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Abstract
There has been one previous report of a cohort of patients with variants in Chromodomain Helicase DNA-binding 3 (CHD3),
now recognized as Snijders Blok-Campeau syndrome. However, with only three previously-reported patients with variants
outside the ATPase/helicase domain, it was unclear if variants outside of this domain caused a clinically similar phenotype.
We have analyzed 24 new patients with CHD3 variants, including nine outside the ATPase/helicase domain. All patients
were detected with unbiased molecular genetic methods. There is not a significant difference in the clinical or facial features
of patients with variants in or outside this domain. These additional patients further expand the clinical and molecular data
associated with CHD3 variants. Importantly we conclude that there is not a significant difference in the phenotypic features
of patients with various molecular disruptions, including whole gene deletions and duplications, and missense variants
outside the ATPase/helicase domain. This data will aid both clinical geneticists and molecular geneticists in the diagnosis of
this emerging syndrome.

Introduction

The Chromodomain Helicase DNA-binding (CHD) proteins
constitute a highly conserved protein family seen in species
ranging from protists to plants and mammals [1–3]. The
family is defined by the presence of N-terminal paired

Chromatin Organization Modifier (chromo) domains, and
two central Sucrose NonFermentable2-like ATP-dependent
helicase domains [4]. The CHDs utilize the energy derived
from ATP hydrolysis to alter nucleosome positioning and
structure, thereby regulating access to DNA and gene
transcription [1, 5]. The family has been identified as critical
in the regulation of cellular processes such as nucleosome
assembly, stem cell quiescence, cell proliferation, and cell
fate determination [4, 6]. Nine such CHDs are known to
exist in humans, each of which can be broadly categorized
into one of three subfamilies [2, 3]. Subfamily I includes
human CHD1 and CHD2. Subfamily II, defined by the
presence of dual plant homeodomain (PHD) motifs,
includes human CHD3, CHD4, and CHD5. Finally,
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subfamily III, defined by the presence of Brahma and
Kismet domains, includes human CHD6, CHD7, CHD8,
and CHD9.

Perhaps not surprisingly for a family of genes with such
important and conserved cellular functions, genetic pertur-
bation of the CHDs has been linked to a number of human
disorders. The first human CHD gene linked to disease was
CHD7, found to be causative of CHARGE syndrome (MIM
214800) [7], with variants in CHD1 [8], CHD2 [9], CHD4
[10], and CHD8 [11], identified as causes of Pilarowski-
Bjornsson syndrome (MIM 617682), Epileptic encephalo-
pathy (MIM 615369), Sifrim-Hitz-Weiss syndrome (MIM
617159), and autism spectrum disorders (MIM 615032),
respectively. In 2018 CHD3 emerged as the latest CHD
gene to be associated with a human syndrome, with variants
in CHD3 identified in 35 patients with a novel neurodeve-
lopmental disorder, Snijders Blok-Campeau syndrome
(MIM 618205) [12].

The Snijders Blok-Campeau syndrome is characterized
by some degree of intellectual disability, developmental
delay (most notably speech delay), and a number of dys-
morphic features [12]. Interestingly, most variants identified
in the initial cohort of 35 patients appeared to cluster within
the protein’s highly conserved ATPase/helicase domain,
with experimental work providing evidence that both gain-
and loss-of function variants in this region can result in the
same phenotype [12].

