) <0.001

LV mass, g/m2 57.8 (51.4–65.5) 66.4 (57.4–76.0) <0.001

LV EDV, mL/m2 87.5 (75.6–100.5) 73.3 (62.07–85.3) <0.001

LV ESV, mL/m2 45.5 (36.1–56.6) 35.6 (27.7–45.7) <0.001

LV SV, mL/m2 40.6 (34.4–46.4) 36.1 (30.7–42.0) <0.001

LVEF (%) 47.0 (40.0–53.0) 50.3 (43.4–57.5) <0.001

RV EDV, mL/m2 75.3 (63.3–87.5) 60.6 (51.1–71.3) <0.001

RV ESV, mL/m2 32.2 (25.8–40.2) 23.2 (17.4–31.3) <0.001

RV SV, mL/m2 42.4 (35.7–48.7) 36.31 (30.76–42.28) <0.001

RVEF (%) 57.0 (51.0–62.0) 60.7 (53.9–67.4) <0.001

Infarct size (% LV mass)* 24.8 (17.8–32.1) 15.8 (8.3–23.5) <0.001

Continuous variables were compared using Wilcoxon signed rank test and presented as median (interquartile range). EDV indicates end-diastolic volume; 
ESV, end-systolic volume; IS, infarct size; LV, left ventricular; LVEF, left ventricular ejection fraction; RV, right ventricular; RVEF, right ventricular ejection fraction; 
and SV, stroke volume.

*In 913 patients with IS on late gadolinium enhancement images.
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analysis was established containing either manual 
or automated LVEF due to high correlation between 
these parameters. Including only univariate significant 
parameters into multivariable analyses, both manual 
and automated LVEF remained significantly associated 
with MACE (manual: HR, 0.95 [95% CI, 0.93–0.98]; 
P=0.001; automated: HR, 0.96 [95% CI, 0.93–0.99]; 
P=0.002). In either model, age and Killip class were 
also independently significant parameters (age: P=0.04 
for both manual and automated; Killip class: P=0.03 for 
manual and P=0.02 for automated).

In a second statistical model including all patients 
with analyzable IS, univariate Cox regression analyses 
showed significant associations of both manual and 
automated uncorrected enhancement assessment 
with outcome (manual: HR, 1.04 [95% CI, 1.02–1.06]; 
P<0.001; automated uncorrected: HR, 1.05 [95% CI, 
1.02–1.07]; P<0.001). Moreover, manually and auto-
matically derived IS were significantly associated with 
MACE after correction for univariate significant age, 
cardiovascular risk factors, Killip class, and number of 
diseased vessels on multivariable regression analyses 
(Table 6).

Dichotomization of the patient cohort by the LVEF 
cutoff of 35% in both the automated and manual 
groups allowed adequate risk stratification based 
on clinical end points and Kaplan–Meier analyses 
(Figure 5). There was no statistically significant differ-
ence between manual and automated LVEF on AUC 
comparison (LVEF, AUC: 0.69 versus 0.67; P=0.11) 
Furthermore, manual adjustments of the automated 
contours did not provide further improved risk pre-
diction (LVEF automated, AUC: 0.67 versus 0.68 cor-
rected, P=0.49) or lead to a significant change in uni- or 
multivariable regression results.

DISCUSSION
This study is the first to investigate the performance 
of a commercially available novel AI-based automated 
volume and IS quantification tool and to define its 
predictive value for further clinical risk stratification in 

Table 3.  Agreement Between Manual and Automated 
Uncorrected Analyses

Parameter Bias 95% LOA ICC (95% CI)
CoV 
(%)

LV mass 14.15 −20.4 to 48.7 0.84 (0.35–0.93) 14.2

LV EDV −22.36 −59.7 to 14.9 0.86 (0.09–0.96) 11.9

LV ESV −15.58 −46.0 to 15.6 0.88 (0.08–0.96) 18.3

LV SV −6.78 −32.4 to 
−6.8

0.82 (0.63–0.90) 17.4

LVEF 2.57 −9.1 to 14.2 0.88 (0.77–0.93) 12.3

RV EDV −23.21 −64.8 to 18.1 0.79 (0.13–0.93) 15.6

RV ESV −13.4 −42.9 to 15.9 0.80 (0.10–0.92) 25.7

RVEF 2.97 −40.4 to 20.8 0.70 (0.56–0.76) 14.7

RV SV −9.8 −13.9 to 19.9 0.73 (0.37–0.86) 20.2

Infarct size −7.98 −22.9 to 6.9 0.75 (0.07–0.89) 36.0

CoV indicates coefficient of variation; EDV, end-diastolic volume; ESV, 
end-systolic volume; ICC, intraclass correlation coefficient; LOA, limits of 
agreement; LV, left ventricular; LVEF, left ventricular ejection fraction; RV, right 
ventricular; RVEF, right ventricular ejection fraction; and SV, stroke volume.

