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Abstract

In this paper, we present our design and experiments on a planar
biped robot under the control of a pure sensor-driven controller.
This design has some special mechanical features, for example small
curved feet allowing rolling action and a properly positioned cen-
ter of mass, that facilitate fast walking through exploitation of the
robot’s natural dynamics. Our sensor-driven controller is built with
biologically inspired sensor- and motor-neuron models, and does
not employ any kind of position or trajectory tracking control algo-
rithm. Instead, it allows our biped robot to exploit its own natural
dynamics during critical stages of its walking gait cycle. Due to the
interaction between the sensor-driven neuronal controller and the
properly designed mechanics of the robot, the biped robot can real-
ize stable dynamic walking gaits in a large domain of the neuronal
parameters. In addition, this structure allows the use of a policy
gradient reinforcement learning algorithm to tune the parameters of
the sensor-driven controller in real-time, during walking. This way
RunBot can reach a relative speed of 3.5 leg lengths per second after
only a few minutes of online learning, which is faster than that of
any other biped robot, and is also comparable to the fastest relative
speed of human walking.
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1. Introduction

Building and controlling fast biped robots demands a deeper
understanding of biped walking than for slow robots (Pratt
2000).While slow robots may walk statically, fast biped walk-
ing has to be dynamically balanced and more robust as less
time is available to recover from disturbances (Pratt 2000).
Although many biped robots have been developed using var-
ious technologies in the past 20 years, their walking speeds
are still not comparable to that of their counterpart in nature,
humans. Some biped robots employ various types of model-
based control of an inverted pendulum of the upper body (Ka-
jita and Kobayashi 1987; Miyazaki and Arimoto 1987; Sano
and Furusho 1990). Chevallereau et al. (2003) designed a tra-
jectory tracking controller based on the zero dynamics of a
planar biped robot with unactuated ankles, by which asymp-
totically stable walking gaits were realized. Most of the suc-
cessful biped robots have commonly used the ZMP (Zero
Moment Point, Vukobratovic et al. 1990) as the criterion for
stability control and motion generation Miyakoshi and Cheng
2002; Hirai 1997; Inoue 2000; Kuroki et al. 2001;Yamaguchi
et al. 1999; Nishiwaki 2000). The ZMP is the point on the
ground where the total moment generated by gravity and in-
ertia equals zero (Vukobratovic et al. 1990). This measure has
two deficiencies for high-speed walking. First, the ZMP must
always reside in the convex hull of the stance foot, and the sta-
bility margin is measured by the minimal distance between
the ZMP and the edge of the foot. To ensure an appropri-
ate stability margin, the foot has to be flat and large, which
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will reduce the robot’s performance and pose great difficulty
during fast walking. This difficulty can be seen clearly when
humans try to walk with skis or swimming fins. Second, the
ZMP criterion does not permit rotation of the stance foot at
the heel or the toe, which, however, can amount to up to 80%
of a normal human walking gait (Hardt and von Stryk 2002),
and is important and inevitable in fast biped walking.

On the other hand, sometimes dynamic biped walking can
be achieved simply without explicitly considering any stabil-
ity criterion. Specific trajectories and precise trajectory track-
ing are not indispensable for biped walking. For example, pas-
sive biped robots can walk stably down a shallow slope with no
sensing or control. Usually equipped with point feet or curved
feet, only one point of the foot touches the ground at any
time, which would be unstable when applying the ZMP crite-
rion. However, compared with powered bipeds, passive biped
robots have obvious drawbacks: for example, their need for
walking down a slope and their inability to control the speed
(Pratt 2000). Some researchers have proposed approaches to
equip a passive biped with actuators to improve its perfor-
mance.Van der Linde (1998) made a biped robot walk on level
ground by pumping energy into a passive biped at each step.
Tedrake applied reinforcement learning on a 3D half-passive
biped to get dynamic stable gaits (Collins et al. 2005). Nev-
ertheless, no one has yet built a passive biped robot that can
walk at a speed comparable to humans, though humans also
exploit passive movements in some stages of their walking
gaits.

Unlike the robots described above, in humans, stable and
somewhat robust biped gaits can emerge from the global en-
trainment between the neuro-musculo-skeletal system and the
environment (Taga 1995). In this study, we will realize fast
planar biped walking with a simple neuro-mechanical sys-
tem, in which a properly designed mechanical structure is
directly driven by a neuronal controller. Moreover, the neu-
ronal controller is built with a small number of sensor neurons
and motor neurons. Rather than employing intensive feedback
control or model-based control as other biped robots usually
did, the motor neurons in the neuronal controller directly drive
the motors of the joints. It will be shown in our experiments
that fast and stable biped walking can emerge from the in-
teraction between such a neuro-mechanical system and the
ground.

This paper is organized as follows. First we describe the
mechanical design of our biped robot named “RunBot”. Next,
we present the neural model of our sensor-driven networks
for biped walking control. Then we demonstrate the result of
biped walking experiments.

