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A fundamental problem in biomedical research is the low number of observations available,

mostly due to a lack of available biosamples, prohibitive costs, or ethical reasons. Aug-

menting few real observations with generated in silico samples could lead to more robust

analysis results and a higher reproducibility rate. Here, we propose the use of conditional

single-cell generative adversarial neural networks (cscGAN) for the realistic generation of

single-cell RNA-seq data. cscGAN learns non-linear gene–gene dependencies from complex,

multiple cell type samples and uses this information to generate realistic cells of defined

types. Augmenting sparse cell populations with cscGAN generated cells improves down-

stream analyses such as the detection of marker genes, the robustness and reliability of

classifiers, the assessment of novel analysis algorithms, and might reduce the number of

animal experiments and costs in consequence. cscGAN outperforms existing methods for

single-cell RNA-seq data generation in quality and hold great promise for the realistic gen-

eration and augmentation of other biomedical data types.
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B iological systems are usually highly complex, as intracellular
and intercellular communication, for example, are orche-
strated via the non-linear interplay of tens to hundreds of

thousands of different molecules1. Recent technical advances have
enabled scientists to scrutinize these complex interactions, mea-
suring the expression of thousands of genes at the same time, for
instance2. Unfortunately, this complexity often becomes a major
hurdle as the number of observations can be relatively small, due
to economical or ethical considerations or simply because the
number of available patient samples is low. Next to technically
induced measurement biases, this problem of too few observa-
tions, in the face of many parameters, might be one of the most
prominent bottlenecks in biomedical research1. Thus, a small
sample size might not reflect the population well, an imbalance
that can decrease the reproducibility of experimental results3.

While the number of biological samples might be limited,
realistic in silico generation of observations could accommodate
for this unfavorable situation. In practice, in silico generation has
seen success in computer vision when used for data augmenta-
tion, whereby in silico-generated samples are used alongside the
original ones to artificially increase the number of observations4.
In this manuscript, we focus on augmenting real with newly
generated samples, in their original high-dimensional gene space,
and whose distribution mimics the original data distribution.
While classically, data modeling relies on a thorough under-
standing of the priors on invariants underlying the production of
such data, current methods of choice for photorealistic image
generation rely on deep learning-based generative adversarial
networks (GANs)5–8 and variational autoencoders (VAEs)9,10.

GANs involve a generator that outputs realistic in silico-
generated samples. This is achieved with a neural network that
learns to transform a simple, low-dimensional distribution into a
high-dimensional distribution that is virtually indistinguishable
from the real training distribution (Supplementary Fig. 1).

While data augmentation has been a recent success story in
various fields of computer science, the development and usage of
GANs and VAEs for omics data augmentation has yet to be
investigated. As a proof of concept that realistic in silico gen-
eration could potentially be applied to biomedical omics data, we
focus on the generation of single-cell RNA (scRNA) sequencing
data using GANs. scRNA sequencing has made it possible to
evaluate genome-wide gene expression of thousands to millions
of cells in a single experiment11. This detailed information across
genes and cells opens the door to a much deeper understanding of
cell type heterogeneity in a tissue, cell differentiation, and cell
type-specific disease etiology.

In this manuscript, we establish how a single-cell GAN
(scGAN) can be leveraged to generate realistic scRNA-seq data.
We further demonstrate that our scGAN can use conditioning
(cscGAN) to produce specific cell types or subpopulations, on-
demand. Finally, we show how our models can successfully
augment sparse cell populations to improve the quality and
robustness of downstream classification. To the best of our
knowledge, this constitutes the first attempt to apply these
groundbreaking methods for the augmentation of sequencing
data.

Results
Realistic generation of scRNA-seq data using an scGAN. Given
the great success of GANs in producing photorealistic images, we
hypothesize that similar approaches could be used to generate
realistic scRNA-seq data (i.e. matrices where each row corre-
sponds to a cell and each column to the expression level of a
gene). In this work “realistic” is referring to the generation of data
that mimics the distribution of the real data, in their original

space, without merely replicating them. To distinguish experi-
mental scRNA-seq data from data produced by GANs we will use
the terms “real” and “generated” cells, respectively.

To build and evaluate different GAN models for scRNA-seq
data generation we used a peripheral blood mononuclear cell
(PBMC) scRNA-seq dataset with 68,579 cells12 (Supplementary
Table 1, Methods). The PBMC dataset contains many distinct
immune cell types, which yield clear clusters that can be assigned
their cell type identity with marker genes (genes specifically
expressed in a cluster). The aforementioned features of the
PBMC dataset make it ideal for the evaluation of our scGAN
performance.

Since it is notoriously difficult to evaluate the quality of
generative models13,14 we used four evaluation criteria inspired
by single-cell data analysis: t-SNE, marker gene correlation,
maximum mean discrepancy (MMD), and classification perfor-
mance (see Methods for evaluation details). These metrics are
used as quantitative and qualitative measures to assess the
synthesized cells. Based on these criteria, the best performing
single-cell GAN (scGAN) model was a GAN minimizing the
Wasserstein distance15, relying on two fully connected neural
networks with batch normalization (Supplementary Fig. 1). We
found that the quality of the generated cells greatly improved
when the training cells were scaled to exhibit a constant total
count of 20,000 reads per cell. In addition to this preprocessing
step, we added a custom library-size normalization (LSN)
function to our scGAN’s generator so that it explicitly outputs
generated cells with a total read count equal to that of the training
data (20,000 reads per cell) (Supplementary Fig. 1). Our LSN
function greatly improved training speed and stability and gave
rise to the best performing models based on the aforementioned
metrics. Further details of the model selection and (hyper)-
parameter optimization can be found in the Methods section.

For a qualitative assessment of the results, we used t-SNE16,17

to obtain a two-dimensional representation of generated and real
cells from the test set (Fig. 1a–c, Supplementary Fig. 2). The
scGAN generates cells that represent every cluster of the data it
was trained on and the expression patterns of marker genes are
accurately learned by scGAN (Supplementary Fig. 3).

Furthermore, the scGAN is able to model intergene depen-
dencies and correlations, which are a hallmark of biological gene-
regulatory networks18. To prove this point we computed the
correlation and distribution of the counts of cluster-specific
marker genes (Fig. 1d) and 100 highly variable genes between
generated and real cells (Supplementary Fig. 4). We then used
SCENIC19 to understand if scGAN learns regulons, the functional
units of gene-regulatory networks consisting of a transcription
factor (TF) and its downstream regulated genes. scGAN trained
on all cell clusters of the Zeisel dataset20 (see Methods) faithfully
represent regulons of real test cells, as exemplified for the Dlx1
regulon in Supplementary Fig. 4G–J, suggesting that the scGAN
learns dependencies between genes beyond pairwise correlations.

To show that the scGAN generates realistic cells, we trained a
Random Forest (RF) classifier21 to distinguish between real and
generated data. The hypothesis is that a classifier should have a
(close to) chance-level performance when the generated and real
data are highly similar. Indeed the RF classifier only reaches 0.65
area under the curve (AUC) when discriminating between the
real cells and the scGAN-generated data (blue curve in Fig. 1e)
and 0.52 AUC when tasked to distinguish real from real data
(positive control).

