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Abstract

For the Framingham Heart Study (FHS) and simulated FHS (FHSsim) data, we tested for gene-gene
interaction in quantitative traits employing a longitudinal nonparametric association test (LNPT)
and, for comparison, a survival analysis. We report results for the Offspring Cohort by LNPT
analysis and on all longitudinal cohorts by survival analysis with cohort effect adjustment. We
verified that type I errors were not inflated. We compared the power of both methods to detect in
FHSsim data two sets of gene pairs that interact for the trait coronary artery calcification. In FHS,
we tested eight gene pairs from a list of candidate genes for interaction effects on body mass index.
Both methods found evidence for pairwise non-additive effects of mutations in the genes FTO,
PON1, and PFKP on body mass index.

Background
The Framingham Heart Study (FHS) cohorts and simulated
FHS (FHSsim) data available for Genetic Analysis Work-
shop 16 (GAW16) provide longitudinal data on quantita-
tive traits and include families. FHSsim data are based on
the FHS individuals and family structures, replacing only
the phenotypes by simulated values. For both sets of data,
we compared two association approaches to test quantita-
tive traits for gene-gene interaction. Both approaches use
baseline and available follow-up measurements and
require a set of independent individuals with phenotypes
and genotypes. The methods are: 1) a longitudinal
nonparametric association test for cohorts (LNPT) which

we recently developed and 2) survival analysis with the
Cox model. The LNPT is a rank-sum procedure based on
the longitudinal trait measurements. Survival analysis
models event times derived from the longitudinal traits
as age at the first exam when the trait crossed a predefined
threshold.

Both approaches remain mathematically valid regardless
of trait distribution. This is most useful: quantities with
mixture distributions such as the simulated trait cor-
onary artery calcification (CAC) remain non-normal
despite blom or log transformation. Also, LNPT and
survival analysis are invariant with respect to monotone
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transformations such as blom or log: they change neither
the order (ranks) of the trait data nor the event times,
given that the threshold is also transformed.

We analyzed quantitative traits with a skewed distribu-
tion: CAC in the FHSsim data and body mass index
(BMI) in the FHS data. We verified that the type I error of
5% was kept, applying our methods on the original,
untransformed data. CAC is influenced by two separate
sets of interacting gene pairs according to the GAW16
answers [1]. We computed the power of the two
approaches to detect two-locus interactions for the two
interacting gene pairs at the a = 5% level in all 200 data
replicates. In FHS, we analyzed BMI for gene-gene
interactions based on a set of candidate genes that
carry susceptibility variants that have been identified in
previous single-locus studies. We report results for the
offspring cohort by LNPT analysis, and on all long-
itudinal cohorts by survival analysis with cohort effect
adjustment. GAW16 data retrieval and all analyses were
carried out in compliance with the Helsinki Declaration.

Materials
The FHS data provide 227 independent individuals and
980 pedigrees. For association analysis, 1631 (233
Original (OC), 1243 Offspring (Off), and 155 Third
Generation (Gen3) Cohort) unrelated individuals had
available genotype and phenotype data that could be
extracted, including founders and one random indivi-
dual from all remaining multimember pedigrees. Similar
selection procedures were applied to FHSsim.

For FHS, Gen3 provides baseline values only. OC and
Off provide four consecutive measurements per indivi-
dual. The LNPT requires that individuals are followed up
at the same intervals but tolerates missing trait values.
We harmonized follow-up times by allocating five
examination time points T = 1, ..., 5 (baseline, 6 yr, 12
yr, 19 yr, 26 yr after baseline). T = 2 is missing for Off,
T = 5 is missing for OC. Longitudinal analysis by LNPT
used the phenotypes from all time points when both
cohorts were examined (T = 1, 3, 4). Some individuals
have incomplete longitudinal phenotypes. For FHSsim,
each cohort (Gen3, OC, Off) provides simulated base-
line trait values and two follow-ups, each 10 years apart.
All longitudinal phenotypes are complete.

For survival analysis, time to event was defined as the
earliest age at which the individual presented a BMI ≥ 25
kg/m2 (FHS) or a value of CAC>230 (FHSsim, no unit).
For censored individuals, time to censoring was age at
the last available exam. Censoring occurred when
individuals did not pass the threshold either for any of
the longitudinal measurements or for an initial sequence

of longitudinal measurements after which they are
missing to follow up. We excluded individuals who
have baseline trait values which are either missing or
above the threshold.