Due to the small number of patients known to have
Snijders Blok-Campeau syndrome, many of the core fea-
tures of the syndrome remain to be more precisely defined,
with a clear need to better understand the role of different
variant types in the development of the syndrome. Here we
present an additional 24 patients with CHD3 variants and
Snijders Blok-Campeau syndrome. With these new patients
we are able to better define the Snijders Blok-Campeau
phenotype, and confirm and expand the constellation of
facial findings that we believe convincingly represent a
recognizable pattern of human malformation. Furthermore,
our cohort contains 14 patients with CHD3 variants that fall
within the ATPase/helicase domain, but also 10 patients
with a variety of other CHD3 variant types falling outside
of this conserved domain (including one microdeletion
containing the complete CHD3 gene, and one micro-
duplication containing the complete CHD3 gene). Our
analysis has shown no difference in phenotype between
those patients with missense variants affecting the CHD3
helicase domain compared with patients with any other
CHD3 variant type, expanding the spectrum of molecular
mechanisms that are known to lead to Snijders Blok-
Campeau syndrome. Together with the first cohort of
patients, our data bring the total number of known Snijders
Blok-Campeau patients from 35 to 59, provide further
important phenotypic and molecular characterization of the

disorder, and will aid in the diagnosis of the syndrome in
future patients.

Materials and methods

Patient cohort and variants identified

The patients we present here were ascertained from
numerous clinical and laboratory sites across different
countries (Australia, Canada, China, France, Germany,
Italy, the Netherlands, and the United States). Altogether,
24 patients were ascertained and included in our cohort. All
patients initially presented for evaluation for developmental
delay, most with additional findings, and were each found
to have a variant in the CHD3 gene by clinical molecular/
cytogenetic methods, including chromosomal microarray
and clinical exome/genome sequencing. In all cases, the
treating provider considered the identified CHD3 variant the
most likely underlying genetic etiology for each patient’s
presentation. Information regarding the inheritance of the
CHD3 variant was known for 22 of the 24 patients. In all
but two cases, the CHD3 variant was found to have arisen
de novo. Individual 18 was found to have a maternally-
inherited truncating variant in CHD3, with her mother noted
to have intellectual disability and seizures, and was con-
sidered special needs throughout her schooling. In indivi-
dual 23 the identified CHD3 duplication was reportedly also
found in her similarly-affected brother, and was thought to
have likely been inherited from a similarly-affected father,
although the father was not available for testing. Patients
and/or caregivers were consented by the treating physician
for publication, and for each patient for whom a photograph
is shown, specific consent for photo publication was
obtained by the treating provider.

Clinical information was collected with a standardized
questionnaire. Given the previously-reported phenotype of
Snijders Blok-Campeau syndrome, specific questions were
included regarding head circumference, facial dysmorph-
isms, structural brain anomalies, congenital heart anomalies,
seizures, hernias, developmental delay, autistic features,
intellectual disability, and others.

Each subject included in the manuscript has been sub-
mitted to the Leiden Open Variation Database, with each
entry detailing the CHD3 variant identified and a brief
phenotypic summary. The entries can be found at
http://www.lovd.nl/CHD3 (Patient IDs 274276, 274277,
275839–275860).

Statistical analysis

To assess significant phenotypic differences between
patients with CHD3 variants directly affecting the CHD3
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helicase domain, and those patients with any other CHD3
variant, two-tailed Fisher’s exact tests were performed in
RStudio and plotted using the ggplot2 package.

Generation of Snijders Blok-Campeau syndrome
composite photos

The deep convolutional neural network architecture pro-
vided by Face2Gene (FDNA Inc, USA) [13] was used to
create composite photos of individuals with CHD3 variants,
as indicated in the text and figure legends.

Results

CHD3 patient cohort

Our cohort includes 24 patients, all of whom were found to
have variants affecting the CHD3 gene as the most likely
explanation for their clinical presentations. The average age
of our cohort is 9.3 years (median age of 8), with the
youngest patient being 1 year old at the time of last eva-
luation, and the oldest being 31 years old. The CHD3
variants identified in our cohort are discussed below, and
depicted schematically in Fig. 1a. The clinical features of
our patients are discussed below, and can also be found in
tabular format in Table 1, and in a more extensive tabular
form in Supplemental Table 1. Patient facial characteristics
are discussed at length below, with photos of a subset of our
patients, divided into groups by variant type, displayed in
Fig. 2.