Figure 4.  Bland-Altmann plots for agreement of manual and automated biventricular volumes.
Agreement of ventricular parameters derived by automatic and manual analyses. Bland-Altman plots (manual–automatic) are shown. 
EDV, end-diastolic volume; EF, ejection fraction; ESV, end-systolic volume; LV, left ventricular; and RV, right ventricular.
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a large cohort of patients following AMI. Several no-
table findings should be considered. First, automati-
cally derived LVEF based on uncorrected contours has 
similar significant association with MACE occurrence 
compared with manually derived LVEF; therefore, it 
can be equally used for risk prediction. Second, ad-
justments of the initial volumetric contours aiming for 
an optimal visual delineation did not lead to improved 
risk stratification and, consequently, are not manda-
tory for this purpose. Third, even though IS quantifi-
cation derived from the automated software enables 
risk prediction similar to manual IS quantification, user 

interaction including confirmation of MVO areas is still 
required. Therefore, at present, this tool does not yet 
readily allow fully automated user-independent clini-
cal use. Fourth, applying automated software in the 
postprocessing routine yields substantial time savings 
compared with a conventional manual method and 
can be performed instantly while scanning. Taken to-
gether, automated user-independent volumetric analy-
ses represent a software-based tool to facilitate the 
clinical postprocessing routine, potentially allowing for 
more efficient risk prediction and management of pa-
tients following AMI.

Deep learning algorithms are of increasing impor-
tance for the development of cardiovascular medicine. 
With the help of convolutional neuronal networks, 
these algorithms mimic human cognition processes, 
which are fundamental for automated image recogni-
tion and analyses.17 Basically, a wide range of potential 
advantages exist using an assisting automated soft-
ware tool in the clinical imaging routine. Analyses are 
objective with minimal observer influence, the applica-
tion improves the work efficiency, and thus might re-
duce costs.4 Consequently, practical implementations 
of AI in different cardiac diagnostic modalities have 
already been made, and results are promising. With 
the help of AI software, Betancur et al18 demonstrated 
higher sensitivity in diagnosing coronary obstructive 
disease based on automated myocardial perfusion 
analyses. AI-based image assessment further enables 
determination of novel noninvasive imaging biomark-
ers by profiling coronary arteries in coronary computed 

Table 4.  Agreement Between Manual and Automated 
Corrected Analyses

Parameter Bias 95% LOA ICC (95% CI) CoV (%)

LV mass 10.79 −30.3 to 51.9 0.83 (0.67–0.90) 16.6

LV EDV −20.05 −54.6 to 14.5 0.88 (0.0–0.96) 11.1

LV ESV −12.03 −47.1 to 23.1 0.88 (0.62–0.95) 21.7

LV SV −8.38 −30.9 to 14.1 0.84 (0.44–0.93) 15.1

LVEF 0.96 −7.4 to 9.3 0.94 (0.93–0.95) 8.6

RV EDV −21.68 −59.2 to 15.8 0.81 (0.0–0.94) 14.3

RV ESV −13.37 −40.7 to 14.0 0.81 (0.05–0.93) 24.2

RVEF −8.4 −31.4 to 14.6 0.74 (0.58–0.82) 9.3

RV SV −8.22 −34.9 to 18.4 0.79 (0.0–0.89) 17.8

Infarct size −0.2 −6.8 to 6.3 0.98 (0.97–0.98) 19.4

CoV indicates coefficient of variation; EDV, end-diastolic volume; ESV, 
end-systolic volume; ICC, intraclass correlation coefficient; LOA, limits of 
agreement; LV, left ventricular; LVEF, left ventricular ejection fraction; RV, right 
ventricular; RVEF, right ventricular ejection fraction; and SV, stroke volume.