2. The Robot

RunBot is a mechanical redesign of our previous robot (Geng,
Porr, and Wörgötter 2006) with a simplified controller and

specific properties to allow for fast walking. RunBot (see Fig-
ure 1) is 23 cm high, foot to hip joint axis. It has four actuated
joints: left hip, right hip, left knee, right knee. Each joint is
driven by a modified RC servo-motor.A hard mechanical stop
is installed on the knee joints, preventing it from going into hy-
perextension, similar to the function of knee caps in animals.
The built-in pulse width modulation control circuits of the
RC motors are disconnected while its built-in potentiometer
is used to measure the joint angles. Each foot is equipped with
a modified piezo transducer to sense ground contact events.
We constrain the robot only in the sagittal plane by a boom
of one meter length. The robot is attached to the boom via a
freely rotating joint while the boom is attached to the central
column with a universal joint (see Figure 1). Thus, RunBot’s
movements are constrained on the surface of a sphere. How-
ever, given that the length of the boom is more than 4 times
RunBot’s height, the influence of the boom on RunBot’s dy-
namics in the sagittal plane is very small.The boom still allows
RunBot to freely trip or fall forwards or backwards.

Passive biped robots are usually equipped with circular
feet (see Figure 15), which increases the basin of attraction
of stable walking gaits, and makes the motion of the stance
leg look smoother. Instead, powered biped robots typically
use flat feet so that their ankles can more effectively apply
torque to propel the robot forward in the stance phase, and to
facilitate its stability control. Although RunBot is a powered
biped, it has no actuated ankle joints, rendering its stability
control even more difficult than that of other powered bipeds,
but, on the other hand, an unactuated foot can be very light,
which is more efficient for fast walking. Since we intended
to exploit RunBot’s natural dynamics during some stages of
its gait cycle; similar to passive bipeds; its foot bottom is also
curved with a radius equal to half the leg length (if the radius
is too large, the tip of the foot may strike the ground during
its swing phase). During the stance phase of such a curved
foot, always only one point touches the ground, thus allowing
the robot to roll passively around the contact point, which is
similar to the rolling action of human feet. Therefore, with
curved feet the difficulties caused by flat feet in fast walking
can be avoided. However, how long should such a foot be? In
theory, larger curved feet bring more stability for passive biped
walking. In practice however, large feet make foot clearance
of the swing leg difficult, and tremendously limit the walking
speed of the robot. In order to achieve a fast speed, RunBot is
equipped with small feet (4.5 cm long) whose relative length,
the ratio between the foot-length and the leg length, is 0.20,
less than that of humans (about 0.30) and that of other biped
robots (powered or passive).

The most important consideration in the mechanical design
of our robot is the location of its center of mass. Its links are
made of aluminum alloy, which is light but strong enough.
The motor of each hip joint is a HS-475HB from Hitec. These
weigh 40 g and can produce a torque of up to 5.5 kg cm. Due
to the effect of the mechanical stop, the motor of the knee joint
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Fig. 1. (A). The robot, RunBot, and its boom structure. The three orthogonal axes of the boom indicated with curved arrows
rotate freely. (B). Illustration of a walking step of RunBot.

bears a smaller torque than the hip joint in stance phases, but
must rotate quickly during swing phases for foot clearance.
We use a PARK HPXF from Supertec on the knee joints, which
has a light weight (19 g), but is fast with 21 rad/s. Thus, about
70% of the robot’s weight is concentrated on its trunk. The
parts of the trunk are assembled in such a way that its center
of mass is located in front of the hip axis (see Figure 1). The
effect of this design is illustrated in Figure 1(B). As shown,
one walking step includes two stages, the first from (1) to (2),
the second from (2) to (3). During the first stage, the robot
has to use its own momentum to rise up on the stance leg.
When walking at a low speed, the robot may have not enough
momentum to do this. So, the distance the center of mass has
to cover in this stage should be as short as possible, which can
be fulfilled by locating the center of mass of the trunk forward.
In the second stage, the robot just falls forward naturally and
catches itself on the next stance leg. Then the walking cycle is
repeated. The figure also shows clearly the rolling movement
of the curved foot of the stance leg. A stance phase begins
with the heel touching ground, and terminates with the toe
leaving ground. To evaluate the effect of the location of the
mass center, we have done some simulation. The simulation
results are described in Appendix B.

In summary, our mechanical design of RunBot has the fol-
lowing special features that distinguish it from other powered
biped robots and facilitate high-speed walking and exploita-
tion of natural dynamics:

(a) small curved feet allowing for rolling action;

(b) unactuated, hence light, ankles;

(c) lightweight structure;

(d) light and fast motors;

(e) proper mass distribution of the limbs;

(f) properly positioned mass center of the trunk.

3. The Neural Structure of our Sensor-Driven
Controller

The sensor-driven walking controller of RunBot is a simpli-
fied version of our former design (Geng, Porr, and Wörgötter
2006). It follows a hierarchical structure (see Figure 2). The
bottom level represents the neuron modules local to the joints,
including motor neurons and angle sensor neurons. The top
level is a distributed neural network consisting of hip stretch
receptors and ground contact sensor neurons, which modulate
the motor neurons of the bottom level. Neurons are modeled
as non-spiking neurons simulated on a Linux PC, and commu-
nicated to the robot via a DA/AD board. Though somewhat
simplified, they still retain some of the prominent neuronal
characteristics.

The directions of the extensor (flexor) movements and the
thresholds of the sensor neurons are illustrated in Figure 3.
At the bottom level, the function of the thresholds of the sen-
sor neurons (�ES,h, �FS,h, �ES,k, �FS,k, see Figures 2 and 3)
in each neuron module is to roughly limit the extensor and
flexor movements of the joint. At the top level, the functions
of the AEA signal and the ground contact signal are shown in
Figure 4.