For analysis of CAC (FHSsim), we selected the two
interacting SNP pairs from the GAW answers [1] (single-
nucleotide polymorphisms (SNPs) τ1 and τ2; τ3 and τ4).
τ1 displays only a minimal main effect, τ2 a measurable
additive main effect. τ3 and τ4 are epistatic SNPs. All
four SNPs have minor allele frequencies (MAF) of
approximately 0.5.

For gene-gene interaction analysis of BMI (FHS), we
selected five candidate SNPs previously found to be
associated with alteration of BMI [2]. The SNPs are
rs6602024 (MAF 11%, chromosome 10, gene PFKP);
rs1121980 and rs9930506 (both: MAF 44%, chromo-
some 16, gene FTO); and rs854560 (MAF 37%,
chromosome 7, gene PON1) and rs6971091 (MAF
22%, chromosome 7, gene FAM137A).

Methods
LNPT analysis
The LNPT tests for association of longitudinal quantita-
tive traits with respect to a set of influencing factors,
which divide the cohort into subgroups. The LNPT tests
the null hypothesis of no difference in trait distribution F
between these subgroups

HF
0 : ,CF 0=

where C is a contrast matrix and F = { Ft
kls } is the set of

distribution functions Ft
kls ordered by observational

time point t and the influencing factors (kls) of interest.
For gene-gene interaction analysis, two factors k, l are
used to code for SNP genotype at the two loci (k, l = 0,1,2
for biallelic loci) and we stratified by sex s = {m, w}. The
test statistic resembles structurally a heteroscedastic
repeated measures ANOVA which is performed on the
mid-ranks of the longitudinal traits [3], estimating
longitudinal covariance from the ranks without assum-
ing any structure. Trait vectors Yi can be arbitrarily
dependent between exams/time points t of the same
individual i while they are assumed to be independent
between individuals. Individuals should be followed up
at the same time intervals. The LNPT yields a set of
adjusted p-values for tests of average effects of the loci,
sex, and number of exam and for tests of all interactions.
The LNPT can handle missing values for the longitudinal
phenotype. The test statistic is computed using the
existing phenotype measurements when values are
missing. The LNPT can model covariates as additional
factors. For all tested interactions, each stratum must
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contain a minimum of ten observations per exam to
ensure consistent estimates of the test statistic.

Prior to genetic analysis, we tested for a cohort effect
(FHS: OC, Off; FHSsim: OC, Off, Gen3) by using factors
for cohort type and for sex, omitting the two genetic
factors k, l. Gene-gene interaction analysis was restricted
to the large Offspring sample (N = 1243), to individuals
with no cholesterol treatment (79% of Off sample). For
BMI (FHS), we restricted baseline age to the interval 25-
46 yr to avoid effects of BMI-related mortality (manifest
as stagnating median BMI for old age). We adjusted for
age by using a two-level factor, testing only age-averaged
interaction effects. Levels are assigned according to
baseline age with median baseline age as break point.

Survival analysis: Cox proportional hazards model and
time-varying covariates
Survival analysis evaluates the time to the occurrence of
an event of interest and its dependence on particular
characteristics such as sex, genotype, and cohort. We
employ the Cox proportional hazard model and its
extension for time-varying factors [4], which are smoking
status and cholesterol treatment. The extended Cox
model compares the risk of an event between two or
more subgroups at each event time, where the risk group
of an individual changes according to the time-varying
factor. The model was adjusted for a cohort effect using
all cohorts with follow-up measurements (FHS: OC, Off;
FHSsim: OC, Off, Gen3). The likelihood-ratio test was
used to test for the gene-gene interaction by comparing
the log-likelihood of the model with interaction against
the null hypothesis model of no interaction.

Results
A significant main effect of cohort type and a significant
interaction of cohort type with sex were detected in FHS
BMI data (LNPT) and FHSsim CAC data (LNPT and Cox
model). We report gene-gene interaction analysis on the
Offspring Cohort (LNPT) and on all longitudinal
cohorts (Cox model with cohort effect adjustment).

Rates of false positives (i.e., type I errors) for p-values
≤ 0.05 were estimated for the interaction tests for SNP
pairs rs854560 and rs1121980 (FHS) and τ1, τ2
(FHSsim) after permutation of the assignment between
longitudinal phenotypes and individuals. Permutation
destroys associations but retains the distributional
properties of the trait.