Table 5.  Univariate and Multivariable Cox Regression Analysis Including LVEF for Prediction of MACE

Variables
Univariate HR 

(95% CI) P Value
Multivariable HR 
(95% CI), Manual P Value

Multivariable HR  
(95% CI), Automated P Value

Age 1.05 (1.03–1.07) <0.001 1.03 (1.0–1.06) 0.04 1.03 (1.0–1.06) 0.04

Sex (male) 1.77 (1.09–2.87) 0.02

Smoking 0.47 (0.27–0.83) 0.008

Hypertension 2.29 (1.20–4.35) 0.012

Diabetes mellitus 1.77 (1.08–2.9) 0.023

Systolic blood 
pressure, mm Hg

0.99 (0.98–0.998) 0.016

Diastolic blood 
pressure, mm Hg

0.98 (0.96–0.999) 0.034

Heart rate, beats/min 1.02 (1.01–1.04) <0.001

Killip class on 
admission

2.01 (1.56–2.59) <0.001 1.43 (1.01–2.02) 0.04 1.51 (1.08–2.12) 0.016

No. of diseased 
vessels

1.52 (1.14–2.02) 0.004

Area at risk (%)* 1.01 (1.0–1.03) 0.048

Manual LVEF† (%) 0.93 (0.91–0.95) <0.001 0.95 (0.93–0.98) <0.001

Automated LVEF† (%) 0.94 (0.92–0.96) <0.001 0.96 (0.93–0.99) 0.002

HR indicates hazard ratio; LVEF, left ventricular ejection fraction; and MACE, major adverse cardiac events.
*Based on manual late gadolinium enhancement analysis.
†Either manual or automated LVEF was included in multivariable analysis respectively due to high correlation of both parameters.
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tomographic angiography, offering improved car-
diac risk prediction.19 Similarly, evidence suggests 
improved risk prediction in patients with suspected 
coronary disease using deep learning algorithms for 
interpreting combined clinical and coronary computed 
tomographic angiography parameters.20 Furthermore, 
recent evidence suggests more individualized and ob-
jective likelihood assessment of AMI provided by new 
AI-derived indexes using the big data approach.21

Apart from new classifications and indexes, use 
of deep learning algorithms optimizes assessment of 
established parameters that have great impact for cur-
rent clinical practice. The value of LVEF for risk predic-
tion in patients following AMI is well established.22–25 
Consequently, precise determination of volumetric 
parameters is important for measuring therapeutic 
success after coronary reperfusion and clinical de-
cision-making regarding pharmacologic and device 
therapy.26,27 In accordance with previous studies, our 

automatically generated results revealed better agree-
ment with conventionally generated results for LV as-
sessment than RV analyses.28 In our work, LV mass and 
biventricular volumes were principally estimated higher 
by automated analyses, whereas biventricular ejection 
fraction was measured lower, which is also consistent 
with results of other studies based on similar method-
ology.5,29 With a mean bias of 2.57% LVEF, which is 
clinically acceptable, wide CIs ranging from −9.1% to 
14.2% underscore the importance of a careful check on 
results. Even though the method works well in the over-
all cohort, on an individual basis, experienced observer 
assessment is necessary to detect outliers for which the 
analysis has not performed as well. Notwithstanding, 
LVEF-based risk stratification was similar for manual 
and automated analyses, suggesting that pathology is 
adequately captured by both methodologies.

Especially in large patient populations like this co-
hort, the automated analysis tool reduces required 

Table 6.  Univariate and Multivariable Cox Regression Analysis of Patients With Enhancement on LGE Images for 
Prediction of MACE

Variables
Univariate 

HR (95% CI) P Value
Multivariable 

HR (95% CI), Manual P Value
Multivariable 

HR (95% CI), Automated P Value

Age 1.04 (1.02–1.07) <0.001 1.03 (1.01–1.06) 0.003 1.03 (1.0–1.06) 0.01

Sex (male) 1.81 (1.09–3.0) 0.02

Hypertension 2.5 (1.23–5.06) 0.011

Diabetes mellitus 1.87 (1.11–3.13) 0.018

Killip class on admission 2.05 (1.58–2.66) <0.001

No. of diseased vessels 1.61 (1.19–2.18) 0.002

Manual IS* (%) 1.04 (1.02–1.06) <0.001 1.04 (1.02–1.06) <0.001

Automated IS* (%) 1.05 (1.02–1.07) <0.001 1.04 (1.01–1.06) 0.002

Manual MVO (%) 1.09 (1.03–1.15) 0.003

Automated MVO (%) 1.07 (1.01–1.1) 0.016

Myocardial salvage index 0.99 (0.98–1.0) 0.048

HR indicates hazard ratio; IS, infarct size; LGE, late gadolinium enhancement; MACE, major adverse cardiac events. and MVO, microvascular obstruction.
*Either manual or automated IS was included in multivariable analysis, given the high correlation of both parameters.