Finally, we compared the results of our scGAN model to two
state-of-the-art scRNA-seq simulations tools, Splatter22 and
SUGAR23 (see Methods for details). While Splatter models some
marginal distribution of the read counts well (Supplementary
Fig. 5), it struggles to learn the joint distribution of these counts,
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as observed in t-SNE visualizations with one homogeneous
cluster instead of the different subpopulations of cells of the real
data, a lack of cluster-specific gene dependencies, and a high
MMD score (129.52) (Supplementary Table 2, Supplementary
Fig. 4). SUGAR, on the other hand, generates cells that overlap
with every cluster of the data it was trained on in t-SNE
visualizations and accurately reflects cluster-specific gene depen-
dencies (Supplementary Fig. 6). SUGAR’s MMD (59.45) and
AUC (0.98), however, are significantly higher than the MMD
(0.87) and AUC (0.65) of the scGAN and the MMD (0.03) and
AUC (0.52) of the real data (Supplementary Table 2, Supple-
mentary Fig. 6). It is worth noting that SUGAR can be used,
like here, to generate cells that reflect the original distribution
of the data. It was, however, originally designed and optimized to
specifically sample cells belonging to regions of the
original dataset that have a low density, which is a different task
than what is covered by this manuscript. While SUGAR’s
performance might improve with the adaptive noise covariance
estimation, the runtime and memory consumption for this
estimation proved to be prohibitive (see Supplementary Fig. 6F–I
and Methods).

The results from the t-SNE visualization, marker gene
correlation, MMD, and classification corroborate that the scGAN
generates realistic data from complex distributions, outperform-
ing existing methods for in silico scRNA-seq data generation. The
realistic modeling of scRNA-seq data entails that our scGAN does
not denoise nor impute gene expression information, while they
potentially could24. Nevertheless, an scGAN that has been trained
on imputed data using MAGIC25 generates realistic imputed
scRNA-seq data (Supplementary Fig. 7). Of note, the fidelity with
which the scGAN models scRNA-seq data seems to be stable
across several tested dimensionality reduction algorithms (Sup-
plementary Fig. 8).

Realistic modeling across tissues, organisms, and data size. We
next wanted to assess how faithful the scGAN learns very large,
more complex data of different tissues and organisms. We
therefore trained the scGAN on the currently largest published
scRNA-seq dataset consisting of 1.3 million mouse brain cells and
measured both the time and performance of the model with
respect to the number of cells used (Supplementary Table 1,
Supplementary Fig. 9). Qualitative assessment using t-SNE
visualization shows that the scGAN generates cells that repre-
sent every cluster of the data it was trained on. The expression
patterns of marker genes are accurately learned (Supplementary
Fig. 9).

The actual time required to train an scGAN depends on the
data size and complexity and on the computer architecture used,
necessitating at least one high-performance GPU card. However,
it should be noted that scGAN uses batch training so that its
memory consumption does not depend on the number of cells
and its runtime scales linearly, at worst, with it.

Our results demonstrate that the scGAN performs consistently
well on scRNA-seq datasets from different organisms, tissues, and
with varying complexity and size, learning realistic representa-
tions of millions of cells.

Conditional generation of specific cell types. scRNA-seq in
silico data generation reaches its full potential when specific cells
of interest could be generated on demand, which is not directly
possible with the scGAN model. This conditional generation of
cell types could be used to increase the number of a sparse,
specific population of cells that might represent only a small
fraction of the total cells sequenced.

While specific cell types of interest can be obtained by scGAN
cell generation followed by clustering and cell selection, we
developed and evaluated various conditional scGAN (cscGAN)
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Fig. 1 Evaluation of the scGAN-generated PBMC cells. a–c t-SNE visualization of the Louvain-clustered real cells (a) and the NKG7 gene expression in real
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validation ROC curve (true positive rate against false positive rate) of an RF classifying real and generated cells (scGAN in blue, chance-level in gray).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-14018-z ARTICLE

NATURE COMMUNICATIONS |          (2020) 11:166 | https://doi.org/10.1038/s41467-019-14018-z | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


architectures that can directly generate cell types of interest.
Common to all these models is that the cscGAN learns to
generate cells of specific types while being trained on the
complete multiple cell type dataset. The cell type information is
then associated to the genes’ expression values of each cell
during the training. These tags can then be used to generate
scRNA-seq data of a specific type, in our case of a specific cluster
of PBMCs. The best performing cscGAN model utilized a
projection discriminator26, along with Conditional Batch Nor-
malization27 and an LSN function in the generator. Again, model
architecture selection and optimization details can be found in
the Methods.

Model performance was assessed on the PBMC dataset using t-
SNE, marker gene correlation, and classification. The cscGAN
learns the complete distribution of clusters of the PBMC data
(Fig. 2) and can conditionally represent each of the ten clusters on
demand. The t-SNE results for the conditional generation of
cluster 2 and cluster 6 cells are shown in Fig. 2a–c and Fig. 2d–f,
respectively. Figure 2a–c highlights the real (red, panels a and b)
and generated (blue, panels a and c) cells for cluster 2, while the

real cells of all other clusters are shown in gray. The cscGAN
generates cells that are overlapping with the real cluster of interest
in the t-SNE visualizations. In addition, the cscGAN also
accurately captures inter- and intra-cluster gene–gene dependen-
cies as visualized in the marker gene correlation plots in
Supplementary Fig. 10. The assumption that the cscGAN
generates conditional cells that are very similar to the real cells
of the cluster of interest is substantiated in the final classification
task. An RF classifier reaches an AUC between 0.62 (cluster 2,
Fig. 2g) and 0.55 (cluster 6, Fig. 2h) when trying to distinguish
cluster-specific cscGAN-generated cells from real cells, a value
that is reasonably close to the perfect situation of random
classification (AUC of 0.5) (Supplementary Table 4). The MMD
distances between cscGAN generated and real cells is 0.286
(cluster 2, Fig. 2g) and 0.238 (cluster 6, Fig. 2h) while distances
between real and real cells (positive control) were 0.037 and
0.129, respectively (Supplementary Table 3).

It is interesting to observe that the cscGAN and scGAN
generate cells of very similar quality, as an RF classifier reaches
an AUC of 0.61 (MMD of 0.674) to distinguish between
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cscGAN-generated and real cells and an AUC of 0.65 (MMD
of 0.547) for scGAN-generated and real cells (differences not
significant).

The results of this section demonstrate that the cscGAN can
generate high-quality scRNA-seq data for specific clusters or cell
types of interest, while rivaling the overall representational power
of the scGAN. Importantly, the fidelity with which the cscGAN
models scRNA-seq data seems to be independent of the tested
Louvain and K-means clustering algorithms (Supplementary
Fig. 11, Supplementary Table 5).

Improved classification of sparse cells using augmented data.
We now investigate how we can use the conditional generation of
cells to improve the quality and robustness of downstream clas-
sification of rare cell populations. The underlying hypotheses are
two-fold. (i) A few cells of a specific cluster might not represent
the cell population of that cluster well, potentially degrading the
quality and robustness of downstream classification. (ii) This
degradation might be mitigated by augmenting the rare popula-
tion with cells generated by the cscGAN. The base assumption is
that the cscGAN might be able to learn good representations for
small clusters by using gene expression and correlation infor-
mation from the whole dataset.

To test the two parts of our hypothesis, we first artificially
reduce the number of cells of the PBMC cluster 2 (down-
sampling) and observe how it affects the ability of an RF model to
accurately distinguish cells from cluster 2 from cells of other
clusters. In addition, we train the cscGANs on the same
downsampled datasets, generate cells from cluster 2 to augment
the downsampled population, retrain an RF with this augmented
dataset, and measure the gain in their ability to correctly classify
the different populations.