3.1. Model Neuron Circuit of the Top Level

The joint coordination mechanism in the top level is imple-
mented with the neuron circuit illustrated in Figure 2. The
ground contact sensor neuron of each leg has excitatory con-
nections to the motor neurons of the hip flexor and knee exten-
sor of the same leg as well as to the hip extensor and knee flexor
of the other leg. The stretch receptor of each hip has excitatory
(inhibitory) connections to motor neuron of the knee exten-
sor (flexor) in the same leg. Detailed models of the stretch
receptor, and ground contact sensor neuron are described in
the following sections.
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Fig. 2. The neuron model of the sensor-driven controller on RunBot. The small numbers give the values of the connection
weights.

Fig. 3. Control parameters for the joint angles.
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Fig. 4. Series of frames of one walking step. At the time of frame (3), The stretch receptor (AEA signal) of the swing leg is
activated, which triggers the extensor of the knee joint in this leg. At the time of frame (7), the swing leg begin to touch the
ground. This ground contact signal triggers the hip extensor and knee flexor of the stance leg, as well as the hip flexor and
knee extensor of the swing leg. The swing leg and the stance leg swap their roles thereafter.

3.1.1. Stretch Receptors

Stretch receptors play a crucial role in animal locomotion con-
trol. When the limb of an animal reaches an extreme position,
its stretch receptor sends a signal to the controller, resetting
the phase of the limbs. There is also evidence that phasic
feedback from stretch receptors is essential for maintaining
the frequency and duration of normal locomotive movements
in some insects (Chiel and Beer 1997).

While other biologically inspired locomotive models and
robots use two stretch receptors on each leg to signal attain-
ment of the leg’s AEP (Anterior Extreme Position) and PEP
(Posterior Extreme Position) respectively, our robot has only
one stretch receptor on each leg to signal the AEA (Anterior
Extreme Angle) of its hip joint. Furthermore, the function of
the stretch receptor on our robot is only to trigger the extensor
motor neuron on the knee joint of the same leg, rather than to
implicitly reset the phase relations between different legs as
in the case of Cruse’s model.

As the hip joint approaches the AEA, the output of the
stretch receptors for the left (AL) and the right hip (AR) is
increased as

ρAL = (
1 + eαAL(�AL−φ))−1

(1)

ρAR = (
1 + eαAR(�AR−φ))−1

. (2)

Hereφ is the real-time angular position of the hip joint,�AL

and�AR are the hip anterior extreme angles whose values are
tuned by hand,αAL andαAR are positive constants. This model
is inspired by a sensor neuron model presented in Wadden
and Ekeberg (1998) that is thought capable of emulating the
response characteristics of populations of sensor neurons in
animals.

3.1.2. Ground Contact Sensor Neurons

Another kind of sensor neuron incorporated in the top level
is the ground contact sensor neuron, which is active when the
foot is in contact with the ground. Its output, similar to that

of the stretch receptors, changes according to

ρGL = (1 + eαGL(�GL−VL+VR))−1 (3)

ρGR = (1 + eαGR(�GR−VR+VL))−1. (4)

HereVL andVR are the output voltage signals from piezo sen-
sors of the left foot and right foot respectively. Both of them
are used as inputs of each ground contact sensor neuron to pre-
vent these two neurons from being activated at the same time.
�GL and�GR work as thresholds,αGL andαGR are positive
constants.

WhileAEP and PEP signals account for switching between
stance phase and swing phase in other walking control struc-
tures, ground contact signals play a crucial role in phase tran-
sition control of our sensor-driven controller. In PEP/AEP-
models, the movement pattern of a leg will break down as
soon as the AEP or PEP cannot be reached, which may hap-
pen as a consequence of an unexpected disturbance from the
environment or due to intrinsic failure. This can be catas-
trophic for a biped, though tolerable for a hexapod due to its
high degree of redundancy.

3.2. Neural Circuit of the Bottom Level

The neuron module for each joint is composed of two an-
gle sensor neurons and the motor neurons they contacts (see
Figure 2). Whenever its threshold is exceeded, the angle sen-
sor neuron directly inhibits the corresponding motor neuron
(see Figure 2). This direct connection between angle sensor
neurons and motor neurons is inspired by a motor neuron
described in cockroach locomotion (Beer et al. 1997). In ad-
dition, each motor neuron also receives an excitatory synapse
and an inhibitory synapse from the neurons of the top level,
by which the top level can modulate the neuron module of the
bottom level.

The model of angle sensor neurons is similar to that of the
stretch receptors described above. The extensor angle sensor
neuron changes its output according to

ρES = (
1 + eαES (�ES−φ))−1

(5)
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whereφ is the real-time angular position obtained from the
potentiometer of the joint (see Figure 3).�ES is the threshold
of the extensor motor neuron (see Figure 3) andαES a positive
constant.

Likewise, the output of the flexor sensor neuron is mod-
eled as

ρFS = (
1 + eαFS (φ−�FS))−1

(6)

where�FS andαFS similar as above.
It should be particularly noted that the thresholds of the

sensor neurons in the motor neuron modules do not work as
desired positions for joint control, because our sensor-driven
controller does not involve any exact position control algo-
rithms that would ensure that the joint positions converge to
a desired value. In fact, as will be shown in the walking ex-
periments, the hip joints often pass these thresholds in swing-
and stance phase, and move continuously until the friction
of the joint gears stops it. However, during fast walking, the
knee joints usually cannot attain the thresholds of their flexor-
motor-neuron sensor neurons (see Figure 7(B)) because the
phase-switching is so quick.