Figure 5.  Kaplan–Meier plots according to LVEF.
Kaplan–Meier curves for manual and automated LVEF analyses presenting the time to MACE in patients 
dichotomized by clinically relevant LVEF 35% in manual and automated groups, respectively. LVEF 
indicates left ventricular ejection fraction; and MACE, major adverse cardiac events.
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postprocessing time. Compared with standard pro-
cedures of manual analyses, the automatic software 
solution provided ≈10 saved minutes for volumetric 
assessments and ≈8  minutes for IS quantification 
per patient, which means a substantial gain of work 
efficiency.

However, the majority of patients subjectively re-
quired manual corrections. Most overall corrections 
were made in basal slices because their definition is 
one of the most challenging parts of SAX analyses and 
is subject to great observer variability.29 In contrast to 
our study, some studies have preselected SAX images 
to simplify the automated analysis at the cost of addi-
tional expenditure of time.30

In patients with an extended IS resulting in a 
pronounced LGE, optimal border delineation was 
aggravated because of a more difficult distinction 
between hyperintense LGE myocardium and blood 
pool. Administration of gadolinium contrast agent is 
known to influence border detection in automated 
software30,31; therefore, it might be taken into con-
sideration by acquiring steady-state free preces-
sion–Cine images preferably before giving contrast 
agent, to lower these effects of a more challenging 
myocardial border detection using automated soft-
ware. Regarding time-efficient image acquisition, 
many CMR scan protocols use the time between 
giving the contrast agent bolus and LGE scans for 
steady-state free precession–Cine image acquisition. 
Nevertheless, even without preselection of images 
and acquiring the images after gadolinium injection, 
manual optimization of the automated contours did 
not lead to better risk prediction or improved diag-
nostic accuracy based on AUC comparisons; conse-
quently, such optimizations should not be considered 
mandatory.

It is noteworthy that in contrast to user-independent 
automatic biventricular volume analyses, automated IS 
quantification indispensably required manual comple-
mentation of potentially present MVO areas within the 
infarct zone. Therefore, fully automated IS quantifica-
tion was not yet possible. However, automated “uncor-
rected” IS including MVO showed similar prognostic 
implications compared with the manual method. On 
a different note, this tool enables additional time sav-
ings for LGE analyses. It is also conceivable that future 
software refinements will include deep learning–based 
detection of MVO.

Taken together, “on-the-fly” postprocessing based 
on AI seems feasible and could be performed in paral-
lel to other data assessments or during finishing image 
acquisition.5 It will be interesting to see whether fur-
ther refinements of AI algorithms based on continued 
automated learning may provide further improved risk 
prediction in large data sets, such as the current AMI 
patient cohort, in the future.

Study Limitations
CMR imaging in this multicenter study was performed 
at several different study sites using different CMR 
vendors. However, all centers followed the same study 
protocol. Because of contraindications and length of 
CMR image acquisition, only stable and preselected 
patients could be included in this study; this approach 
might result in selection bias, with a lower event rate 
than in the overall cohort. Nevertheless, this limitation 
applies to both analysis tools and, consequently, does 
not limit the validity of the current analysis.

More detailed specifications of the automated al-
gorithm that incorporates AI and deep learning mod-
els developed by the manufacturer are not disclosed; 
therefore, they cannot be described more precisely. 
Given the missing application of RV mass quantifica-
tion in the automated algorithm, this parameter was not 
analyzed.

CONCLUSIONS
User-independent volumetric analyses performed by 
fully automated software are feasible, and the results 
are equally predictive of MACE compared with conven-
tional analyses in patients following AMI. Even though 
a careful check of the results will still be required by an 
expert physician, this novel technique may provide the 
tools for time-efficient and reproducible risk stratifica-
tion in the clinical arena.
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