More specifically, cluster 2 comprises 15,008 cells and
constitutes the second largest population in the PBMC dataset.
Such a large number of cells makes it possible to obtain
statistically sound classification results. By deliberately holding
out large portions of this population, we can basically quantify
how the results would be affected if that population was
arbitrarily small. We produce eight alternate versions of the
PBMC dataset, obtained by downsampling the cluster 2
population (keeping 50%, 25%, 10%, 5%, 3%, 2%, 1%, and 0.5%
of the initial population) (Supplementary Fig. 12, Supplementary
Table 6). We then proceed to train RF classifiers (for each of those
eight downsampled datasets) (Supplementary Fig. 13A), on 70%
of the total amount of cells and kept aside 30% to test the
performance of the classifier (Supplementary Fig. 13B). The red
line in Fig. 3a and Supplementary Fig. 14 very clearly illustrates
how the performance of the RF classifier, measured through the
F1 score, gradually decreases from 0.95 to 0.45 while the
downsampling rate goes from 50% to 0.5%. To see if we could
mitigate this deterioration, we tested two ways of augmenting our
alternate datasets. First, we used a naïve method, which we call
upsampling, where we simply enlarged the cluster 2 population
by duplicating the cells that were left after the downsampling
procedure (Supplementary Fig. 13A). The orange line in Fig. 3a
shows that this naive strategy actually mitigates the effect of the
downsampling, albeit only to a minor extent (F1 score of 0.6
obtained for a downsampling rate of 0.5%). It is important to note
that adding noise (e.g. standard Gaussian) to the upsampled
cluster 2 cells usually deteriorated the classification performance
(data not shown).

In order to understand whether in silico-generated cluster 2
cells could improve the RF performance, we next trained the
cscGANs on the eight downsampled datasets (Supplementary
Fig. 13C). We then proceeded to augment the cluster 2

population with the cells generated by the cscGAN (Supplemen-
tary Fig. 13A). Figure 3c shows that using as little as 2%
(301 cells) of the real cluster 2 data for training the cscGAN
suffices to generate cells that overlap with real test cells. When
less cells are used the t-SNE overlap of cluster 2 training cells and
generated cells slightly decreases (Fig. 3d, Supplementary Fig. 15).
These results strongly suggest that the cluster-specific expression
and gene dependencies are learned by the cscGAN, even when
very few cells are available. In line with this assumption, the blue
curves in Fig. 3a and Supplementary Fig. 14 show that
augmenting the cluster 2 population with cluster 2 cells generated
by the cscGAN almost completely mitigates the effect of the
downsampling (F1 score of 0.93 obtained for a downsampling
rate of 0.5%). We obtained similar results with RFs that have been
optimized for the number of trees and features per tree
(Supplementary Fig. 14D), showing that augmentation robustly
increases classification performance across RF hyper-parameter
space. Interestingly, the RF improves with increasing numbers of
generated cells used for the classifiers’ training (Supplementary
Fig. 16).

Two conclusions can be obtained from these results. First the
obvious, few cluster-specific cells do not represent the population
well. Second, the usage of cscGAN-generated scRNA-seq data can
mitigate this effect and increases the performance of downstream
applications like classification when limited samples of a specific
cluster are available.

Improved trajectory analysis using augmented data. The pre-
vious results highlight the ability of the cscGAN to specifically
generate cells corresponding to different types or clusters. Such
discrete states, however, are not sufficient to capture intermediate
and transitional cellular states of an organism. Erythrocytes, for
example, are derived in the red bone marrow from pluripotent
stem cells that give rise to all types of blood cells. This differ-
entiation process contains transitional cellular states that can be
visualized (Supplementary Fig. 17A–C) using a pseudo-time
analysis of bone marrow scRNA-seq data28 (see Supplementary
Table 1, Methods). The outcome of pseudo-time analyses, how-
ever, depends heavily on how well the variety of continuous states
of erythrocytes is represented in the data. To highlight this
property, we manually downsampled a subpopulation of ery-
throcytes in the bone marrow dataset. We can observe in Sup-
plementary Fig. 17D–F that such downsampling directly affects
the structure of the graph inferred by the pseudo-time analysis.

To show that the scGAN can reliably model populations that
exist in continuous cellular states, we trained it on the
downsampled bone marrow dataset. We then replaced the cells
that were re-moved from the original data with handpicked
scGAN-generated cells that belonged to the same subpopulation
of erythrocytes. Adding the cells generated by scGAN allows to
restore the original structure of the graph (Supplementary
Fig. 17G–I). These results suggest that scGANs are able to model
discrete and continuous cellular states and cell trajectories.

cscGAN learns and translates gene-regulatory syntax. The
fidelity with which the (c)scGAN creates cells of very sparse
populations is striking and it is tempting to speculate if the model
actually learns and translates gene-regulatory information from
abundant cell clusters to sparse ones.

We trained scGANs on decreasing amounts of cluster 2 cells
(keeping 50%, 25%, 10%, 5%, 3%, 2%, 1%, 0.5%, 0.2%, and 0.1%
of the initial population) and compared scGAN-generated cluster
2 cells to real test cluster 2 cells. In addition, we trained cscGANs
on the same number of cluster 2 cells and all other clusters (see
also previous section). We then compared scGAN (trained only
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on cluster 2) and cscGAN (trained on all clusters) generated
cluster 2 cells to real test cluster 2 cells using RF classification and
t-SNE visualization. The underlying hypothesis is that if the
cscGAN can learn and translate general rules of gene regulation
from abundant to sparse cell populations, it should provide more
realistic cells for sparse clusters than a scGAN that was only
trained on the latter.

We first assessed model fidelity by the ability of an RF classifier
to distinguish scGAN and cscGAN-generated cluster 2 cells from
real test cluster 2 cells. While the scGAN trained on a large
number of cluster 2 cells generates more realistic cluster 2 cells
than a cscGAN trained on all cell clusters, the cscGAN generates
realistic cells of much wider variety than the scGAN when only
few cluster 2 training cells are available (Supplementary Fig. 18).
While the cscGAN seems to leverage gene-regulatory information
from the more abundant clusters to compensate for the missing
cluster 2 observations, the scGAN seems to re-create the few
cluster 2 cells it has learned from, failing to generalize to unseen
cluster 2 test cells (Supplementary Fig. 18C, D).

These results suggest that (c)scGAN can learn fundamental
gene-regulatory rules that are valid across the observed cells
(clusters and types). The (c)scGAN seems to learn those rules
from the cells of large clusters and might apply them when
generating cells of very small cell clusters.

Discussion
This work shows how cscGAN can be used to generate realistic
scRNA-seq representations of complex scRNA-seq data with
multiple distinct cell types and millions of cells. cscGAN out-
performs current methods in the realistic generation of scRNA-
seq data and scales sublinearly in the number of cells. Most
importantly, we provide compelling evidence that generating in

silico scRNA-seq data improves downstream applications, espe-
cially when sparse and underrepresented cell populations are
augmented by the cscGAN-generated cells. We specifically show
how the classification of cell types can be improved when the
available data are augmented with in silico-generated cells, lead-
ing to classifiers that rival the predictive power of those trained on
real data of similar size.

It may be surprising or even suspicious that our cscGAN is able
to learn to generate cells coming from very small subpopulations
(e.g. 16 cells) so well. We speculate that although cells from a
specific type may have very specific functions, or exhibit highly
singular patterns in the expression of several marker genes, they
also share a lot of similarities with the cells from other types,
especially with those that share common precursors. In other
words, the cscGAN is not only learning the expression patterns of
a specific subpopulation from the (potentially very few) cells of
that population, but also from the (potentially very numerous)
cells from other populations. This hypothesis actually aligns with
the architecture of the cscGAN. In the generator, the only para-
meters that are cluster specific are those learned in the Condi-
tional Batch Normalization layers (BLN). On the other hand, all
the parameters of each of the Fully Connected (FC) layers are
shared across all the different cell types.

While focusing on the task of cell type classification in this
manuscript, many other applications will most probably gain
from data augmentation, including—but not limited to—clus-
tering itself, cell type detection, and data denoising. Indeed, a
recent manuscript used Wasserstein GANs (WGAN) to denoise
scRNA-seq data24. For this purpose, the (low-dimensional)
representation obtained at the output of the single hidden layer of
a critic network was used. These lower-dimensional representa-
tions keep cell type-determining factors while they discard noisy
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2 test from other test cells when trained on training (red), upsampled (orange), or augmented (blue) cells for eight levels of downsampling (50% to 0.5%).
b–d t-SNE representation of cluster 2 real test (red) and cscGAN-generated (blue) cells for three levels of downsampling (10% panel b, 2% panel c, and
0.5% panel d). Other test cells are shown in gray.
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information such as batch effects. In general, GAN models allow
for the simulation of cell development or differentiation through
simple arithmetic operations applied in the latent space repre-
sentation of the GAN, operations for which our conditional
cscGAN is especially suited.