CHD3 variants identified

A number of different CHD3 variant types were identified
in our cohort (Fig. 1a). In the initial Snijders Blok-Campeau
syndrome patient cohort, it was noted that CHD3 missense
variants appeared to cluster within the CHD3 helicase
domain [12]. The CHD3 missense variants identified in our
cohort similarly appear to cluster within the CHD3 helicase
domain, which should likely be considered a hotspot for
CHD3 pathogenic variation. Of the nineteen missense/in-
frame deletion variants identified, 14 fell within CHD3
amino acid position 886–1262, with the CHD3 helicase
domain predicted to span amino acid residues 879–1258
(NP_001005273.1). The remaining four missense variants
we identified were found to affect amino acid residues
outside of the helicase domain, specifically disrupting
amino acids at position 569 (in two individuals, 1–1 and
1–2, monozygotic twins), 1415, and 1955.

In addition, we identified five patients with likely loss-of-
function alleles. One patient was found to have a nonsense
variant within the CHD3 gene, two were found to have

frameshift variants, one was found to have a splicing variant
(predicted to abolish the splice acceptor site of exon 27, and
result in exclusion of exon 27 from the final transcript,
generating a frameshift and likely loss-of-function allele),
and one was found to have a 0.5 Mb deletion (chr17:
g.7394419_7871060del (hg19)) including the complete
CHD3 gene (as well as the OMIM disease genes MPDU1,
TP53, and WRAP53). While the deletion of TP53 in this
patient is consistent with an expected diagnosis of Li
Fraumeni syndrome, it does not explain the patient’s
developmental delay or other phenotypic features. The
treating physician ultimately felt that the patient’s pre-
sentation was best explained by the deletion of the CHD3
gene. It should be noted that, in total, there are 37 additional
patients in the DECIPHER database [14] reported as having
chromosomal deletions involving the complete CHD3, with
the patient reported here having the smallest such deletion.

Finally, one patient in our cohort was found to have a
large 6.5 Mb duplication (chr17:g.7339633_7902885dup
(hg18)) including the complete CHD3 gene (as well as the
OMIM disease genes CHRNB1, MPDU1, TP53, and
WRAP53, again with none of these other genes thought to
be contributing significantly to the patient’s phenotype).
This patient also had additional testing by next-generation
sequencing examining 1162 known intellectual disability
genes, which was nondiagnostic of any alternate explana-
tion for the patient’s presentation. The DECIPHER database
[14] contains an additional 34 patients with chromosomal
duplications involving the complete CHD3 gene, two of
which are smaller than the duplication seen in our patient
(DECIPHER patients 258312 and 301981). Insufficient
clinical information is available for either of these two
patients to comment on any potential phenotypic overlap
between them and Snijders Blok-Campeau syndrome.

Absence of genotype-phenotype correlation

It was unclear if the 10 patients in our cohort with CHD3
variants outside of the helicase domain (individuals 1–1,
1–2, and 16 through 23) would present with the Snijders
Blok-Campeau syndrome phenotype, or if this phenotype
was limited to patients with missense/in-frame deletion
variants within the CHD3 helicase domain. To address this
question, we performed an analysis to specifically ascertain
any phenotypic differences between the 14 patients in our
cohort with variants within/immediately adjacent to the
CHD3 helicase domain, and the 10 patients with any other
variant type (Fig. 1b). Overall, no major phenotypic dif-
ferences were observed. The only clinical feature different
between the two groups with a p value less than 0.05 (by
Fisher’s exact test, not surviving Bonferroni correction for
multiple testing) was Moderate/Mild-Moderate ID, which
was more prevalent in patients with CHD3 helicase domain
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variants. It should be noted that there were no significant
differences between the two groups for intellectual dis-
ability overall, or for intellectual disability that was rated as
either Severe/Moderate-to-Severe, or Mild/None. Absent
teeth, specifically lateral incisors, were only seen in the
group with CHD3 helicase variants, but very few patients
were specifically examined for this finding, and thus this
difference was not found to be statistically significant
(p value of 0.1186 by Fisher’s exact test).

