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Abstract. Sensorimotor deficits have been described in several neuropsychiatric disorders including Alzheimer’s disease.
The aim of the present study was to evaluate possible sensorimotor gating deficits in the Tg4-42 mouse model of Alzheimer’s
disease using the prepulse inhibition task (PPI). Previous studies indicated that the hippocampus is essentially involved in
the regulation of PPI. We analyzed 7-month-old homozygous Tg4-42 mice as mice at this age display severe neuron loss
especially in the CA1 region of the hippocampus. Our results revealed a reduced startle response and PPI in Tg4-42 mice.
The observed deficits in startle response and PPI are likely due to altered sensory processing abilities rather than hearing
deficits as Tg4-42 displayed intact hearing in the fear conditioning task. The present study demonstrates for the first time
that sensorimotor gating is impaired in Tg4-42 mice. Analyzing startle response as well as the PPI may offer valuable
measurements to assess the efficacy of therapeutic strategies in the future in this Alzheimer’s disease model.

Keywords: Alzheimer’s disease, cognitive deficits, fear conditioning, hippocampus, N-terminally truncated A�, neuron loss,
prepulse inhibition, sensorimotor gating

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenera-
tive disease characterized by cognitive and memory
deficits due to structural and functional abnormalities
including amyloid-� (A�) accumulation, neurofibril-
lary tangles and neuron loss [1–3].

Attention and executive function deficits as well
as deficits in information processing are early char-
acteristics of AD [4]. AD patients show a reduced
attention span and are more prone to distractions due
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to impaired inhibitory mechanisms [5, 6]. The lack
of filtering out unnecessary, conflicting or redundant
information, a process known as sensorimotor gating,
is an aspect of selective attention that is affected early
in the disease progression [7, 8].

Prepulse inhibition (PPI) is a test considered to
mirror an organism’s ability to filter out irrelevant
information is used to assess attention deficits and
sensorimotor gating. PPI refers to a reduction of the
magnitude of the startle response when a stimulus
(pulse) is preceded by a weaker stimulus (prepulse)
[9, 10]. While PPI does not require learning, it is
modulated by higher cognitive processes and PPI
deficits reflect sensorimotor gating impairments and
the inability to filter out irrelevant information [9, 11,
12]. Sensory gating deficits have been described in
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patients with mild and moderate AD and PPI has been
discussed as a biomarker for early AD [13–15].

Acoustic startle response (ASR) is defined as a
motor reaction to a loud and sudden acoustic signal
and often measured in combination with PPI.

According to the amyloid cascade hypothesis, A�
depositions are the causative event in the pathology
of AD. A� is derived from the amyloid-� protein
precursor (A�PP) through enzymatic cleavage by
�- and �-secretases [16]. Next to full-length A�
starting with an aspartate at the first amino acid, a
variety of truncated and modified A� species have
been identified in AD. N-terminal truncated A� pep-
tides are very abundant in the brains of familial and
sporadic AD patients and there is substantial evi-
dence that N-terminal truncated A� variants play
a key role in the disease. Furthermore, N-terminal
deletion enhances A� aggregation and neurotoxic-
ity [17–19]. Thereby A�4-42 is a particular abundant
species and one of the major fractions identified in
the hippocampus and cortex of AD patients [20, 21].
The transgenic mouse model Tg4-42 expresses exclu-
sively human N-terminally truncated A�4-42 albeit
without human A�PP overexpression [22]. Tg4-42
mice show intraneuronal A� accumulation accom-
panied with astro- and microgliosis predominantly
in the hippocampus [22]. In addition, Tg4-42 mice
develop age-dependent behavior and memory deficits
albeit without plaque formation [22, 23]. Further-
more, Tg4-42 mice display age-dependent motor
deficits as well as an altered glucose metabolism
accompanied with severe neuron loss [22–24].

In addition to A� plaques and neurofibrillary tan-
gles, neuron loss is a main pathological hallmark of
AD and cortical atrophy the most evident macro-
scopic characteristic of AD. [3]. Atrophy affects
next to the amygdale and entorhinal cortex mainly
the hippocampus [25, 26]. While the hippocam-
pus is essential for the formation of memory and
learning it has also been linked to sensorimotor pro-
cesses. PPI, as a test for sensorimotor gating, is
highly affected by the hippocampus [27]. It has been
shown in different animal studies that alterations of
the hippocampus lead to an impaired PPI [27–29].
Furthermore, hippocampal lesion and microinfusion
studies demonstrated that the hippocampus plays a
crucial role in regulating startle reactivity and PPI
[29].