Throughout this manuscript, we solely focused on using cell
types as a side information to condition the generation on. It is
worth mentioning that any other kind of side information (par-
titioning of the sample) could equally be used. For instance, a
cscGAN could be conditioned and trained on a combination of
case and control samples. While many other choices could lead to
interesting applications, we leave this avenue of research for
future work.

It is tempting to speculate how well the scRNA-seq data gen-
eration using cscGAN can be applied to other biomedical
domains and data types. It is easy to envision, for example, how
cscGAN variants could generate realistic (small) RNA-seq or
proteomic data. Moreover, cscGAN variants might successfully
generate whole genomes with predefined features such as disease
state, ethnicity, and sex, building virtual patient cohorts for rare
diseases, for example. In biomedical imaging, in silico image
generation could improve object detection, disease classification,
and prognosis, leading to increased robustness and better gen-
eralization of the experimental results, extending clinical
application.

We hypothesize that data augmentation might be especially
useful when dealing with human data, which is notoriously het-
erogeneous due to genetic and environmental variation. Data
generation and augmentation might be most valuable when
working with rare diseases or when samples with a specified
ethnicity or sex, for example, are simply lacking.

Lastly we would like to emphasize that the generation of rea-
listic in silico data has far reaching implications beyond enhan-
cing downstream applications. In silico data generation can
decrease human and animal experimentation with a concomitant
reduction in experimental costs, addressing important ethical and
financial questions.

Methods
Datasets and preprocessing. PBMC: We trained and evaluated all models using a
published human dataset of 68,579 PBMCs (healthy donor A)12. The dataset was
chosen as it contains several clearly defined cell populations and is of reasonable
size. In other words, it is a relatively large and complex scRNA-seq dataset with
very good annotation, ideal for the learning and evaluation of generative models.

The cells were sequenced on Illumina NextSeq 500 High Output with ~20,000
reads per cell. The cell barcodes were filtered as in ref. 12 and the filtered gene
matrix is publicly available on the 10x Genomics website.

In all our experiments, we removed genes that are expressed in less than three
cells in the gene matrix, yielding 17,789 genes. We also discarded cells that have
less than 10 genes expressed. This, however, did not change the total number of
cells. Finally, the cells were normalized for the library size by first dividing UMI
counts by the total UMI counts in each cell and then multiplied by 20,000. See
Supplementary Table 1 for an outlook of this dataset.

Brain Large: In addition to the PBMC dataset we trained and evaluated our best
performing scGAN model on the currently largest available scRNA-seq dataset of
~1.3 million mouse brain cells (10x Genomics). The dataset was chosen to prove
that the model performance scales to millions of scRNA-seq cells, even when the
organism, tissue, and the sample complexity varies. The sequenced cells are from
the cortex, hippocampus, and the subventricular zone of two E18 mice.

The barcodes filtered matrix of gene by cell expression values is available on the
10x Genomics website. After removing genes that are expressed in less than three
cells, we obtained a gene matrix of 22,788 genes. We also discarded cells that have
less than 10 genes expressed, which did not affect the overall number of cells. The
cells were normalized for the library size as described in the PBMC section.

Brain Small: We also examined the performance of the generative models
proposed in this manuscript on a subset of the Brain Large dataset provided by 10x
Genomics, which consists of 20,000 cells. The preprocessing of the Brain Small
dataset was identical to that of the Brain Large dataset, yielding a matrix of 17,970
genes by 20,000 cells (Supplementary Table 1).

Bone Marrow: In order to understand the ability of the scGAN to learn the
distribution from imputed cells we used a mouse bone marrow cell dataset
(GSE72857)29. The cells were collected using a plate-based MARS-seq protocol in

order to identify myeloid progenitor subpopulations. The sparsity and the
heterogeneity of cells in this dataset makes it suitable for imputation. Data
preprocessing was performed as described above, yielding a matrix of 12,443 genes
by 2,730 cells (Supplementary Table 1). Processed bone marrow cells were either
used directly for scGAN modeling or after imputation using MAGIC (see section
Expression imputation with MAGIC).

Zeisel: Finally, we trained scGANs on somatosensory cortex (S1) and
hippocampal CA1 cells (GSE60361)20, which consists of 3,005 high-quality single
cells (including neurons, glia, and endothelial cells). After preprocessing we
obtained a matrix of 18,738 genes by 3,005 cells (Supplementary Table 1).

Clustering: Throughout this manuscript we use the Cell Ranger workflow for
the scRNA-seq secondary analysis12. First, the cells were normalized by UMI
counts. Then, we took the natural logarithm of the UMI counts. Afterwards, each
gene was normalized such that the mean expression value for each gene is 0, and
the standard deviation is 1. The top 1000 highly variable genes were selected based
on their ranked normalized dispersion. PCA was applied on the selected 1000
genes. In order to identify cell clusters, we used Louvain clustering30 on the first 50
principal components of the PCA. This replaced the k-means clustering used in
Cell Ranger R analysis workflow, as the Scanpy31 tutorial on clustering the PBMC
dataset advises. The number of clusters were controlled by the resolution parameter
of scanpy.api.tl.louvain. The higher resolution made it possible to find more and
smaller clusters.

For the PBMC and the Brain Large dataset we used a resolution of 0.15 which
produced 10 and 13 clusters, respectively. The Brain Small dataset was clustered
using a resolution of 0.1 which gives 8 clusters.

To understand if the selection of different clustering algorithms might affect the
fidelity with which the cscGAN models scRNA-seq data, we compared the results
obtained with Louvain clustering compare to that of K-means clustering on the
PBMC dataset. We used the scikit-learn package32 to apply the clustering on the
first 50 principal components extracted as mentioned above. The K-means scikit-
learn function default parameters were used for the clustering except for the
number of centroids to generate in the data, which was set to 10 (the number of
clusters previously obtained with the Louvain algorithm). This produces 10 clusters
(Supplementary Fig. 11). The results obtained are very similar to those with the
Louvain clustering in terms of the ability of an RF classifier to discriminate between
real cells and cscGAN-generated cells (Supplementary Table 5).

Definition of marker genes: In several experiments we investigated the
expression levels and correlation of genes. For this purpose, a group of 10 marker
genes was defined by taking the five most highly upregulated genes for the largest
two clusters in the dataset (clusters 1 and 2 for the PBMC dataset). Significant
upregulation was estimated using the logarithm of the Louvain-clustered cells with
the scanpy.api.tl.rank_genes_groups function with its default parameters (Scanpy
1.2.2)31.

Model description. scGAN: In this section, we outline the model used for the
scGAN by defining the loss function it optimizes, the optimization process, and key
elements of the model architecture. GANs typically involve two Artificial Neural
Networks: a generator, which, given some input random noise, trains to output
realistic samples, and a critic that trains to spot the differences between real cells
and the ones that the generator produces (Supplementary Fig. 1). An adversarial
training procedure allows for those entities to compete against each other in a
mutually beneficial way. Formally, GANs minimize a divergence between the
distributions of the real samples and of the generated ones. Different divergences
are used giving rise to different GAN variants. While original GANs5 minimize the
so-called Jensen–Shannon divergence, they suffer from known pitfalls making their
optimization notoriously difficult to achieve33. For instance, they are known to be
prone to mode collapse, where the generated samples are realistic albeit only
representing a fraction of the variety of the samples it was trained on (i.e. only a few
but not all modes of the distribution of the real samples is learned). On the other
hand, WGANs15,34 use a Wasserstein distance, with compelling theoretical and
empirical arguments. In our hands, WGANs showed no evidence of mode collapse
and showed stable and robust training with respect to hyper-parameter optimi-
zation. On a side note, early attempts to train an original GAN on scRNA-seq data
never yielded convergence, while an out-of-the-box implantation of a WGAN did.
This does not imply that it is impossible to successfully train an original GAN on
such data.