A panel of clinical geneticists was not able to identify
any striking facial differences between the patients in the
two groups (faces displayed in Fig. 2a). In addition, two
composite facial masks were generated—one based on

patients with CHD3 helicase missense variants, and
another for patients with CHD3 missense variants falling
outside of the CHD3 helicase domain, or with non-
missense CHD3 variants (i.e., loss of function, or whole
gene deletion)—using photos of patients from our cohort
and the original CHD3 cohort. No obvious differences
were apparent between the facial features shown in the
two masks.

For all of these reasons, and because of the evidence
that Snijders Blok-Campeau syndrome can be caused by
both gain-of-function and loss-of-function changes
within the CHD3 gene, we chose to include all 24
patients in our phenotypic analysis. It is likely that the

Fig. 1 Phenotypes and CHD3 variants detected in our patient
cohort. a Schematic depicting the CHD3 protein with colored boxes
corresponding to the protein domains listed in the included key, based
on the amino acid sequence NP_001005273.1. Genetic variants are
indicated by large colored bars indicating deletions/duplications, and
by dots, colored as per the included key. Variants displayed above the
protein schematic are those that were identified in the cohort we pre-
sent in this paper. Variants displayed below the schematic are those
identified in the initial CHD3 patient cohort [12]. The different domain
types displayed are plant homeodomains (PHD), chromodomains
(Chromo), a Helicase domain consisting of two parts (Helicase

ATP-binding and Helicase C-terminal), Domains of Unknown Func-
tion (DUF), and a C-terminal 2 domain. b Graph displaying the fre-
quency of various phenotypic features (shown as a percent of the total
for each group) for patients with missense/in-frame deletions within or
surrounding the CHD3 helicase domain (individuals 2 through 15,
displayed in green, n= 14) compared with patients with any other
CHD3 variant type (individuals 1–1, 1–2, 16 through 23, displayed in
purple, n= 10). Fishers exact test was used to determine if any sig-
nificant differences existed between the two groups. p values are
displayed for all comparisons with a p value < 0.05—all other p values
were >0.05.

A second cohort of CHD3 patients expands the molecular mechanisms known to cause Snijders. . . 1425



exact underlying molecular pathology differs between
patients in different variant groups, but ultimately it
appears that all CHD3 variant types result in a similar
phenotypic presentation.

CHD3 recurrent variants

A number of unrelated individuals in the initial Snijders
Blok-Campeau syndrome cohort were found to have

Table. 1 Phenotypic findings in Snijders Blok-Campeau syndrome patients, both in our cohort and the previously-published cohort.

Our cohort Initial cohort Combined cohorts

Development/Intellect Amount Percentage Amount Percentage Amount Percentage

Developmental Delay 24/24 100 35/35 100.0 59/59 100

Speech Delay 24/24 100 33/33 100.0 57/57 100

Hypotonia 22/24 92 21/28 75 43/52 83

Autistic Features 9/24 38 9/31 29 18/55 33

Intellectual Disability (ID) 20/21 95 27/35 77 47/56 84

Severe ID 4/20 20 7/27 26 11/47 23

Moderate to Moderate-Severe ID 9/20 45 8/27 30 17/47 36

Mild to Mild-Moderate ID 7/20 35 9/27 33 16/47 34

CNS Anomaly/Seizures

Seizures 5/24 21 4/34 12 9/55 16

Any Structural CNS abnormality 9/23 39 16/28 57 25/51 49

Prominent extra-axial space 4/9 44 10/17 59 14/26 54

Delayed myelination 3/9 33 N/A N/A 3/9 33

Congenital Heart Disease (CHD)