The aim of the current study was to extend previous
findings on the Tg4-42 model by examining senso-
rimotor gating and acoustic startle response in aged
Tg4-42 mice. Furthermore, we discuss the results in

the context of other, well-studied AD models.

MATERIAL AND METHODS

Tg4-42 transgenic mice

The generation of Tg4-42 mice has been described
previously [22]. Briefly, Tg4-42 mice express human
A�4-42 fused to the murine thyrotropin-releasing
hormone signal peptide under the control of the
neuronal Thy-1 promoter. Tg4-42 mice are kept on
a C57Bl/6J genetic background. Homozygous 7-
month-old (±10 days) Tg4-42 and wildtype (WT)
control mice (C57Bl/6J, Jackson Laboratories, Bar
Harbor, ME, USA) were used in this study with
an equal distribution of male and female animals
(n = 11–13). No sex-differences were detected in any
of the experiments. Mice used for the PPI study were
part of a longer study and got injected intraperitoneal
with a solution of 5% Tween80 in 0,9% sodium chlo-
ride daily for 6 weeks, starting at 3 months. Tween-80
is commonly used as a vehicle to evaluate the behav-
ioral effects of experimental drugs without apparent
adverse side effects [30–38]. All animals were han-
dled according to the guidelines of the ‘Society for
Laboratory Animals Science’ (GV-SOLAS) and the
guidelines of the ‘Federation of European Laboratory
Animal Science Association’ (FELASA). Further-
more, all experiments were approved by the ‘Lower
Saxony State Office for Consumer Protection and
Food Safety’ (LAVES). All efforts were made to min-
imize suffering and the number of animals used for
this study.

Acoustic startle response and prepulse inhibition

Tg4-42 (n = 12) and WT (n = 13) animals
were placed individually in a metal grid cage
(90 x 40 x 40 mm) to restrict exploratory behavior
and major movements. The cage was equipped with a
movable platform floor attached to a sensor recording
vertical movements (Process Control 25200 series,
TSE GmbH, Germany). The cage was placed in a
sound-attenuating isolation cabinet (TSE GmbH,
Germany). Each experimental session started with
a 3-min habituation period to 65 dB background
white noise followed by a 2-min baseline recording.
Loudspeakers were used to induce startle reflexes
by acoustic stimuli. A startle reaction to an acoustic
stimulus including body muscle contractions and
jumping causes movement of the platform. A
transient force resulting from this movement was



M.E. Sichler et al. / Sensorimotor Gating in Tg4-42 Mice 271

recorded during a time window of 100 ms beginning
with the onset of the acoustic stimulus.

Six pulse-alone trials using startle stimuli of
120 dB and 40 ms were applied after the baseline
recording. PPI was tested applying the 120 dB 40 ms
startle pulse alone or preceded by a prepulse 20 ms
stimulus of 70, 75, or 80 dB. An interval of 100 ms
with background noise was applied between each pre-
pulse and pulse stimulus. A total of 30 trials with 10
trials of startle response alone, no stimulus trials and
pulse preceded by a 70, 75, or 80 dB (2000 Hz fre-
quency) prepulse were applied in a pseudorandom
order with inter-trial intervals from 8 to 22 s. Maxi-
mum amplitudes for all types of trials were averaged
for every mouse. Startle Response/PPI software Ver-
sion 03.05 was used (TSE GmbH, Germany) and PPI
at each sound level was calculated using the following
formula:

Prepulse inhibition [%] =
(

1 − average startle amplitude afterprepulse and pulse

average startle amplitude after pulse alone
∗ 100

)