FHSsim: results for CAC
The tested SNP interactions τ1, τ2 and τ3, τ4 are known to
contribute to the analyzed trait CAC [1]. For each SNP
pair, power is estimated as percentage of significant

results (p ≤ 0.05) of the interaction test on the 200
replicates. The LNPT detected both interactions with
100% power in the largest ascertainable sample (n = 856
on average) and with 99% (τ1, τ2) and 100% (τ3, τ4) for
sample size n = 400. The Cox model had a power of 94%
(τ1, τ2) and 100% (τ3, τ4) for the largest ascertainable
sample (n = 808 on average, 49% events) but only 76%
(τ1, τ2) and 97% (τ3, τ4) for sample size n = 400. The Cox
model did benefit from cohort effect adjustment: SNP
interaction τ1, τ2 was found with 94% power after
adjustment instead of 69% with no adjustment (n =
808). For CAC, the LNPT is more powerful compared
with survival analysis. Estimates of type I error at the
a = 5% level were 4.76% (LNPT) and 4.90% (Cox).

FHS: results for BMI
A significant cohort effect was detected by LNPT (pcohort
= 0.0001, pcohort × sex = 0.03). It is due to men (LNPT,
stratified analysis). The Cox model yields threshold-
dependent results (event BMI>25: pcohort = 0.15, pcohort ×
sex = 0.13, event BMI>30: pcohort = 0.02, pcohort × sex =
0.80) detecting no interaction between cohort and sex.
In the remainder of this paper, we report results on the
Cox model with threshold BMI>25 (yielding more
events) and cohort-effect adjustment.

The two approaches yield consistent results with
evidence for pairwise interaction between the three
genes FTO (rs1121980 and rs9930506), PON1
(rs854560), and PFKP (rs6602024). p-Values for gene-
gene interaction on BMI are given in Table 1, high-
lighting significant values (p ≤ 5%). For SNPs rs6602024
and rs6971091, LNPT analysis distinguished only
between carriers and non-carriers of the rare minor
allele. For SNP rs6602024, minor allele homozygotes
were excluded from survival analysis. Survival analysis
computes a single interaction p-value for each SNP pair
by the likelihood-ratio test comparing the interaction
model against the null model of no gene-gene interac-
tion. In contrast, the LNPT yields a set of p-values for the
interaction tests that are adjusted to the a = 5%-level. In
the present data, gene-gene interaction is detected as
effect on time-course (see Table 1). Estimates of type I
error at the a = 5% level were 4.99% (LNPT, with and
without age adjustment) and 4.80% (Cox). To quantify
effect size, we report the hazard ratios (HR) obtained by
survival analysis. The findings for main effects agree with
previous reports: rs854560 genotype AA yields higher
BMI (AA vs. TT, HR = 1.76 (95%CI: 1.21-2.51); AA vs.
AT, HR = 1.24, (95%CI: 0.97-1.50)). The rare rs6602024
genotype AG was previously reported to yield higher BMI
(AG vs. GG, HR = 1.16 for our sample (95%CI: 0.89-
1.54)). For the combination, highest BMIs are obtained
when rs854560 genotype TT is combined with
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rs6602024 genotype GG (TT*GG vs. AA*AG, HR = 3.7
(95%CI: 0.82-16.42, small sample size problem with
rare two-locus genotype groups)). The combined effect
of rs854560 with rs9930506 shows the highest BMIs
when rs854560 genotype AT is combined with genotype
GA or GG of marker rs9930506 (AT*GA vs. AA*AA,
HR = 2.3 (95%CI: 1.40-3.84). SNP rs6602024 with
rs1121980 shows the highest BMI values when
rs6602024 genotype AG is combined with genotype
GA or GG of marker rs1121980 (AG*GA vs. GG*AA
yields HR = 2.7 (95%CI: 1.26-5.84); AG*GG vs. GG*AA
yields HR = 1.78 (95%CI: 0.77-4.16)).