Any CHD 5/24 21 3/35 9 8/59 14

Atrial septal defect 3/5 60 1/3 3 4/8 50

Ventricular septal defect 1/5 20 1/3 3 2/8 25

Patent ductus arteriosus 1/5 20 N/A N/A 1/8 13

Visual abnormality

Any visual abnormality 18/24 75 23/33 70 41/57 72

Strabismus 6/18 33 10/23 44 16/41 39

Cortical visual impairment 4/18 22 3/23 13 7/41 17

Astigmatism 3/18 17 2/23 9 4/41 10

Hyperopia 3/18 17 11/23 48 14/41 34

Myopia 3/18 17 1/23 4 4/41 10

Head/Face

Macrocephaly 10/24 42 19/33 58 29/57 51

Microcephaly 2/24 8 1/33 3 3/57 5

Frontal bossing 13/23 57 11/33 33 24/56 43

Full Cheeks 13/23 57 N/A N/A 13/23 57

Pointed chin 12/24 50 N/A N/A 12/24 50

Mid-face hypoplasia 9/24 38 N/A N/A 9/24 38

Eyes

Ocular hypertelorism 13/24 54 24/31 77 37/55 67

Deep set eyes 13/24 54 N/A N/A 13/24 54

Laterally sparse eyebrows 12/23 52 N/A N/A 12/23 52

Narrow palpebral fissues 10/24 42 N/A N/A 10/24 42

Telecanthus 10/23 44 N/A N/A 10/23 44

Ears

Post rotated ears 9/24 38 N/A N/A 9/24 38

Low-set ears 8/24 33 N/A N/A 8/24 33

Hearing Loss 3/23 13 N/A N/A 3/23 13

Nose

Broad nasal bridge 17/24 71 N/A N/A 17/24 71

Prominent nose 6/24 25 N/A N/A 6/24 25

Broad/Bifid nasal tip 6/24 25 N/A N/A 6/24 25

Mouth

Thin upper lip 17/23 74 N/A N/A 17/23 74

Absent teeth 5/15 33 2/30 7 7/45 16
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identical variants within the CHD3 gene, leading to the
supposition that certain variants represented recurrent
mutations[12]. Of these initially-reported recurrent variants,
none were seen in our cohort—in fact, the only previously-
reported variants found in our cohort were the p.H886R
variant (found in individual 2), and the p.R1172Q variant
(found in individual 12). We did, however, identify a
recurrent variant within our own cohort, with four unrelated
individuals (6, 7, 8, and 9) found to have a CHD3 variant
affecting the arginine residue at amino acid position 966.
Again, individuals 1–1 and 1–2, monozygotic twins, were
both found to harbor the same CHD3 variant at amino acid
position 569.

Facial features

The facial features observed in the initial cohort of Snijders
Blok-Campeau syndrome patients included widely spaced
eyes, a broad and bossed forehead, deep-set eyes/periorbital
fullness, narrow palpebral fissures, laterally sparse eye-
brows, low-set and often simple ears with thick helices, and
a pointed chin [12]. Our cohort confirms these observations,
finding widely spaced eyes in 13 of 24 patients (54%),
prominent/bossed forehead in 13 of 23 patients (57%),
deep-set eyes in 13 of 24 patients (54%), narrow palpebral
fissures in 10 of 24 patients (42%), laterally sparse eye-
brows in 12/23 patients (52%), low set or simple ears in 9 of
24 patients (38%), and a pointed chin in 12 of 24 patients
(50%) [12].

In addition to the facial features seen in the initial cohort,
other common facial features were apparent in our patient
cohort. These include a thin upper lip in 17 of 23 patients
(74%), broad nasal bridge in 17 of 24 patients (71%), full
cheeks in 13 of 24 patients (57%), and midface hypoplasia
in 9 of 24 patients (38%), with a general, but difficult to
quantify, square and boxy appearance of the face in most
patients, especially at younger ages.

Facial composite masks were generated from all 31
available photos (including the 14 from our cohort, and the
photos of patients from the initial cohort)—one for subjects
with CHD3 helicase domain missense variants, and another
for all the other subjects.