Contextual and tone fear conditioning

An additional naive group of 7-month-old Tg4-42
(n = 12) and same-aged WT animals (n = 10) were
subjected to a 3-day delay fear conditioning protocol
as previously described [17]. Briefly, on the first day
mice were allowed to explore a condition chamber
(Ugo Basile, Italy) with black and white checkered
walls and a steel grid for 150 s. Baseline freezing
was measured during this habituation period using
ANY-Maze video tracking software (Stoelting Co,
USA). A tone (2000 Hz, 80 dB) was presented for
30 s that ended simultaneously with a 2-s foot-shock
(0.7 mA). In order to test contextual memory mice
were placed 24 h later in the same chamber for 210 s
while freezing behavior was recorded. To test for tone
fear conditioning 48 h later mice were placed back
into the chamber now covered with white walls. Fur-
thermore, an acetic acid scent was used to clean the
chamber to create a new scent. After 150 s of baseline
recording the same tone as in the fear conditioning
trial was presented for 30 s without a following foot-
shock. Freezing behavior was recorded before and
during the tone.

Quantification of neuron numbers using unbiased
stereology

Unbiased stereology was used to quantify the num-
ber of neurons in the hippocampal cell layer CA1
of 7-month-old mice (n = 10 per genotype) as previ-

ously described [22]. Briefly, mice were anesthetized
and transcardially perfused with 4% paraformalde-
hyde. Left brain hemispheres were fixed in 4%
paraformaldehyde, cryoprotected in 30% sucrose,
frozen and frontally cut into a series of 30-�m thick
sections on a cryostat (Microm HM550, Germany).
Every tenth section was systematically sampled
and stained with cresyl violet. Stereological anal-
ysis of the hippocampal cell layer CA1 (Bregma
–1.22 to –3.80 mm) was performed Tg4–42 and
WT mice using a stereology workstation (Olym-
pus BX51 with a motorized specimen stage for
automatic sampling, StereoInvestigator 7 [Micro-
BrightField, Williston, VT, USA]). The volume of
the CA1 region was estimated by using Cavalieri’s
principle [39].

Statistical analysis

Differences between groups were tested with
unpaired t-test, one-way analysis of variance
(ANOVA) or two-way analysis of variance (ANOVA)
followed by Bonferroni multiple comparisons as indi-
cated. Possible outliers were determined using the
GraphPad outlier function. All data are given as
means ± standard error of the mean (SEM). Sig-
nificance levels are given as follows: ***p < 0.001;
**p < 0.01; *p < 0.05. All statistics were calculated
using GraphPad Prism version 6.07 for Windows
(GraphPad, USA).

RESULTS

Decreased acoustic startle response in Tg4-42
mice

The acoustic startle response (ASR) to the startle
stimulus alone was measured in Tg4-42 and WT ani-
mals. Tg4-42 mice showed a significantly reduced
startle response compared to same-aged WT mice
(Fig. 1A; unpaired t-test: F(12,10)=8.148, p < 0.01).
Furthermore, the latency to startle was significantly
increased in Tg4-42 animals (Fig. 1B; unpaired t-test:
F(12,10)=1.425, p < 0.001).
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Fig. 1. Altered acoustic startle response and prepulse inhibition in Tg4-42 mice. Tg4-42 mice showed a significantly lower acoustic startle
response (A) and an increased latency to startle (B). Prepulse inhibition (PPI%) was significantly lower in Tg4-42 (n = 11) compared to WT
(n = 13) mice at 70, 75, and 80 dB (C). Body weight did not differ between WT and Tg4-42 mice (D). AU = Arbitrary unit. Data presented
as mean ± S.E.M. A-B, D) unpaired t-test. C) Two-way analysis of variance (ANOVA) followed by Bonferroni multiple comparisons.
***p < 0.001; **p < 0.01; *p < 0.05.

Impaired prepulse inhibition in Tg4-42 mice

PPI was performed to analyze sensorimotor gat-
ing. Tg4-42 mice displayed a significantly lower PPI
compared to same-aged WT animals at 70, 75, and
80 dB (Fig. 1 C; two-way-ANOVA, main effect of
genotype: F(1,22)=12.05, p < 0.01). Louder prepulse
tones did increase PPI in WT but not in Tg4-42
animals (Fig. 1 C; two-way-ANOVA, main effect
of stimulus intensity: WT: F(2,36)=8.017, p < 0.01;
Tg4-42: F(2,30)=0.1378, p > 0.05). In addition, the
weight of WT and Tg4-42 mice did not differ
(Fig. 1D, unpaired t-test: F(15,13)=2.443, p > 0.05).