The definition and direction of the joint angles is illustrated
in Figure 3. The direction of extensor on both hip and knee
joints is forward while that of flexors is backward.

The motor neuron model is adapted from one used in the
neural controller of a hexapod simulating insect locomotion
(Beer and Chiel 1992). The state and output of each extensor
motor neuron is governed by eqs. (7) and (8) (Gallagher et al.
1996). Those of flexor motor neurons are similar:

τ
dy

dt
= −y +

∑
ωXρX (7)

uEM = (
1 + e�M−y)−1

(8)

Herey represents the mean membrane potential of the neuron.
Equation (8) is a sigmoidal function that can be interpreted as
the neuron’s short-term average firing frequency,�M is a bias
constant that controls the firing threshold.τ is a time constant
associated with the passive properties of the cell membrane
(Gallagher et al. 1996),ωX represents the connection strength
from the sensor neurons and stretch receptors to the motor
neuron (Figure 2).ρX represents the output of the sensor neu-
rons and stretch receptors that contact this motor neuron (e.g.,
ρES , ρAL, ρGL, etc.)

Note that, in RunBot, the output value of the motor neurons,
after multiplication by a gain coefficient, is sent to the servo
amplifier to directly drive the joint motors.

The voltage of the motor in each joint is determined by

Motor Voltage= MAMPGM(sEMuEM + sFMuFM), (9)

whereMAMP represents the magnitude of the servo amplifier,
which is 3 on RunBot.GM stands for output gain of the motor
neurons in the joint.sEM and sFM are signs for the motor

voltage of flexor and extensor in the joint, being+1 or −1,
depending on the polarity of the motors.uEM anduFM are the
outputs of the motor neurons (see Figure 2).

3.3. Tuning the Neuron Parameters

Most of the values for the neuron parameters are chosen in-
tuitively. In this section, we address the tuning of the various
neuron parameters except two parameters at the hip joints,
�ES,h (see Figure 3) andGM,h (the gain of the motor neurons
in hip joints), which will be tuned in the experiments below.

The positive constants of the sensor neurons and the stretch
receptors (αES , αFS , αAL, αAR, αGL, αGR) affect their response
speed. We set these constants to 2, ensuring a quick response
of these neurons. Our experiments have shown that values
bigger than 2 do not make any evident difference in RunBot’s
gaits.

The threshold of the sensor neurons for the extensor
(flexor) in the neuron module roughly limits the movement
range of the joint. The thresholds of these sensor neurons
in the neuron modules of the knee joints are chosen as:
�FS,k = 110◦, �ES,k = 175◦ (see Figure 3), which is in ac-
cordance with the observation of humans’ normal gaits. The
movements of the knee joints are needed mainly for timely
ground clearance without making big contributions to the
walking speed. After some trials, we set the gain of the motor
neurons in knee joints to beGM,k = 0.9GM,h.

The threshold of the stretch receptors is simply chosen to
be the same as that of the sensor neurons for the hip extensor,
�AL(AR) = �ES,h.

The threshold of the ground contact sensor neurons is cho-
sen to be 2 volts according to test results on the piezo sensors.
In a certain range, the output voltage of the piezo sensor is
roughly proportional to the pressure acted on the foot bottom
when it is touching the ground.

The time constant of the motor neurons,τ (see eq. 8), is
chosen as 10 ms, which is in the normal range of data in
biology.

To simplify the problem, we also fix the threshold of the
flexor sensor neurons of the hips (�FS,h) to 85◦.

There are three kinds of synapses in the neuronal controller
(see Figure 2). Here we use following symbols to represent
the absolute value of the weights of these synapses:

• WGM : Weights of the synapses between the ground con-
tact sensor neurons and the motor neurons.

• WAM : Weights of the synapses between the stretch re-
ceptors and the motor neurons.

• WSM : Weights of the synapses between the angle sensor
neurons and the motor neurons in the neuron modules
of the joints.

The threshold of the motor neurons,�M (see eq. 8), can be
any positive value as long as following conditions are satisfied:
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WGM ≥ �M + 4
WAM −WGM ≥ �M + 4
WSM −WAM −WGM ≥ �M + 4.

The function of these rules is to make sure that, among all
the neurons which contact the motor neurons, the angle sensor
neurons in the neuron modules of each joint have the first
priority while the stretch receptors have second priority and
the ground contact sensor neurons have the lowest priority. So,
we simply choose them as�M = 1,WGM = 10,WAM = 15,
WSM = 30 (see Figure 2).

Obviously, the function of this neuronal controller can also
be realized with a simple mode-switching controller. We pre-
fer using model neurons for the following reasons.

(a) The passive properties of the cell membrane (see eq. 8)
can naturally make the output of the neuronal controller
much smoother (see Figure 6), thus reducing the jerk
in the joint movement.

(b) Our long-term aim is to investigate the effect of neu-
ronal plasticity on the walking behavior with a biped
robot. Neuronal plasticity will be embodied by a high-
level neural structure, which can then be seamlessly
connected with this neuronal controller.