Let us denote by Pr and Ps the distributions of the real and of the generated cells
respectively. The Wasserstein distance between them, also known as the Earth
Mover distance, is defined as follows:

W Pr; Psð Þ ¼ inf γ2Π Pr ;Psð ÞE x;yð Þ�γ x � yj jj j; ð1Þ

where x and y are random variables and ∏(Pr, Ps) is the set of all joint distributions
γ(x, y) whose marginals are Pr and Ps, respectively. Those distributions represent all
the ways (called transport plans) you can move masses from x to y in order to
transform Pr into Ps. The Wasserstein distance is then the cost of the optimal
transport plan.

However, in this formulation, finding a generator that will generate cells coming
from a distribution Ps such that it minimizes the Wasserstein distance with the
distribution of the real cells is intractable.
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Fortunately, we can use a more amenable, equivalent formulation for the
Wasserstein distance, given by the Kantorovich–Rubinstein duality:

W Pr; Psð Þ ¼ sup fj jj jL�1Ex�Pr
f xð Þ �Ex�Ps

f xð Þ; ð2Þ
where ||f||L ≤ 1 is the set of 1-Lipschitz functions with values in R. The solution to
this problem is approximated by training a Neural Network that we previously
referred to as the critic network, and whose function will be denoted by fc.

The input of the generator are realizations of a multivariate noise whose
distribution is denoted by Pn. As it is common in the literature, we use a centered
Gaussian distribution with unit diagonal covariance (i.e. a multivariate white
noise). The dimension of the used Gaussian distribution defines the size of the
latent space of the GAN. The dimension of that latent space should reflect the
intrinsic dimension of the scRNA-seq expression data we are learning from, and is
expected to be significantly smaller than their apparent dimension (i.e. the total
number of genes).

If we denote by fg the function learned by our generator network, the
optimization problem solved by the scGAN is identical to that of a Wasserstein
GAN:

minf gmax f cj jj jL�1Ex�Pr
f c xð Þ �Ex�f g Pnð Þf c xð Þ: ð3Þ

The enforcement of the Lipschitz constraint is implemented using the gradient
penalty term proposed by Gulrajani et al.34.

Hence, training an scGAN model involves solving a so-called minmax problem.
As no analytical solution to this problem can be found, we recourse to numerical
optimization schemes. We essentially follow the same recipe as most of the GAN
literature5,33, with an alternated scheme between maximizing the critic loss (for five
iterations) and minimizing the generator loss (for one iteration). For both the
minimization and the maximization, we use a recent algorithm called AMSGrad35,
which addresses some shortcomings of the widely used Adam algorithm36, leading
to a more stable training and convergence to more suitable saddle points. The
AMSGrad exponential decay parameter beta1 was set to 0.5 and beta2 to 0.9.

Regarding the architecture of our critic and generator networks, which is
summarized in Supplementary Fig. 1, most of the existing literature on images
prescribes the use of convolutional neural networks (CNN). In natural images,
spatially close pixels exhibit stronger and more intricate inter-dependencies. Also,
the spatial translation of an object in an image usually does not change its meaning.
CNNs have been designed to leverage those two properties. However, neither of
these properties hold for scRNA-seq data, for which the ordering of the genes is
mostly arbitrary and fixed for all cells. In other words, there is no reason to believe
that CNNs are adequate, which is why scGAN uses FC layers. We obtained the best
results using an MLP with FC layers of 256, 512, and 1024 neurons for the
generator and an MLP with FC layers of 1024, 512, 256 for the critic
(Supplementary Fig. 1B, C). At the outermost layer of the critic network, following
the recommendation from Arjovsky and Bottou33, we do not use any activation
function. For every other layer of both the critic and the generator networks, we use
a Rectified Linear Unit (ReLU) as an activation function.

Naturally, the optimal parameters in each layer of the artificial neural network
highly depends on the parameters in the previous and subsequent layers. Those
parameters, however, change during the training for each layer, shifting the
distribution of subsequent layer’s inputs slowing down the training process. In
order to reduce this effect and to speed up the training process, it is common to use
Normalization layers such as Batch Normalization37 for each training mini-batch.
We found that the best results were obtained when using Batch Normalization at
each layer of the generator. Finally, as mentioned in the Datasets and preprocessing
section, each real sample used for training has been normalized for library size. We
now introduce a custom LSN layer that enforces the scGAN to explicitly generate
cells with a fixed library size (Supplementary Fig. 1B).

LSN layer: A prominent property of scRNA-seq is the variable range of the
genes expression levels across all cells. Most importantly, scRNA-seq data are
highly heterogeneous even for cells within the same cell subpopulation. In the field
of Machine Learning, training on such data is made easier with the usage of input
normalization. Normalizing input yields similarly ranged feature values that
stabilize the gradients. scRNA-seq normalization methods that are used include
LSN, where the total number of reads per cell is exactly 20,000 (see also Datasets
and preprocessing).

We found that training the scGAN on library-size normalized scRNA-seq data
helps the training and enhances the quality of the generated cells in terms of our
evaluation criteria (model selection method). Providing library-size normalized
cells for training of the scGAN implies that the generated cells should have the
same property. Ideally, the model will learn this property inherently. In practice, to
speed up the training procedure and make training smoother, we added the
aforementioned LSN layer at the output of the generator (Supplementary Fig. 1B).
Our LSN Layer rescales its inputs (x) to have a fixed, total read count (φ) per cell:

yrelu ¼ ReLU xWþ bð Þ; ð4Þ

youtput ¼
φP

i yrelu
� �

i

yrelu; ð5Þ

where W and b are its weights and biases, and (yrelu)i denotes the ith component of
the yrelu vector.

cscGAN: Our cscGAN leverages conditional information about each cell type, or
subpopulation, to enable the further generation of type-specific cells. The
integration of such side information in a generative process is known as
conditioning. Over the last few years, several extensions to GANs have been
proposed to allow for such conditioning26,38,39. It is worth mentioning that each of
those extensions are available regardless of the type of GAN at hand.

We explore two conditioning techniques, auxiliary classifiers (ACGAN)39 and
projection-based conditioning (PCGAN)26. The former adds a classification loss
term in the objective. The latter implements an inner product of class labels at the
critic’s output. While we also report results obtained with the ACGAN (see
Supplementary Table 4), the best results were obtained while conditioning through
projection.

In practice, the PCGAN deviates from the scGAN previously described by (i)
multiple critic output layers, one per cell type and (ii) the use of Conditional
BNL27, whereby the learned singular scaling and shifting factors of the BNL are
replaced with one per cell type.

As described in Section 2 and 3 of ref. 26, the success of the projection strategy
relies on the hypothesis that the conditional distributions (with respect to the label)
of the data at hand are simpler, which helps stabilizing the training of the GAN.
When it comes to scRNA-seq data, it is likely that this hypothesis holds as the
distribution of the gene expression levels should be simpler within specific cell
types or subpopulations.

Model selection and evaluation. Evaluating the performance of generative
models is no trivial task13,14. We designed several metrics to assess the quality of
our generated cells at different levels of granularity. We will now describe in detail
how those metrics were obtained. They can be grouped into two categories: the
metrics we used for model selection (in order to tune the hyper-parameters of our
GANs) and the metrics we introduced in the Results section.

Metrics used for model selection. As described in the previous section, defining
our (c)scGAN model entails carefully tuning several hyper-parameters. We hereby
recall the most influential ones: (i) the number and size of layers in the Neural
Networks, (ii) the use of an LSN layer, and (iii) the use of a Batch Normalization in
our generator network.