Decreased contextual learning in Tg4-42 mice

WT and Tg4-42 mice showed similar degrees of
freezing in the training session of the fear condition-
ing experiment (Fig. 2A; one-way-ANOVA, training
trial: F(3,42)=8.267, p > 0.05). However, when tested
for context fear conditioning only WT mice demon-
strated significantly increased freezing behavior

(Fig. 2A; one-way-ANOVA, WT: F(3,42)=8.267,
p < 0.001; Tg4-42: F(3,42)=8.267, p > 0.05). Tg4-42
showed impaired contextual learning as they did not
associate the foot-shock during the training session
with the chamber. It has to be noted that Tg4-
42 animals showed normal pain perception as they
vocalized and jumped in response to the electric foot-
shock similar to WT mice.

When tested for conditioned fear of a tone Tg4-42
and WT mice exhibited similar degrees of freezing as
response to the tone (Fig. 2B; one-way-ANOVA, WT:
F(3,42)=24.36, p < 0.001; Tg4-42: F(3,42)=24.36,
p < 0.001).

Pronounced neuron loss in the hippocampus of
Tg4-42 mice

Unbiased design-based Stereology revealed a
55% neuron loss in 7-month-old Tg4-42 mice
in the CA1 layer of the hippocampus compared
to same-aged WT animals (Fig. 3A; unpaired t-
test: F(9,9)=1.343, p < 0.001; neuron number WT:
mean = 286708 ± 7670; neuron number Tg4-42:
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Fig. 2. Impaired contextual conditioning in Tg4-42 mice. Tg4-42 and WT mice were trained in a contextual (A) and tone fear (B) conditioning
task (n = 10-12). During the initial training session involving a tone-foot-shock pairing, WT and Tg4-42 mice displayed comparable degrees
of freezing (A). Animals were reintroduced to the original training context 24 hours post training and tested for contextual memory. WT
shock froze significantly more during re-exposure to the context compared to the training trial. In contrast, Tg4-42 mice did not associate the
context with the received foot-shock as freezing was not significantly different between the training and the tone trial (A). Mice were placed
in an altered fear conditioning chamber 48 hours post training and tested for freezing during tone presentation. WT and Tg4-42 mice showed
a significant increase on freezing response to the tone presentation (B). Data presented as mean ± S.E.M. One-way analysis of variance
(ANOVA) followed by Bonferroni multiple comparisons. ***p < 0.001.

mean = 129713 ± 6619). Furthermore, analysis of the
CA1 volume demonstrated a significant volume
reduction of 26% in Tg4-42 mice (Fig. 3B; unpaired
t-test: F(9,9)=1.097, p < 0.05).

DISCUSSION

Acoustic startle response (ASR) is a protective
response and defined as a motor reaction to a loud
and sudden acoustic signal. While ASR in humans
is mainly quantified using eye-blink reflexes, star-
tle response in rodents is assessed through whole
body reflexes [40–42]. Here we demonstrated that
Tg4-42 mice showed a reduced startle response and
an increased latency to startle. Interestingly, ASR
seems to highly vary between different mouse models
for AD. Mouse models of AD have shown unal-
tered, decreased as well as increased startle responses
(Table 1). In line with our findings 5XFAD mice and
Tau P301 S mice displayed reduced ASR [43–45]. In
contrast, APOE knock-out and 3xTg mice showed
an increased startle response [46, 47]. Several AD
models including J20 and APP/PS1 also displayed
an unaltered startle response [48–50].

While ASR studies in AD patients are limited,
Salem et al. (2001) [51] described an increased
latency to peak startle response with increasing white
matter hyperintensities that are highly associated with
AD [52–54].

Analyzing ASR in Tg4-42 mice may offer a valu-
able measurement when assessing the efficacy of
therapeutic strategies in this mouse model. Assessing
startle response is a sensitive, non-invasive, repro-
ducible, reliable and easy measure that can even be
studied without analyzing PPI [13].

Sensorimotor gating can be measured using PPI,
a method that can be studied with similar pro-
cedures in humans and rodents and reflects the
ability to exclude sensory information from pro-
cessing [55]. Reduced PPI reflects a dysfunction of
sensorimotor gating and has been reported in sev-
eral psychiatric and neurological disorders, including
schizophrenia, post-traumatic stress, bipolar disor-
ders, Huntington’s disease as well as AD [11, 14,
56–59].