4. Robot Walking Experiments with the Sensor-
Driven Controller

In the experiments described below, we only need to tune the
two parameters of the hip joints: the threshold of the extensor
sensor neurons (�ES,h) and the gain of the motor neurons
(GM,h). They work together to determine the walking speed
and the gait properties of RunBot.

In experiments with walking on a flat floor, surprisingly,
we have found that stable gaits can appear in quite a large
range of the parameters�ES,h andGM,h (see Figure 5).

Figure 6 shows the motor voltages of the four joints while
RunBot is walking at medium speed. During more than half
of every cycle of each joint, its motor voltage remains zero,
allowing unactuated movements of the joints.

As shown in Figure 6, during some period of every step
(e.g., gray area in Figure 6), the motor voltages of the motor
neurons on all the four joints remain zero, so RunBot’s move-
ment is unactuated until the swing leg touches the ground (see
Figure 13(A)). During this time, which is roughly one-third
of a step (see Figure 6 and Figure 13(A)), the movement of
the whole robot is exclusively following its natural dynam-
ics that is dominated by gravity, the inertia of the links, and
the properties of the motors and gears; no feedback based ac-
tive control acts on it. This demonstrates very clearly how the
sensor-driven controller and the mechanical properties work
together to generate the whole gait trajectory. It is also similar
to what happens in animal locomotion. Muscle control of ani-
mals usually exploits the natural dynamics of their limbs. For

instance, during the swing phase of the human walking gait,
the leg muscles first experience a power spike to begin leg
swing and then remain limp throughout the rest of the swing
phase (Pratt 2000), similar to what is shown in Figure 13.

4.1. Changing Speed on the Fly

RunBot’s walking speed can be changed on the fly without
problems by tuning�ES,h andGM,h as long as they still re-
main in the stable area shown in Figure 5. Figure 7 shows the
gait when the parameters are changed greatly and abruptly
from point S to F (see Figure 5) at a time instantt (indicated
with a line in Figure 7). The walking speed is immediately
changed from slow (0.38 m/s) to fast (0.70 m/s). By exploiting
the natural dynamics, the sensor-driven controller is robust to
such drastic parameter variations as shown in Figure 5. The
video clip (extension 1) of this experiment can be seen at,
http://www.cn.stir.ac.uk/~tgeng/runbot/speedchange.mpg

4.2. Walking on Irregular Terrain

With parameters in the central area in Figure 5, the walking
gait shows more robustness. As shown in Figure 8, RunBot
can walk over a low obstacle with a height of 0.9 cm. Fig-
ure 9 shows a stick diagram of RunBot’s gait walking down
a shallow slope of 5◦. Note that RunBot can neither detect
the disturbance nor adjust any parameters of its controller
to address it. Nonetheless, after the disturbance, the walking
gait soon returns to its normal orbit, demonstrating that the
walking gait is to some degree robust against disturbances.

5. Fast Walking with Online Policy Searching

Because there is no position or trajectory tracking control in
RunBot, it is impossible to control its walking speed directly.
Moreover, the sensor-driven neuronal controller does not em-
ploy any form of dynamics model of the robot, ruling out the
possibility of analytically or explicitly describing the relation-
ship between neuronal parameters and the walking speed.

However, knowing that RunBot’s walking gait is deter-
mined almost exclusively by two parameters,�ES,h andGM,h

(Figure 11), we formulate RunBot’s fast walking control as a
policy gradient reinforcement learning problem by consider-
ing each point in the parameter space (Figure 11) as an open-
loop policy that can be executed by RunBot in real time.

Our approach is similar to that of Kohl and Stone (2004),
except for the algorithms for adaptive step size and for local
optimum avoiding, which are designed by us particularly for
the biped walking in RunBot. Learning starts from an initial
parameter vectorπ0 = (θ1, θ2) (hereθ1 andθ2 representGM,h

and�ES,h, respectively) and proceeds to evaluate the follow-
ing five polices at or nearπ :
R1 = (θ1, θ2)

R2 = (θ1, θ2 − ε2)
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Fig. 5. The shaded areas are the range of the two parameters, in which stable gaits appear. The maximum permitted value of
GM,h is 3.45 (higher values will destroy the motor of the hip joint).

Fig. 6. Motor voltages sent to the servo amplifiers directly from the motor neurons while the robot is walking. (A) left hip; (B)
right hip; (C) left knee; (D) right knee. Note that during some period of every gait cycle (gray area), all four motor voltages
remain zero and the whole robot moves without actuation. (see Figure 13).
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Fig. 7. (A) Series of sequential frames of the walking gait. The neuron parameter is changed at the time of frame (4). The
interval between two adjacent frames is 133 ms. (B) Real-time data of the angular position (in trunk coordinates as illustrated
in Figure 3) of hip joint and knee joint of one leg, indicated with an arrow in frame (4) of (A), while the walking speed is
changed at timet .

Fig. 8. Stick diagram of RunBot walking over a low obstacle (9mm high, higher ones cannot be tackled). The interval between
any two consecutive snapshots is 100 ms.

Fig. 9. Stick diagram of RunBot walking down a shallow slope of 5◦. The interval between any two consecutive snapshots is
67 ms.
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Fig. 10. If the parameter vectorπi is not appropriate, it will be “pushed” back into the stable area. See text for more
information.