Structural brain anomalies and macrocephaly

Of the 23 patients in our cohort with any brain imaging, 9
(39%) had structural central nervous system (CNS)
anomalies identified. This is similar to the 57% of patients
with reported CNS anomalies in the original patient cohort.
By far the most common structural CNS anomaly seen in
our cohort was widening of the extra-axial spaces, which
was present in 4 of the 9 patients with CNS anomalies
(44.4%). Again, this is similar to the frequency of this
finding in the initial cohort, where 59% of patients with
CNS anomalies were found to have some degree of
widening of the extra-axial spaces [12].

Interestingly, the presence of prominent extra-axial
spaces/ventriculomegaly did not correlate with the pre-
sence of macrocephaly in our cohort or in the original
cohort. In the initial publication, macrocephaly was a
reported finding in 58% of CHD3 patients. In our cohort,
macrocephaly was similarly seen in 10 of 24 patients (42%),
while microcephaly was noted in only 2 of 24 patients (8%),
with the remaining 50% of patients having head sizes fall-
ing within 2 standard deviations of the mean. The mean Z-
score for head circumference in our cohort was +0.9 at
birth, and +1.3 at the most recent measurement, but with a

Fig. 2 Facial photographs of CHD3 patients in our cohort. a
Photographs of 14 affected individuals from our cohort, divided by
variant type, as indicated. Overall, we note the similar facial appear-
ance between patients in all variant type groups, with a boxy face,
prominent forehead, full cheeks, thin upper lip, broad nose and nasal
bridge, deep- and widely-set eyes, and pointed chin. We also note that
the facial appearance matures over time, with the full cheeks and boxy
face becoming less prominent, while the broad forehead, prominent
nose, and pointed chin become more defining of the typical facial
appearance at older ages. b Two composite facial masks were gener-
ated. The first, on the left, was generated from 19 photos of patients
with missense/in-frame deletion variants within the CHD3 helicase
domain (photographs obtained from both our cohort and the initial
CHD3 cohort) [12]. The second, on the right, was generated from 11
photos of patients with any other CHD3 variant (photographs obtained
from both our cohort and the initial CHD3 cohort) [12]. We note a
very similar facial appearance between the two masks.
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standard deviation of 1.5 and 2.7, respectively. Thus, while
macrocephaly is a common finding in the Snijders Blok-
Campeau syndrome, it is seen in less than 50% of patients
in our cohort, with a wide range of head sizes, ranging from
microcephalic to macrocephalic.

Following widened extra-axial spaces, the next most
common CNS anomaly seen in our cohort was delayed
myelination (reported in 3 of the 9 patients with CNS
anomalies, 33%). Other CNS anomalies including low
white matter volume in 1 patient, cerebral dysgenesis in 1
patient, polycystic structures observed adjacent to the ven-
tricles in 1 patient (seen on head ultrasound, no MRI
available), and a short corpus callosum in 1 patient. Again,
these findings are in keeping with the diverse set of CNS
anomalies seen in the initial cohort.

Vision abnormalities

Strikingly, 18 of 24 patients in our cohort (75%) had some
type of vision abnormality. A similar rate of visual
impairment was reported in the initial cohort, where 70% of
patients were reported as having some type of visual
abnormality[12]. Strabismus was seen in 6 of the 18 patients
with a reported vision abnormality in our cohort (33%,
similar to the 44% reported in the initial cohort), with
cortical visual impairment seen in an additional 4 (22%, as
compared with 13% of the initial cohort). Astigmatism,
myopia, and hyperopia were seen in an additional 3 patients
each, with other vision abnormalities included dissociated
vertical gaze, exotropia, amblyopia, and esotropia in addi-
tional 1 patient each.

Developmental delay and intellectual disability

Similar to the previous cohort, speech delay was seen
unequivocally in all 24 of our patients. Intellectual disability
was noted in 20 of 21 patients (95%, 3 individuals too
young to assess). We also similarly noted that the severity
of intellectual disability was very evenly distributed, with 4
patients recorded as having severe intellectual disability,
three with moderate to severe, six with moderate, four with
mild to moderate, and four with mild. Hypotonia was seen
in 22 of 24 of our patients (92%), and autistic features were
seen in 9 of 24 patients (38%).

