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Abstract

In the juvenile brain, the synaptic architecture of the visual cortex remains in a state of flux for months after the natural
onset of vision and the initial emergence of feature selectivity in visual cortical neurons. It is an attractive hypothesis that
visual cortical architecture is shaped during this extended period of juvenile plasticity by the coordinated optimization of
multiple visual cortical maps such as orientation preference (OP), ocular dominance (OD), spatial frequency, or direction
preference. In part (I) of this study we introduced a class of analytically tractable coordinated optimization models and
solved representative examples, in which a spatially complex organization of the OP map is induced by interactions
between the maps. We found that these solutions near symmetry breaking threshold predict a highly ordered map layout.
Here we examine the time course of the convergence towards attractor states and optima of these models. In particular, we
determine the timescales on which map optimization takes place and how these timescales can be compared to those of
visual cortical development and plasticity. We also assess whether our models exhibit biologically more realistic, spatially
irregular solutions at a finite distance from threshold, when the spatial periodicities of the two maps are detuned and when
considering more than 2 feature dimensions. We show that, although maps typically undergo substantial rearrangement, no
other solutions than pinwheel crystals and stripes dominate in the emerging layouts. Pinwheel crystallization takes place on
a rather short timescale and can also occur for detuned wavelengths of different maps. Our numerical results thus support
the view that neither minimal energy states nor intermediate transient states of our coordinated optimization models
successfully explain the architecture of the visual cortex. We discuss several alternative scenarios that may improve the
agreement between model solutions and biological observations.

Citation: Reichl L, Heide D, Löwel S, Crowley JC, Kaschube M, et al. (2012) Coordinated Optimization of Visual Cortical Maps (II) Numerical Studies. PLoS Comput
Biol 8(11): e1002756. doi:10.1371/journal.pcbi.1002756

Editor: Olaf Sporns, Indiana University, United States of America

Received July 4, 2011; Accepted August 17, 2012; Published November 8, 2012

Copyright: � 2012 Reichl et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the HFSP (http://www.hfsp.org), BMBF (http://www.bmbf.de), DFG (http://www.dfg.de), and the MPG (http://www.mpg.
de). Grant numbers SFB 889, BFL 01GQ0921, 01GQ0922, BCCN 01GQ0430, 01GQ1005B, 01GQ07113 and BFNT 01GQ0811. This work was supported in part by the
National Science Foundation (http://www.nsf.gov). Grant number PHY05-51164. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: reichl@nld.ds.mpg.de (LR); fred@nld.ds.mpg.de (FW)

Introduction

In the primary visual cortex of primates and carnivores,

functional architecture can be characterized by maps of various

stimulus features such as orientation preference (OP), ocular

dominance (OD), spatial frequency, or direction preference [1–

21]. Many attempts have been made to explain and understand

the spatial organization of these maps as optima of specific energy

functionals the brain minimizes either during development or on

evolutionary timescales [22–38]. In part (I) of this study we

presented an analytical approach to study the coordinated

optimization of interacting pairs of visual cortical maps where

maps are described by real and complex valued order parameter

fields [39]. We used symmetry considerations to derive a

classification and parametrization of conceivable inter-map

coupling energies and identified a representative set of inter-map

coupling terms: a gradient-type and a product-type coupling

energy which both can enter with different power in the dynamics.

Examining this set of inter-map coupling energies was further

motivated by the experimentally observed geometric relationships

between cortical maps [5,7,15,19,26,40,41]. We examined the

impact of these coupling energies in a system of coupled Swift-

Hohenberg equations. These were constructed such that without

coupling stripe patterns emerge for the complex valued order

parameter field. We found that these types of inter-map coupling

energies can induce the formation of defect structures, so-called

pinwheels, in the complex order parameter field describing the OP

map. For solutions that can become optima of the model,

pinwheels are arranged on regular periodic lattices such as

rhombic pinwheel crystals (rPWCs) or hexagonal pinwheel crystals

(hPWCs). These analyses focused on the optimization of a single

pair of feature maps in which the complex valued map represented

the OP map and the real map the OD map. For this case we

presented a complete characterization of the stable OP and OD
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patterns, stripe-like solutions, rhombic and hexagonal crystalline

patterns predicted by the coordinated optimization models. In all

analyzed models pinwheel crystallization required a substantial

bias in the response properties of the co-evolving real-valued map.

The pinwheel crystals we obtained, although beautiful and easy

to characterize, qualitatively deviate from the spatially irregular

layout observed for OP maps in the visual cortex [2–4]. Large

scale empirical studies of the arrangement of pinwheel positions

and spatial densities in the visual cortex of four species widely

separated in mammalian evolution recently showed that orienta-

tion maps although spatially irregular precisely conform with

apparently species insensitive quantitative layout rules [42,43]. In

particular, it was found that not only the mean density of

pinwheels but also number fluctuations over a wide range of

spatial scales and local next neighbor arrangements within

individual hypercolumns agree across species with an accuracy

in the range of a few percent [42,43], see also Fig. 1. In contrast to

the large variability of local map layouts in experimentally

observed maps [1–21], the pinwheel crystals found in the

coordinated optimization models introduced in part (I) show a

regular and stereotyped structure. Quantitatively, all PWC

solutions that we found exhibit a large pinwheel density of about

3.5 or even 5.2 pinwheels per hypercolumn. For experimental OP

maps the average pinwheel density was found to be between 3.1

and 3.2 and statistical indistinguishable from the mathematical

constant p up to a precision of 2% [42,44,45]. Our previous

analytical results thus raise the question of whether and how our

coordinated optimization models can be reconciled with the

experimentally observed layout rules of orientation maps.