Fig. 11. Changing of the controller parameters,GM,h and�ES,h, during two experiments of online learning. See text for more
information.
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R3 = (θ1 − ε1, θ2)

R4 = (θ1, θ2 + ε2)

R5 = (θ1 + ε1, θ2)

where eachεj is a fixed value that is small relative toθj .
The evaluation of each policy generates a score,SRi , that is
a measure of the speed of the gait described by that policy
(Ri). We use these scores to construct an adjustment vectorA

(Kohl and Stone 2004):

A1 = 0 if SR1 > SR3 and SR1 > SR5

A1 = SR5 − SR3 otherwise.

Similarly,

A2 = 0 if SR1 > SR2 and SR1 > SR4

A2 = SR4 − SR2 otherwise.

If A = 0, this means a possible local optimum is encoun-
tered. In this case, we replaceA with a stochastically gener-
ated vector. Although this is a very simple strategy, our ex-
periments show that it can effectively prevent the real-time
learning from getting trapped locally.

Then A is normalized and multiplied by an adaptive
step-size:

η = η0(vmax − smax)/vmax (10)

wherevmax stands for the maximum speed RunBot has ever
attained during the time before.smax is the maximum value
of SRi of this current iteration.η0 is a constant. Ifη < ηmin
(or η > ηmax), it is set to beηmin (or ηmax). ηmin andηmax are
predefined lower and upper limits forη.

We use a sensor at the central axis of the boom to measure
the angular speed of the boom when RunBot is walking, from
which the walking speed can be calculated. To get an accurate
walking speed, each policy is executed forNcyc gait cycles
(one gait cycle includes two steps). Because the speed of the
first gait cycle of each policy is still influenced by the last
policy, it is neglected and the average speed of theseNcyc − 1
cycles is regarded as the speed of the gait corresponding to
this policy.At the beginning of the learning process,Ncyc is set
to be 2. ThenNcyc is recalculated at the end of each iteration
according to the following rule:

Ncyc = (int)((vmax − vmin)/3)
if Ncyc < 2,Ncyc = 2
if Ncyc > 6,Ncyc = 6

wherevmin stands for the minimum speed RunBot has ever
attained during gait cycles before.

Finally,A is added toπ0, obtaining a new parameter vector,
π1, and the next iteration begins.

Results are shown in Figure 11 (left) and Figure 12. RunBot
starts walking with parameters at point S in Figure 11 (left)
corresponding to a speed of 41 cm/s (see Figure 12(C)). After
240 s of continuous walking with the learning algorithm and
no human intervention, RunBot attains a walking speed of
about 80 cm/s (see Figure 12(C), which is equivalent to 3.5 leg

lengths per second. Figure 13 shows video frames of walking
gaits at a fast and a medium speed, respectively, in which we
can clearly see the change of gaits during the process of the
learning.

In another experiment, RunBot starts walking with differ-
ent parameters corresponding to point S in Figure 11 (right).
The data of this experiment are shown in Figure 14. In 280 s,
the robot also attains a speed of around 80 cm/s (see Fig-
ure 14).

In the two experiments of online learning reported above,
the learning started from policies located in the upper or mid-
dle part of the stable area (see Figure 11). In this case, the
subsequent policies usually do not exceed the boundaries of
the stable area. But, in other experiments, if learning starts
from a policy near the lower boundary of the stable area, sub-
sequent policies can indeed sometimes leave the stable area.
To prevent this, we use the following strategy: At the begin-
ning of theith iteration, if any of the five policies that will be
evaluated at or nearπi is located outside the stable area, the
vectorπi is replaced with another vector in the stable area,
π̂i , which is nearest toπi on the coordinate ofθ1 (θ2), and has
a distance ofε1 (ε2) to the boundary of the stable area (see
Figure 10).

In the experiments with RunBot, self-stabilizing proper-
ties as a result of increasing speed, such as those suggested
by Seyfarth and Blickhan (2002) and Poulakakis and Buehler
(2003) in monopod and quadruped, only seem to happen to a
limited degree when starting the learning from a policy near
the upper boundary or middle of the stable area. It is usually
a puzzling problem how to quantitatively measure the stabil-
ity of the walking robots (like RunBot) that do not use any
kind of dynamics model. The eigenvalues of the linearized
Poincaré map are often used for stability analysis of the walk-
ing robots (Garcia 1999). In simulations, the eigenvalues of
the linearized Poincaré map can be calculated by minutely
perturbing the robot from the fixed point in each dimension.
In real robots, however, the lack of sufficient and accurate sen-
sor signals make this kind of idealized analysis very difficult
(if not impossible). To build the Poincaré map of the RunBot’s
gait, we need both the position and the speed data of the four
actuated joints and the unactuated stance ankle joint. But in
RunBot, only the position data of the four actuated joints are
available. Even on these four joints, due to the noise and in-
accuracy of the potentiometers, measuring tiny perturbations
is almost impossible.

To compare the walking speed of various biped robots
whose sizes are quite different from each other, we use
the relative speed, speed divided by the leg length. Max-
imum relative speeds of RunBot and some other typical
planar biped robots (passive or powered) are listed in Fig-
ure 15. We know of no other biped robot attaining such
a fast relative speed. The world record for human walking
is equivalent to about 4.0–4.5 leg lengths per second. So,
RunBot’s highest walking speed is comparable to that of
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Fig. 12. Real-time data of one experiment. Changes of the controller parameters (A) and (B) and the walking speed (C) during
the entire process of learning.