For each of our models, before starting the training, we randomly pick 3000
cells from our training data and use them as a reference to measure how it
performs. We therefore refer to those 3,000 cells as “real test cells”.

To optimize those hyper-parameters, we trained various models and evaluated
their performance through a few measures, computed during the training
procedure: (a) the distance between the mean expression levels of generated cells
and real test cells, (b) the mean sparsity of the generated cells, and (c) the
intersection between the most highly variable genes between the generated cells and
the real test cells.

First, we compute the mean expression value for each gene in the real test cells.
During the training procedure, we also compute the mean expression value for
each gene in a set of 3,000 generated cells. The discrepancy is then obtained after
computing the Euclidean distance between the mean expression values of the real
and the generated cells.

scRNA-seq data typically contains a lot of genes with 0 read counts per cell,
which we also use to estimate the similarity of generated and real cells. Naturally,
similar sparsity values for real and test cells indicate good model performance
whereas big differences indicate bad performance.

Finally, using the Scanpy31 package, we estimate the 1000 most highly variable
genes from the real data. During the training, we also estimate what are the 1,000
most highly variable genes from a sample of 3,000 generated cells. We use the size
of the intersection between those two sets of 1,000 highly variable genes as a
measurement of the quality of the generation.

Gene expression and correlation. To highlight the performance of our models,
we used violin plots of the expression of several marker genes along with heatmaps
displaying the correlation between those same marker genes as expressed among all
clusters, or among specific clusters.

To produce those plots, we used the expression levels of cells (either test real, or
generated by scGAN, cscGAN) in a logarithmic scale. For the heatmaps we
compute the Pearson product–moment correlation coefficients.

t-SNE plots. To visualize generated and real cells within same t-SNE plot they are
embedded simultaneously. In brief, we are trying to assess how realistic the gen-
erated cells are. Thus our reference point is the real data itself. The delineation of
what constitutes noise and what constitutes biologically relevant signal should be
driven by the real data only. Hence we project the generated cells on the first 50
principal components that were computed from the real cells in the Cell Ranger
pipeline12 (see also Datasets and preprocessing). From this low-dimensional
representation, we compute the t-SNE embedding.

To show that the results we obtained were not an artifact of using a Principal
Components Analysis, we also reported (Supplementary Fig. 8) the results (t-SNE
plots and classification results) obtained while using the first 50 components of

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-14018-z

8 NATURE COMMUNICATIONS |          (2020) 11:166 | https://doi.org/10.1038/s41467-019-14018-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


ZIFA40 (Zero-Inflated Factor Analysis), computed on both the real and generated
cells, as an alternate dimensionality reduction method.

Classification of real versus generated cells. Building on the 50-dimensional
representation of the cells (t-SNE plots section), we trained classifiers to distinguish
between real test cells and generated cells. Using this lower-dimensional repre-
sentation is motivated by the fact that it captures most of the biologically relevant
information while discarding most of the noise, which is known to be high in
scRNA-seq data. Moreover, it is statistically more sound to use a dimensionality
reduction technique prior to classifying data when the number of observations is in
the same order of magnitude as the number of variables, as is the case with the
datasets we worked with. As mentioned in the Results section, we trained RF
classifiers with 1000 trees and a Gini impurity quality metric of the decision split
using the scikit-learn package32. The maximum depth of the classifier is set so that
the nodes are expanded until all leaves are pure or until all leaves contain less than
two samples. The maximum number of features used is the square root of the
number of genes.

In order to produce Fig. 1e, which highlights the ability to separate real from
generated cells, irrespective of which cluster they are coming from, we used the
whole real test set along with generated cells. On the other hand, Fig. 2g, h is cluster
specific (cluster 2 and cluster 5 respectively). We trained the RFs using only the
cells from those specific clusters. To prevent bias due to class imbalance, each
model was trained using an equal number of real test cells and generated cells.

We used a five-fold cross-validation procedure to estimate how each classifier
generalizes. To assess this generalization performance, we plotted the Receiver
Operating Characteristic (ROC) curves obtained for each fold, along with the
average of all the ROC curves. We also display the AUC in each of those cases.
Supplementary Tables 4 and 5 report more extensive results.

MMD distance. Computing robust distances over empirical distributions is a
difficult issue in high dimension. However, a recent framework called kernel two-
sample test41 was proposed as a statistical test to assess whether two samples are
coming from the same distribution. It relies on the computation of a distance called
MMD. In a nutshell, it compares the first-order moments (means) of the two
samples, in a reproducing kernel Hilbert space. As a consequence, the choice of the
kernel is of paramount importance.

Following the recommendations from Shaham et al.42, which uses a deep neural
network to minimize the MMD distance between different scRNA-seq data
replicates for batch effect removal, we used a kernel that is the sum of three
Gaussian kernels:

k x; yð Þ ¼
X
i

exp �kx � yk2
σ2i

� �
;

where σi’s are chosen to be m
2 , m, 2m and m is the median of the average distance

between a point to its nearest 25 neighbors.
For the sake of consistency with the other measures we proposed (t-SNE plots,

RF classification), we proceeded to compute the MMD distances between samples
using their 50 PCs representation found with the Cell Ranger pipeline (as described
in the “Dataset and preprocessing” part).

We used the MMD implementation from SHOGUN43, an efficient kernel-based
machine learning package.

Downsampling. To assess the impact of cluster size on the ability of the cscGAN to
model the cluster we artificially reduced the number of cells of the relatively large
PBMC cluster 2. We call this approach “downsampling” throughout the
manuscript.

Eight different percentages {50%, 25%, 10%, 5%, 3%, 2%, 1%, 0.5%} of cluster 2
cells were sampled using a random seed and a uniform sampling distribution over
all the cluster 2 cells (Supplementary Table 5). We sampled nested subsets (for each
seed, the smaller percentage samples are a complete subset of the larger ones). In
order to accurately estimate the generalization error across the different
experiments and to avoid potential downsampling artifacts, we conducted all our
experiments using five different random seeds. For the classification of cell
subpopulations (see next paragraph) we report the average F1 score as well as the
five individual F1 score values for the different seeds.

Classification of cell subpopulations. To investigate the use of the proposed
cscGAN model for data augmentation, we examined the performance of cell
subpopulation classification before and after augmenting the real cells with gen-
erated cells. For this purpose, and as described in the previous paragraph and the
Results section, we produced alternate datasets with sub-sampled cluster 2 popu-
lations (Supplementary Fig. 12).

For simplicity, we focus in this section on the experiment where cluster 2 cells
were downsampled to 10% using five different random seeds (Supplementary
Fig. 13). We advise to use Supplementary Fig. 13 as an accompanying visual guide
to this text description.

Using the previously introduced 50-dimensional PC representation of the cells,
three RF models were trained to distinguish cluster 2 cells from all other cell

populations (RF downsampled, RF upsampled, and RF augmented)
(Supplementary Fig. 13A). In the training data for all the three classifiers, 70% of
the cells from all the clusters except cluster 2 (i.e. 37,500 cells) were used (light blue
boxes in Supplementary Fig. 13A).

RF downsampled: For the first RF classifier, we used 10% of cluster 2 cells (1502
cells) and 70% other cells (37,500 cells) to train the RF model. We refer to this
dataset as the “RF downsampled” set in Supplementary Fig. 13A. This dataset was
also used to train the cscGAN model, which is used later to generate in silico cluster
2 cells (Supplementary Fig. 13C). It is important to note that RF classifiers for “RF
downsampled” datasets always use weights that account for the cluster-size
imbalance. The reason for this is that RFs are sensitive to unbalanced classes,
leading to classifiers that always predict the much larger class, thereby optimizing
the classification error44.