Seizures

Seizures were reported in 5 of 24 patients in our cohort
(21%). In one case, seizure activity was confined to a single
absence seizure, and in another it was confined to three
discreet febrile seizures in infancy. In the other three cases
the specifics of seizure frequency/characteristics were not
available. Thus, seizure activity appears slightly more

prevalent in our group compared with the initial Snijders
Blok-Campeau syndrome patient cohort, where 3 of 35
patients (9%) were found to have seizures—one with epi-
lepsy, with an additional two patients reported with neonatal
convulsions [12]. There did not seem to be any correlation
between the nature/location of the underlying CHD3 variant
and the development of seizures in our cohort. Thus, seizure
activity appears slightly more prevalent in our group com-
pared with the initial Snijders Blok-Campeau syndrome
patient cohort, where 3 of 35 patients (9%) were found to
have seizures—one with epilepsy, with an additional two
patients reported with neonatal convulsions [12]. There did
not seem to be any correlation between the nature/location
of the underlying CHD3 variant

Congenital heart disease

Congenital heart disease (CHD) was seen in only 5 of 24
(21%) of patients, mostly accounted for by atrial septal
defects (seen in 3 patients), followed by patent ductus
arteriosus (in 1 patient) and ventricular septal defect (in 1
patient). This is in keeping with the types and frequency of
CHD reported in the initial CHD3 patient cohort [12].

Other findings

Undescended testes and other male genitourinary anoma-
lies, which were present in 37% of males in the initial
Snijders Blok-Campeau syndrome patient cohort [12], were
reported in only 2 of 10 males (20%) in our cohort, with
unilateral undescended testicle reported in two boys. One
male was also found to have kidney stones, and one female
patient in our cohort was noted to have polycystic ovarian
syndrome. Umbilical, inguinal, and hiatal hernias, which
were frequently reported in the initial patient cohort (18% of
cases) [12], were noted in only one of the patients presented
here (4%).

Interestingly, 5 patients (21% of all patients, and 33%
of patients who were specifically examined for dental
anomalies) were noted to have absent adult teeth, with
three noted to have absent lateral incisors, and one patient
each with absent upper molars, or single unspecified
absent tooth. In the initial cohort, mention is made of two
patients with absent lateral incisors, but it is unclear how
many patients had been specifically examined for this
finding.

Joint laxity was reported in 8 of 24 patients (33%).
Hearing loss was uncommon, found in only 3 patients
(13%). Dermatologic findings seen in our cohort included,
in one patient each, café au lait marks, unusual nuchal skin
folds, dry skin, abnormally thick scars, nevus flammeus,
deep creases on the soles of the feet, dysplastic toe nails,
and a patch of hypopigmented occipital hair.
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Discussion

Here we have presented the second large cohort of Snijders
Blok-Campeau syndrome patients with variants in the
CHD3 gene, bringing the total number of known patients to
59. This cohort corroborates many of the findings reported
in the initial publication by Snijders Blok et al., and also
refines and expands the characteristic phenotype and
molecular architecture of the disorder.