Interestingly, a large-scale meta-analysis from
more than 1300 C57BL/6J male mice showed that
there is no simple linear relationship between ASR
and PPI levels [60]. In line with these findings,
reduced PPI has been described in AD mice with an
unaltered [48–50], reduced [43, 44], and increased
startle response [47].

Tg4-42 mice demonstrated impairments of sen-
sorimotor gating as PPI was significantly lower in
transgenic mice compared to WT animals. Simi-
lar PPI deficits were reported in several AD lines
including J20, TBA2.1, APP/PS1, and 3xTg AD mice
(Table 1).
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Fig. 3. Neuron loss in the CA1 pyramidal cell layer of the hippocampus in Tg4-42 mice. Tg4-42 mice showed a significant neuron loss of
55% in the CA1 region (A). Furthermore, Tg4-42 mice displayed a 26% volume reduction in the CA1 region of the hippocampus (B). Data
presented as mean ± S.E.M. unpaired t-test. ***p < 0.001; *p < 0.05.

In line with our finding, Ueki et al. (2006) [14]
reported sensorimotor gating deficits in patients with
mild AD using PPI. In a recent study, PPI confirmed
sensorimotor gating deficits in early AD cases [13].
However, another PPI study did not report differences
between AD patients and healthy controls [61]. The
inconsistent PPI results in AD patients are likely due
to different study protocols and disease stages.

Previous studies indicate that the hippocampus is
essentially involved in the regulation of PPI [27–29,
62]. Some of the earliest damages in AD brains have
been reported in the hippocampus and Padurariu et al.
(2012) reported a decrease in neuronal density par-
ticularly in the CA1 region of the hippocampus in
AD patients [63]. Consistent with these results, Tg4-
42 mice showed a neuron loss of more than 50%
in the CA1 region of the hippocampus at 7 months
of age. It has been demonstrated that hippocampal
lesions induce disruptions of PPI in rodents [27, 64].
In line with our findings Caine and colleagues (1992)
examined the relationship between PPI and the hip-
pocampus and showed that modulations of the CA1
reduced the acoustic startle reflex and PPI in rats [28].

ASR and PPI can among others be affected by
housing conditions, the genetic background strain,
weight and hearing ability [65–69].

Weight can severely influence the outcome of
behavior studies. Fodor et al. (2016) demonstrated
that lower body weight in rats resulted in a reduced
ASR, while body weight did not affect PPI [68].
Therefore, the animal’s weight should always be
taken into consideration especially when analyzing
startle response in rodents. However, the observed
reduced ASR in Tg4-42 cannot be attributed to an
altered body weight as the weight of transgenic mice
was comparable to wildtype animals.

Willot et al. (2003) analyzed the correlation
between acoustic startle response, PPI, and auditory

abilities in forty inbred mouse strains and concluded
that a severe hearing loss is necessary to influence
PPI [65]. O’Leary et al. (2017) reported an age-
dependent hearing dysfunction in 5XFAD mice and
attributed the decreased startle response at least par-
tially to the observed hearing loss [44]. In contrast,
Story et al. (2018) argued that the decreased startle
response observed in 5XFAD cannot be attributed to
hearing deficits as 5XFAD mice show a response to
the startle tone [43].

The altered startle response and impaired PPI
in Tg4-42 mice might also be explained by pos-
sible hearing dysfunctions. If Tg4-42 mice display
hearing impairments, then it could be argued that dif-
ficulties in detecting the prepulse could explain the
impaired ASR and PPI. However, there is no evi-
dence that Tg4-42 mice display any hearing deficits.
Although Tg4-42 mice showed a decreased ASR they
did respond to the 120 dB startle tone. In addition,
Tg4-42 mice reacted to the 80 dB tone presented in
the fear conditioning experiment similar to wildtype
animals.