Discussion
Transformation from follow-up data to event-time data
can be viewed as reduction of information content. It
requires a priori a well reasoned threshold value. Results
of survival analysis depend on the choice of this
threshold. We illustrated this for the detection of the
cohort effect (BMI, FHS). For some scenarios, it may well
be possible that longitudinal data can not be analyzed by
survival analysis. For example, if a particular two-locus
genotype would efficiently protect against overweight,
one could face the problem that the threshold either
provides insufficient contrast or does not yield sufficient
numbers of events for analysis for the two-locus
genotypes of interest. For BMI, an established threshold

value of 25 kg/m2 for the status overweight was
available. In contrast to CAC, distribution of BMI is
almost normal (only slightly skewed) and candidate
SNPs for BMI tend to be rare, yielding small two-locus
genotype subgroups. For the SNP-pair with smallest
subgroup size (rs854560 and rs6602024), the like-
lihood-ratio test performed for survival analysis was
observed to yield significance although simultaneously,
the computed confidence intervals for the HR ratios were
not significant but included very high HRs.

Survival analysis has the benefit that it yields hazard
ratios as readily interpretable estimates of effect size. The
LNPT tests for a much more general feature, namely
differences between whole trait distributions without
making assumptions about an underlying model. Con-
sequently, it primarily provides a tool for testing for
group differences but does not offer readily interpretable
estimates of effect size. When a set of factors are chosen,
by default the LNPT also tests their interactions, with the
consequence that interactions with weak marginal effects
are less likely to be missed.

Conclusion
CAC has a strongly skewed distribution. For parametric
approaches, this would cause loss of power or inflated
rates of false positives. Neither is the case for the LNPT

Table 1: Gene-gene interaction for BMI in FHS dataa

LNPT analysis of independent individuals in
Offspring Cohortb (n = 824) for the trait

Longitudinal BMI

Survival analysis of independent individuals in
Original and Offspring Cohorts (n = 858) for the

trait Event Overweight (BMI ≥ 25)

Modelled factors Sex and two gene factors Sex, cohort, and two gene factors

Age adjustment No Yes Age is event time

Time-varying covariates Nob Nob No Yesh

SNP pair

rs854560 and rs6602024c-e

analyzing exams (T = 1, 4)d 0.022g 0.040g 0.003 0.007
analyzing exams (T = 1,3,4)d 0.092g n.s. 0.003 0.007

rs854560 and rs1121980 0.034f 0.003f 0.030 0.053
rs854560 and rs9930506 0.048f 0.004f 0.005 0.008
rs6971091c and rs6602024c, e n.s. n.s. n.s. n.s.
rs6971091c and rs1121980 n.s. n.s. n.s. n.s.
rs6971091c and rs9930506 n.s. n.s. n.s. n.s.
rs6602024c, e and rs1121980 0.053g 0.049g 0.020 0.028
rs6602024c, e and rs9930506 n.s. n.s. 0.077 n.s.

ap-Values ≤ 0.1 are given, otherwise marked as not significant (n.s.). Bold font indicates p-values ≤ 0.05.
bIndividuals with no cholesterol treatment and baseline age 25-46 yr, Exams T = 1,3,4.
cCarriers of the rare allele for the SNP were pooled for LNPT analysis.
dSNP pair has a small two-locus genotype strata. LNPT analysis was performed for two sets of exams. Survival analysis used all available event times.
eMinor allele homozygotes for this SNP were omitted for survival analysis.
fInteraction of SNP1-SNP2 with number of exam (averaged for sex).
gInteraction of SNP1-SNP2 with sex and exam number.
hInclusion of time-varying covariates smoking status and cholesterol treatment.
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and survival analysis. We have shown that they both
keep the rate of false positives at the 5% level while they
successfully detected gene-gene interactions for simu-
lated and real phenotypes with good power. The LNPT
was found to be more powerful compared with survival
analysis for detection of a cohort effect in BMI (FHS) and
more powerful for detection of gene-gene interaction,
particularly for CAC (FHSsim). The LNPT is a long-
itudinal approach. In its ability to incorporate loss to
follow up, the LNPT is better than survival analysis: the
LNPT uses all remaining trait measurements, whereas for
survival analysis these individuals are likely to become
censored or even must be excluded in case of missing
baseline value.

For high-dimensional data such as genome-wide studies,
sophisticated boosting techniques exist for survival
analysis [5]. They yield sparse models with high
explanatory power. For the LNPT, data partition techni-
ques similar to tree approaches or multifactor dimen-
sionality reduction could be used. Further research is
needed on this issue.
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