Overall, with the addition of our patients to the initial
cohort, we are better able to define the typical phenotype of
the Snijders Blok-Campeau syndrome. A comparison of the
findings in our cohort and in the original cohort is shown in
Table 1. It is clear that certain features—developmental
delay, speech delay, intellectual disability, hypotonia, and
abnormalities of vision, for example—are nearly universally
present in all patients. In addition, the facial features char-
acteristic of the syndrome are now even more apparent.
Altogether, we feel that the constellation of a square/boxy
face with a bossed forehead, a thin upper lip, full/prominent
cheeks, midface hypoplasia, wide and deeply-set eyes with
small palpebral fissures, and laterally sparse eyebrows
define a recognizable set of facial features that can aid in the
clinical diagnosis of the Snijders Blok-Campeau syndrome.
In addition, in our cohort and in the cohort presented in the
initial publication, the wide range of ages of patients makes
it possible to further define the facial features over time.
Patients appear to initially demonstrate many of the above-
mentioned cardinal facial features of the syndrome. As the
patients age, however, some of these features become less
prominent (the boxy face and full cheeks, for instance),
while some features, such as the frontal bossing, prominent
and wide nose, and in particular the pointed chin, persist
and become the defining features of the face. Going for-
ward, we believe that the astute clinician will be able to
recognize this facial appearance, helping to aid in the
diagnosis of Snijders Blok-Campeau in future patients.

One major question that remained after the publication of the
initial Snijders Blok-Campeau syndrome cohort was whether
the location or nature of CHD3 variants correlated with parti-
cular phenotypic features. In the initial cohort, of the 35 patients
reported, all but 3 were found to have missense variants or
single amino acid deletions, with only 1 splicing variant and two
truncating variants identified. In addition, the majority of mis-
sense variants identified (29 of 31) fell within the helicase
domain of the CHD3 protein. These findings begged the
question—are helicase domain missense variants the major, or
even sole cause of the typical Snijders Blok-Campeau syndrome
phenotype? Furthermore, there appeared to be some evidence
that particular phenotypic features correlated with particular
variant types/locations—for example, the only patient with
epilepsy in the initial cohort was noted to be the only patient
with a missense variant in the C-terminus of the CHD3 protein.

The findings in our cohort do not support an obvious
genotype-phenotype correlation for the Snijders Blok-
Campeau syndrome. Furthermore, our report provides evi-
dence that a variety of CHD3 variants—not only those
affecting the helicase domain—result in the typical Snijders
Blok-Campeau syndrome phenotype. Of the 24 patients in
our cohort, 14 were found to have typical missense/in-frame
deletion variants affecting the CHD3 helicase domain, but
10 were found to have different types of CHD3 variants.
These included one complete CHD3 duplication, one
complete CHD3 deletion, three truncating variants, one
splicing variant, and four missense variants outside of the
helicase domain. These 10 patients did not stand out in any
way from the other 14 patients in our cohort. Even after
performing a comprehensive analysis of phenotypic differ-
ences between the two groups, only very few differences
could be identified. The facial features between these two
groups were also not strikingly different, with patients in
both groups judged to have the typical facial appearance for
the Snijders Blok-Campeau syndrome (as illustrated by the
composite facial masks in Fig. 2b).

This finding is particularly interesting in light of the fact
that both activating and inactivating variants in the CHD3
helicase domain (as determined by assays of CHD3 ATPase
activity and chromatin remodeling) were shown to result in
the typical Snijders Blok-Campeau syndrome phenotype
[12]. The data from our cohort, particularly the fact that
CHD3 whole gene deletions and duplications were found in
patients with very typical Snijders Blok-Campeau syndrome
presentation, adds further evidence to the idea that pertur-
bations of CHD3 function of all kinds might ultimately
converge to produce a similar phenotypic output. It must be
noted, however, that there is insufficient evidence at this
time to make any definitive statement about the patho-
genicity of CHD3 gene duplications in Snijders Blok-
Campeau syndrome, as only this single CHD3 duplication
patient has been described thus far. Future clinical and
functional work remains to determine if and how both
overactivity and underactivity of the CHD3 gene might
result in the same constellation of phenotypic findings.

Taken together, the findings presented in this paper, and
those presented in the initial publication on the Snijders Blok-
Campeau syndrome [12], solidify the syndrome as a recog-
nizable human neurodevelopmental disorder with stereo-
typical dysmorphic facial features. We have expanded the list
of molecular mechanisms known to cause the syndrome, and
show that any perturbation of CHD3 function appears to
result in the same characteristic human phenotype [12].
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