RF upsampled: For the second RF classifier, we uniformly sampled with
replacement 5,000 cells from the 1,502 cluster 2 cells (10%). We added those 5,000
(copied) cells to the original 1,502 cells. This dataset is referred to as “RF
upsampled” in Supplementary Fig. 13A. The rationale for this upsampling is that
RF multinomial classifiers are sensitive to the class frequencies in the training data.
The upsampling was conducted only for cluster 2 cells as a baseline to which the
augmentation is compared. As the augmented and upsampled datasets remain
unbalanced, we adjusted the class weights during the training to be inversely
proportional to the class frequencies, as outlined in the previous paragraph (RF
downsampled).

As a side note, we also conducted experiments where we added standard
Gaussian noise to the upsampled cells, which always reduced the performance of
the RF classifier and are therefore not shown.

RF augmented: Finally, the third classifier training data “RF augmented”
consists of 10% cluster 2 cells as well as 5,000 cluster 2 cells generated using the
10% cscGAN model as shown in Supplementary Fig. 9C. The 10% cscGAN model
was trained on 10% cluster 2 cells as well as all other cells (53,571 cells,
Supplementary Fig. 13C).

The RF classifiers were trained using the same parameters as described in the
Classification of real versus generated cells methods section, using 1,000 trees and
Gini impurity. The only difference is that here the class weights during the training
are adjusted inversely proportional to the class frequencies, as already mentioned
above. The scikit-learn package32 was used to conduct all experiments to classify
cell subpopulations.

Test cells: The test cells used to evaluate the classifiers consisted of 30% of the
data from all the clusters. Since we are testing the cscGAN’s ability to augment
different percentages of real cluster 2 cells, we made sure that the 30% of cluster 2
cells used in the test set were selected from the cells which were not seen by any
trained cscGAN model (Supplementary Fig. 13B).

To prove that the downsampling limits the ability to classify and that
augmenting the dataset mitigates this effect, all three RF classifiers were trained to
classify cluster 2 cells versus all other subpopulations. The F1 score of each
classifier is calculated and presented in different colors (Fig. 3a).

Furthermore, in order to understand how augmentation helps to separate close
clusters, we trained the same three RF classifiers after removing all clusters except
cluster 2 and 1 from the corresponding training data. We repeated this procedure
for cluster 2 and 5, and cluster 2 and 3. We chose those clusters in particular
because their highly differentially expressed genes are also highly expressed in 2
meaning that separating them from cluster 2 is more difficult (Fig. 1a–c). In a
similar way, F1 scores for classification of cluster 2 versus 1 (Supplementary
Fig. 14A), cluster 2 versus 3 (Supplementary Fig. 14B), and cluster 2 versus 5
(Supplementary Fig. 14C) are calculated and reported.

As mentioned above, we repeated this procedure for different downsampling
levels of cluster 2 cells and for five different sampling seeds for each level
(Supplementary Table 5).

When training the RF classifier with the augmented dataset, the number of cells
used in the augmentation was set to 5,000 cells. This, however, does not necessarily
mean that 5,000 cells is the optimal number of cells to be added. The increase in the
F1 score due to augmenting the data with generated cells depends on two factors:
(i) the number of real cells in the original subpopulation and (ii) the number of
cells used for augmentation. To highlight the impact of the number of generated
cells used for data augmentation, we trained the previously mentioned RF
classifiers using different numbers of generated cells (from 100 to 12,000) while
keeping the number of other cells constant (Supplementary Fig. 16).

Splatter comparison. In addition to what has been previously introduced in the
Results section, we also compared the performance of the scGAN to Splatter22,
using the metrics described in their manuscript. Briefly, Splatter simulation is based
on a gamma-Poisson hierarchical model, where the mean expression of each gene
is simulated from a gamma distribution and cell counts from a Poisson distribu-
tion. We noticed that Splatter uses the Shapiro–Wilk test to evaluate the library-
size distribution, which limits the number of input cells to 5,000. Therefore, we
slightly modified the code that allows Splatter to take more than 5,000 cells
as input.

While scGAN learns from and generates library-size normalized cells, Splatter is
not suited for that task. For the sake of fairness, we used the Splatter package on the
non-normalized PBMC training dataset. We then generated (non-normalized)
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cells, which we normalized, so that they could be compared to the cells generated
by scGAN. Following ref. 22, we used the following evaluation metrics: distribution
of the mean expression, of the variance, of the library sizes and ratio of zero read
counts in the gene matrix. The results were computed using the Splatter package
and are reported in Supplementary Fig. 5.

We observe that the results obtained by Splatter are marginally better than or
identical to these of scGAN (Supplementary Fig. 5). The results from those
measures suggest that both Splatter and scGAN constitute almost perfect
simulations. However, Splatter simulates virtual genes. While those genes share
some characteristics with the real genes Splatter infers its parameters from, there is
no one-to-one correspondence between any virtual gene simulated in Splatter-
generated cells and the real genes. We therefore did not compare Splatter-
simulated cells with real cells, as we did to evaluate the quality of (c)scGAN-
generated cells. This also prohibits the use of Splatter for data-augmentation
purposes.

This being said, we also would like to pinpoint that while the (c)scGAN is able
to capture the gene–gene dependencies expressed in the real data (Fig. 1d,
Supplementary Fig. 10), this does not hold for Splatter, for which the virtual genes
are mostly independent from each other. To prove this point, we extract the 100
most highly variable genes from the real cells, the cells generated by Splatter, and
the cells generated by the scGAN. We then proceed to compute the Pearson
correlation coefficients between each pair within those 100 genes (Supplementary
Fig. 4). It reveals that while those most highly variable genes in the real cells or
those generated by the scGAN exhibit some strong correlations, highly variable
genes are mostly independent from each other in the cells generated by Splatter.
These results are surprising given that the graphical model used in Splatter is
expressive enough to accommodate for complex dependencies between genes. It is
likely that it is the inference algorithm that is failing at capturing the gene–gene
dependencies in the PBMC dataset, while a manual selection of the parameters of
Splatter can allow to simulate cells with some gene–gene dependencies.

SUGAR comparison. Another generative model of high-dimensional data that
could be used to generate scRNA-seq data is SUGAR (Synthesis Using Geome-
trically Aligned Random-walks).

Both scGAN and SUGAR share the assumption that the training data lie on a
low-dimensional manifold which is the case of single-cell data23. The scGAN uses a
random variable Z with a fixed distribution P(z) and passes it through a neural
network based parametric function (the generator) (θ)z→ x. The output of this
parametric function Pθ is then learned using an Earth mover distance to be closer
to the real distribution Pr. SUGAR, on the other hand, uses a Gaussian kernel to
construct the diffused geometry around each data point and then, using a sparsity-
based measure, new points are sampled to even out the sparsity along the manifold.

In order to compare the quality of scGAN-generated cells with SUGAR-
generated cells, we run SUGAR on a group of training cells from the PBMC dataset
using the publicly available MATLAB implementation (https://github.com/
KrishnaswamyLab/SUGAR). The training cells were the same cells used to train an
scGAN model and were preprocessed as described in Datasets section PBMC.

SUGAR could generate points to explicitly balance the density over the learnt
manifold by assuming that there are sparse regions and then generating points to
equalize the estimated sparse areas on the learnt manifold. However such an
equalization produces cells that, by design, do not follow the original distribution of
the real cells. Therefore, we turned off the density equalization option when we
generated cells using SUGAR to ensure that the generated cells compare favorably
to the real ones in terms of distribution. For the same reason, we also turned off the
imputation step. Finally, using the adaptive noise covariance estimation option of
SUGAR resulted in scalability issues (Supplementary Fig. 6F–I, training and
generating cells on a reduced 3,000 cells × 2,000 genes dataset required 1.3
Terabytes of RAM and computed for over 36 h), precluding the use of this option
on the PBMC dataset. Following SUGAR co-author suggestions, we fixed the noise
covariance matrix to be the identity matrix in order to allow SUGAR to generate
cells in the original genes space using the available MATLAB version. The
generated cells using SUGAR contained some negative values which we replaced
with zeros to comply with our analysis workflow (logarithmic transformation using
Cell Ranger). For the visualization of the SUGAR-generated cells, we used t-SNE to
obtain a two-dimensional visualization of the generated and the real cells
(Supplementary Fig. 6A–C). We also computed the MMD statistic obtained from
the comparison of real (test) data with the generated data using both SUGAR
(59.45) and scGAN (0.872) as described in the MMD methods (Supplementary
Table 3). It is worth noting that while the Gaussian noise, added to the real cells, is
the crux of how SUGAR generates novel cells. It, however, also may be the reason
why the samples produced by SUGAR do not follow the original distribution of the
data as closely as those produced by scGAN.