Fig. 13. Series of sequential frames of two walking gaits. The interval between two adjacent frames is 33 ms. (A) Gait of a
medium speed (53 cm/s), the parameter values of which are indicated asT1 in Figure 12. Note that during the time between
frame (8) and frame (13), which is nearly one-third of the duration of a step (corresponding to the gray area in Figure 6), the
whole robot is moving without actuation. At the time of frame (13), the swing leg touches the floor and a next step begins. (B)
Gait of a fast speed (80 cm/s), the parameter values of which are indicated asT2 in Figure 12.
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Fig. 14. Real-time data of another experiment. Changes of the controller parameters (A) and (B) and the walking speed (C)
during the entire process of learning.

Fig. 15. Relative leg length and maximum relative speed of various biped robots. (a) A copy of McGeer’s planar passive
biped robot walking down a slope Wisse 2003(NOT IN REFS.). (b) “Mike”, similar to McGeer’s robot, but equipped with
pneumatic actuators at its hip joints. Thus it can walk half-passively on level ground Wisse 2003(NOT IN REFS.). (c)
“Spring Flamingo”, a powered planar biped robot with actuated ankle joints (Pratt 2000). (d) Asimo-3, Honda’s humanoid
robot (www.asimi.honda.com). (e) SDR-3X, Sony’s entertainment biped robot (www.sony.net). (f) RunBot.
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humans. To get a feeling of how fast RunBot can walk, we
strongly encourage readers to watch a video clip (extension 2,
http://www.cn.stir.ac.uk/~tgeng/runbot/learning.mpg), which
recorded the final 80 s of RunBot’s walking during an exper-
iment of online learning.

Biped robots can help us to better understand the biome-
chanics of humans’walking if their gaits are dynamically sim-
ilar. The Froude number,Fr, has been used to describe the
dynamical similarity of legged locomotion over a wide range
of animal sizes and speeds on earth (Alexander and Jayes
1983):

Fr = v2/gl. (11)

Herev is the walking speed,g gravity andl leg length. The
Froude number of some typical biped robots are listed in
Figure 15, most of which are far below the normal value
of the adult human’s Froude Number of 0.20 (Vaughan and
O‘Malley 2005), indicating that they are indeed not dynami-
cally similar to adult humans, though some of them have been
designed to mimic human walking (Vaughan and O‘Malley
2005). However, 0.20 is in the attainable range of RunBot’s
Froude number (see Figure 15), implying that RunBot’s walk-
ing gait, when at an appropriate speed (0.67 m/s), could with
some confidence be regarded as dynamically similar to that
of an adult human.

6. Discussion

Here, we will briefly discuss some remaining issues of Run-
Bot, because most of the relevant discussion points have been
treated in the above sections.

Our sensor-driven controller has some evident differences
from Cruse’s model. Cruse’s model depends on PEP, AEP
and GC (Ground Contact) signals to generate the movement
pattern of the individual legs, whereas our sensor-driven con-
troller uses only GC andAEA signals to coordinate the move-
ments of the joints. Moreover, the AEA signal of one hip in
RunBot only acts on the knee joint belonging to the same leg,
not functioning on the leg-level as the AEP and PEP did in
Cruse’s model. The use of fewer phasic feedback signals has
further simplified the controller structure in RunBot.

In order to achieve real-time walking gait in a real world, bi-
ologically inspired robots often have to depend on some kinds
of position or trajectory tracking control on their joints (Beer
et al. 1997; Fukuoka, Kimura, and Cohen 2003; Lewis 2001)
However, in RunBot, there is no position or velocity con-
trol implemented. The neural structure of our sensor-driven
controller does not depend on, or ensure the tracking of, any
desired position. Indeed, it is this approximate nature of our
sensor-driven controller that allows the physical properties of
the robot itself (see the experiments), to contribute implic-
itly to generation of overall gait trajectories, and ensures its
stability and robustness to some extent.

7. Conclusion

In this study, we have shown that, with a properly designed
mechanical structure, a simple neuronal sensor-driven con-
troller, and an online policy gradient reinforcement learning
algorithm, our biped robot can attain a fast relative walking
speed of 3.5 leg lengths per second, which is not only faster
than any other biped walking robot we know of, but also com-
parable to a human’s fastest walking speed.

This paper is concentrated on the robot experiments of
online policy searching. An important issue remaining to be
investigated is to explicitly analyze the attraction domain of
its stable gaits and its relationship to the mechanical and con-
troller parameters, which will have to be done next.

Appendix A: Index to Multimedia Extensions

The multimedia extension page is found at http://www.
ijrr.org.

Table of Multimedia Extensions
Extension Type Description

1 Video clip Changing speed on the fly
2 Video clip Online learning experiment of

RunBot

Appendix B: Simulations of the Influence of the
Center of Mass of the Trunk

The dynamics of our robot are modeled as shown in Figure 16.
With the Lagrange method, we can get the equations that gov-

Fig. 16. Model of the dynamics of our robot. Sizes and masses
are the same as those of the real robot.
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ern the motion of the robot, which can be written in the form

D(q)q̈ + C(q, q̇)+G(q) = τ (B1)

whereq = [φ, θ1, θ2, ψ]T is a vector describing the configura-
tion of the robot (for definition ofφ, θ1, θ2, ψ , see Figure 16).
D(q) is the 4×4 inertia matrix,C(q, q̇) is the 4×1 vector of
centripetal and coriolis forces,G(q) is the 4× 1 vector rep-
resenting gravity forces.τ = [0, τ1, τ2, τ3]T, τ1, τ2, τ3 are the
torques applied on the stance hip (the hip joint of the stance
leg in Figure 16), the swing hip, and the swing knee joints,
respectively.