While Tg4-42 mice showed learning deficits in
the contextual fear condition task, they displayed no
impairments in conditioned learning in response to
the tone stimulus. Homozygous Tg4-42 mice in this
study exhibit a selective impairment of contextual
fear learning while their tone learning ability remains
intact similar to the results previously described in
12-month-old hemizygous Tg4-42 mice [70]. These
results indicate that Tg4-42 mice exhibit a selective
impairment of contextual fear learning while their
tone learning ability remains intact. Therefore, the
observed deficits in startle response and PPI are likely
due to altered sensory processing abilities rather than
hearing deficits. However, further studies are needed
to assess hearing in Tg4-42 mice and determine the
contribution of possible reduced auditory thresholds
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Table 1
Acoustic startle response and prepulse inhibition in different mouse models related to the Alzheimer’s disease pathology

Mouse model Transgene/mutations Test age Methodology ASR PPI [%] Reference

Tg4-42 A�4-42 7 m Background: 65 dB ↓ ↓ Current study
Startle pulse: 120 dB;

40 ms
Prepulse: 70, 75,

80 dB, 20 ms

TBA2.1 Pyroglutamate A�3-42 1) 1 m Background: 68 dB NIA ↓ [71]
Startle pulse: 120 dB,

20 ms
Prepulse: 72, 76, 80,

84 dB, 20 ms

J20 APPK670/M671L, 1) 10–2 m Background: 65 dB; ns 1) ↓ [48]
APPV717F 2) 21–23 m Startle pulse: 120 dB,

40 ms
2) ↓

Prepulse: 69, 73,
81 dB, 40 ms

APP/PS1 APPKM670N/M671N, 1) 3 m Background: 70 dB; ns 1) ns [49]
PSEN1M146L 2) 7 m Startle pulse: 120 dB,

40 ms;
2) ↓

3) 22 m
Prepulse: 73, 76,

82 dB, 20 ms

3) ↓

APP/PS1 APPK670N/M671N, 12 m Background: 70 dB ns ns [50]
PSEN1M146L Startle pulse: 125 dB,

40 ms
Prepulse: 75, 80, 85,

90, 95 dB, 20 ms

5xFAD APPKM670/671NL, 8 m Background: 65 dB; ↓ ↓ [43]
APPI716V, Startle pulse: 120 dB,

50 msAPPV717I,
Prepulse: 73, 81 dB,

30 ms
PSEN1M146L,
PSEN1L286V

5xFAD APPKM670/671NL, 1) 3–4 m Background: 70 dB; ↓ 1) ns [44]
APPI716V,
APPV717I,
PSEN1M146L,
PSEN1L286V

2) 7 m
4) 13 m
5) 16 m
3) 10 m

Startle pulse: 120 dB,
40 ms
Prepulse: 74, 78,
82, 86, 90 dB, 20 ms

2) –5) NIA

3xTg APPKM670/671NL,
MAPTP30IL,
PSEN1M146V

7m Background: 70 dB
Startle pulse:
125 dB, 100 ms;
Prepulse: 85 dB,
50 ms

↑ ↓ [47]

Tau P301 S
(Line PS19)

P301S, 1N4R 3m Background: 70 dB ↓ ↑ [45]
Startle pulse: 110 dB,

120 dB, 40 ms
Prepulse: 74, 78 dB

1) GFAP-
APOE3/APOE
Knock-out

APOE3/APOE4 6m Background: 65 dB; 1) ns 1) – 3) ns [46]

2) GFAP-
APOE4/APOE
Knock-out

Startle pulse: 120 dB,
40 ms;

2) –

3) APOE Knock-out Prepulse: 69, 77,
85 dB, 20 ms

3) ↑

ASR, acoustic startle response; PPI, prepulse inhibition; ns, not significant; NIA, no information available.



276 M.E. Sichler et al. / Sensorimotor Gating in Tg4-42 Mice

and non-auditory phenotypes on the acoustic startle
response and impaired PPI.

The variability in experimental procedures
between the tested AD models is compared to
other behavior experiments rather small. The startle
impulse used in different studies differed between
110 dB and 125 dB. The used prepulse tones ranged
from 73 dB to 95 dB and the majority of studies
used multiple prepulse tones with at least a 10 dB
difference between the lowest and highest tone
(Table 1). However, these varieties need to be taken
into consideration when comparing different AD
mouse lines.

Taken together, the present study demonstrates for
the first time that sensorimotor gating is impaired
in Tg4-42 mice at a disease stage where mice dis-
play significant neuron loss and memory deficits.
Therefore, analysis of startle response and PPI offer a
useful additional tool to measure therapeutic efficacy
in Tg4-42 mice.
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