To investigate whether the gene–gene dependencies were kept in the SUGAR-
generated data we computed the Pearson correlation coefficients of the cluster-
specific marker genes (Supplementary Fig. 6D).

Lastly, we trained an RF classifier to distinguish between the real and the
SUGAR-generated cells. We conjectured that RF classifier should have close to
chance-level performance in the task of distinguishing the generated data from the
real data. The RF classifier reaches 0.98 AUC when discriminating between the real
and generated cells (blue curve in Supplementary Fig. 6E).

Expression imputation with MAGIC. An important aspect of using an scGAN for
generating realistic cells is its fidelity in learning the distribution of the input data
regardless of the preprocessing which is applied. Imputation of scRNA-seq data is
used to denoise the data, to reduce the amount of drop-outs, and consequently to
more accurately recover the gene–gene interactions. For this reason, we investi-
gated the ability of an scGAN to generate realistic imputed cells when real imputed
cells are used in the training.

We used MAGIC25 to impute the scGAN training data, a method developed to
impute missing values and to restore the structure of the scRNA-seq data.

The Mouse Bone Marrow dataset was used in this analysis after applying the
basic filtering and the LSN we applied in all our experiments (refer to Datasets
Supplementary Table 1, preprocessing section). The preprocessed cells are then
imputed using the open source MAGIC implementation. In accordance with the
MAGIC tutorial all genes were used with four diffusion steps. Afterwards, we
trained an scGAN models for 100k steps on both imputed and non-imputed data.
Both models were used to generate cells which we used to plot the gene–gene
relationships of three genes in the form of scatter plots. To evaluate imputation
fidelity we used the three genes that were used in the MAGIC online tutorial
(Ifitm1, a stem cell marker, Klf1, an erythroid marker, and Mpo, a myeloid
marker).

Regulon detection using SCENIC. We used SCENIC19 to evaluate whether
scGANs model active regulons in the Zeisel RNA-seq dataset. This dataset was
used by the authors of SCENIC to show cross-species Dlx1 regulon activity. We
selected the top 50 target genes with highest weight for each TF and subsequently
found significantly over-represented TF-binding motifs in the set of genes. Mod-
ules with enriched TF-binding motifs were kept and defined as active regulons. We
then trained an scGAN model on the Zeisel dataset and used it to generate 10,000
library-size normalized cells. The Dlx1 regulon was then found in the real dataset
(realDlx1) as well as in the generated one (genDlx1). In addition, we used AUCell
to calculate the regulon binarized activity of the realDlx1 regulon in the cells of the
generated dataset and the genDlx1 regulon in real cells. Reciprocal activity of
realDlx1 and genDlx1 regulons are visualized using t-SNE on real and generated
data (Supplementary Fig. 4).

Pseudo-time analysis with PAGA. In this analysis we investigate the ability and
the fidelity of the scGAN model to generate scRNA-seq data corresponding to
continuous cell states. For this purpose, we used PAGA pseudo-time topology-
preserving embedding with partition-based graph abstraction. While clustering
enables understanding the biological signals within cell populations, trajectory
analysis using pseudo-time and graph embeddings allows for the interpretation of
continuous phenotypes and processes such as development and disease progres-
sion28. We chose an scRNA-seq hematopoiesis dataset (bone marrow dataset) that
contains many intermediate and transition states to investigate the performance of
such trajectory analysis29.

In order to examine the ability of scGAN models to learn the manifold the data
lie on, we performed a pseudo-time analysis as described in the official git
repository of the hematopoiesis scRNA-seq data [https://github.com/theislab/
paga]. The cells were first preprocessed using the Zheng preprocessing pipeline.
Afterwards the force-directed single-cell graph was built using 20 PCA
components45,46. The graph is then de-noised and rebuilt using PAGA-
initialization as described in the official tutorial of PAGA. Supplementary
Figure 17A–C shows the graph of the bone marrow scRNA-seq data. Scanpy
pseudo-time analysis was used to infer the progression of cells through geodesic
distance along the graph47.

In the next step, we downsampled a specific transient cell state represented by
cells grouped in node 4 of the PAGA graph (Supplementary Fig. 17C–F). The
original fourth Louvain group population of 150 cells was downsampled to 13 cells.
The downsampled scRNA-seq data (the training data) were then used to train an
scGAN model without providing any prior information about the cells’ states or
clusters. After training, the model was used to generate cells that we compared to
the original dataset. After investigating the force-directed single-cell graph of the
generated cells combined with original cells, we noticed that the generated cells
were covering all cellular states of the original scRNA-seq data (Supplementary
Fig. 17C–F).

These results motivated us to investigate the fidelity of the scGAN to learn the
downsampled cellular state of transient state 4. Therefore, we searched within the
generated cells for cells that are close to the sparse area created by the
downsampling process. A group of 137 generated cells were found and added to the
downsampled scRNA-seq data. We refer to this combined group of generated and
downsampled cells as augmented cells. Our assumption is that the generated cells
recover the lost biological signal represented by the downsampled transient state.
To prove this assumption, we plotted the force-directed single-cell graph of the
augmented data and compared it with the one built from the downsampled data.
The cells’ graph embeddings were recomputed using PAGA-initialization so that
the cells are structured in a meaningful topology-preserving layout that reflects the
real cell–cell interconnections and the paths of single cells. Data augmentation of
the downsampled cells re-established the developmental trajectories that were
observed in the real data and lost in the downsampled data, as shown in
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Supplementary Fig. 17. Of note, the scGAN was trained with reduced neuron
numbers to accommodate for the small size of the dataset.

Software, packages, and hardware used. For the sake of reproducibility, here is a
list of the version of all the packages we used: Tensorflow v1.8, Scanpy v1.2.2,
Anndata v0.6.5, Pandas v0.22.0, Numpy v1.14.3, Scipy v1.1.0, Scikit-learn v0.19.1,
R v3.5.0 (2018-04-23), loomR v0.2.0, SHOGUN v6.1.3, SingleCellexperiment
v1.2.0, Splatter v1.4.0, SUGAR v0.0, MAGIC v1.3.0, SCENIC v0.1.7, GENIE3
v1.0.0, Rcistarget v0.99.0, AUCell v0.99.5, RcisTarget.mm9.motifDatabases.20k
v0.1.1, ZIFA v0.1. Regarding hardware, all (c)scGAN models were trained on a
single-GPU of an NVIDIA DGX-1 server (Tesla V100 GPUs).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The datasets used and analyzed during the current study are available on the 10x
Genomics dataset repository at https://support.10xgenomics.com/single-cell-gene-
expression/datasets/1.1.0/fresh_68k_pbmc_donor_a for PBMC, at https://
support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons for
Brain small and Brain large, and in the Gene Expression Omnibus repository, at https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72857 for Bone Marrow, and https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60361 for Zeisel.

Code availability
Our (c)scGAN Tensorflow48 implementation can be found on https://github.com/imsb-
uke/scGAN, including documentation for the training of the (c)scGAN models. As
mentioned before, we used Scanpy31 to conduct most of the data analysis. We also
compared our results to those of Splatter22, and adapted the code they provided on
Github (https://github.com/Oshlack/splatter).
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