Considering that the electrical time constant of the motor is
much smaller than the mechanical time constant of the robot,
we neglect the dynamics of the electrical circuits of the motor.
Thus the dynamics of the DC motor (including gears) of each
joint can be described with the following equation (here, the
hip of the stance leg is taken as an example; the models of
other joints are likewise):

τ1 = −I1θ̈1 − kaθ̇1 + kbV1 (B2)

whereV1 is the applied armature voltage of the stance hip
motor, I1 is the combined moment of inertial of the stance-
hip motor and gear train referred to the gear output shaft, and
ka andkb are coefficients determined by the properties of the
motor and gear. Details of eqs. (B1) and (B2) can be found in
our previous paper (Geng, Porr, and Wörgötter 2006).

Combining eqs. (B1) and (B2), we can get the dynami-
cal model of the robot with the applied motor voltages as its
control input, while the motor voltages are directly calculated
from the outputs of the motor neurons of the controller.

The heel strike at the end of swing phases and the knee
strike at the end of knee extensor reflex are assumed to be
inelastic impacts. This assumption implies the conservation
of angular momentum of the robot just before and after the
strikes, with which the value oḟq just after the strikes can
be computed using its value just before the strikes. Because
the transient double support phase is very short in RunBot’s
walking, it is neglected in our simulation as often done in the
analysis of other passive bipeds (Garcia 1999).

The method of Poincaré maps is usually employed for sta-
bility analysis of cyclic movements of non-linear dynamic
systems such as passive bipeds (Garcia 1999). We choose the
Poincaré section (Garcia 1999) to be right after the heel strike
of the swing leg. Each cyclic walking gait is a limit cycle in
the state space, corresponding to a fixed point on the Poincaré
section. Fixed points can be found by solving the roots of the
mapping equation

P(xn)− xn = 0 (B3)

wherexn = [q, q̇]T = [φ, θ1, θ2, ψ, φ̇, θ̇1, θ̇2, ψ̇]T
is a state

vector on the Poincaré section at the beginning of thenth gait
cycle.P(xn) is a map function mappingxn to xn+1, which is

built numerically by combining the neuronal controller and
the robot dynamics model described above.

Near a fixed point,x∗, the map functionP(x∗) can be lin-
earized as (Garcia 1999)

P(x∗ + x̂) ≈ P(x∗)+ J x̂ (B4)

whereJ is the 8× 8 Jacobian matrix of partial derivatives
of P .

With any fixed point,J can be obtained by numerically
evaluatingP eight times in a small neighborhood of the fixed
point. If all eigenvalues ofJ lie within the unit cycle, the gait
is asymptotically stable (Garcia 1999).

The values of the neuron parameters in the simulation are
chosen the same as those in the real robot. Moreover, to sim-
plify the problem, we also fix the gain of the motor neurons
of the hip joints, i.e.,GM,h = 2.5 (at the middle of the stable
area in Figure 5). Thus, we only need to adjust the value of
�ES,h to change the properties of the gaits.

To see how the location of the mass center (L5 in Figure 16)
of the trunk affect the stability and the speed of the gaits, we
also change the value ofL5 in the simulation. With each set of
L5 and�ES,h, we use a multi-dimensional Newton–Raphson
method solving eq. (B3) to find the fixed point (Garcia 1999).
Then we compute the Jacobian matrixJ of the fixed point
using the approach described in Garcia (1999), and evaluate
the stability of the fixed point according to its eigenvalues.
The simulation results are shown in Figure 17.

Because some details of the robot dynamics such as un-
certainties of the ground contact, nonlinear frictions in the
joints and the inevitable noise and lag of the sensors cannot
be modeled precisely, the results of the simulation suggest a
larger stable range than the real experiments. For example, in
the real robot, the mass center of the trunk is located about
3 cm forward. WithGM,h = 2.5, stable gaits can appear when
�ES,h is in the range of 95–122◦ (see Figure 5). But in the
simulation, the stable range of�ES,h is somewhat bigger, 90–
136◦ (see the curve indicated withL5 = 3 cm in Figure 17).
However, the simulation results have shown that the location
of the mass center of the trunk does have a drastic influence
on the stability and the speed of the gaits:

(a) a small value ofL5 (see Figure 16 and 17) is helpful to
the stability of the gaits at slow walking speeds;

(b) if the mass center of the trunk is located appropriately
forward (e.g.,L5 = 3,5 cm in Figure 17), stable range
and walking speed can both be improved;

(c) but, if the mass center is located too far forward (e.g.,
L5 = 7 cm in Figure 17), the stable range for the neuron
parameters will become quite small, though the walking
speed can be very high.
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Fig. 17. Change of walking speed whileGM,h is fixed at 2.5 and�ES,h is changed in its stable range. Each curve corresponds
to a different location of the mass center of the trunk (see Figure 16): i.e.L5 = 0.5,1,3,5, and 7 cm.
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