From a biological perspective, one might suspect that the

crystalline layouts of local minima and optima results from the

restrictions of the applied perturbation method which allowed us

to study optima analytically but might be biased towards particular

solution classes. Furthermore, results might change substantially if

one would consider the coordinated optimization of more than

two feature maps. Examining this aspect is also demanded because

of the presence of multiple feature maps in the visual cortex of

primates and carnivores. Furthermore geometrical rules coordi-

nating map layout might in general be the harder to satisfy the

more maps are simultaneously optimized. Finally, when studying

optima predicted by a particular optimization principle we

disregarded transient states that could in principle dominate

developmental optimization on biologically relevant timescales.

Such transient solutions are expected to be more irregular than the

final attractor states. Analytical results were obtained using a

perturbative treatment close to the pattern forming threshold. This

perturbative treatment, however, gives no information on the

speed with which singularities will crystallize into highly ordered

arrays. It is conceivable that this process may occur on very long

timescales. If this was the case, developmental optimization may

lead to long-lived spatially irregular states that are transients

towards regular patterns that would be reached after very long

times or potentially never. To assess this possibility it is critical to

examine model predictions over a wide range of timescales and

compare biological developmental phases to different stages in

numerical model simulations. In the current study we propose a

systematic procedure for such comparisons that is based on a wide

array of development experiments and theoretical analyses.

Numerical studies complementing the analyses presented in part

(I) are also demanded for various theoretical reasons. In part (I) we

showed that one can neglect the backreaction of the OP map onto

the OD map if the OD map is ‘dominant’ i.e. its amplitude is

much larger than that of the OP map. This can be achieved for a

sufficiently small ratio of their distances to threshold. This finding

raises questions that cannot be easily addressed perturbatively. Do

the observed local minima and optima of the optimization

principles persist when taking the backreaction into account or

when considering map formation further from the pattern

formation threshold? Besides the influence of the backreaction,

the full dynamical system receives additional corrections. There

are higher order corrections to the uncoupled amplitude equations

which can become important for finite bifurcation parameters but

were neglected in part (I) [39]. In part (I) of this study we also

assumed equal periodicities of the two interacting maps. System-

atic differences of OD and OP wavelengths have been observed

for instance in macaque monkey visual cortex [7,46]. In case of cat

visual cortex different OP and OD wavelength have been

observed within the same animal [47] although the average

wavelength of the OD and OP pattern appears similar on average

[48,49]. Experiments suggest that the different periodicities in the

layout of OP and OD maps can have an impact on the map layout

[7,48,49]. It is thus also interesting to explore whether and how a

detuning of typical periodicities affects optimal layouts and

whether it can lead to spatially irregular maps.

To assess these issues we generalized the field dynamics to

describe the coordinated optimization of coupled complex valued

and several real valued scalar fields. From a practical point of view,

the analyzed phase diagrams and pattern properties indicate that

the higher order gradient-type coupling energy is the simplest and

most convenient choice for constructing models that reflect the

correlations of map layouts in the visual cortex. For this coupling,

intersection angle statistics are reproduced well, pinwheels can be

stabilized, and pattern collapse cannot occur. In the current study

we thus numerically analyzed the dynamics of coordinated

optimization focusing on the high order gradient-type inter-map

coupling energy. We use a fully implicit integrator based on the

Crank-Nicolson scheme and a Newton-Krylow solver. In numer-

ical simulations we characterize the kinetics and conditions for

pinwheel crystallization and the creation of pinwheels from a

pinwheel-free initial pattern. We assessed layout parameters of OP

maps throughout all stages of optimization. To aid comparison

with developmental timescales all results are represented with time

normalized to the time required for maturation of orientation

selectivity. Creation of pinwheels from a pinwheel-free initial

pattern is a sufficient although not a necessary criterion for systems

Author Summary

Neurons in the visual cortex of carnivores, primates and
their close relatives form spatial representations or maps of
multiple stimulus features. In part (I) of this study we
theoretically predicted maps that are optima of a variety of
optimization principles. When analyzing the joint optimi-
zation of two interacting maps we showed that for
different optimization principles the resulting optima
show a stereotyped, spatially perfectly periodic layout.
Experimental maps, however, are much more irregular. In
particular, in case of orientation columns it was found that
different species show apparently species invariant statis-
tics of point defects, so-called pinwheels. In this paper, we
numerically investigate whether the spatial features of the
stereotyped optima described in part (I) are expressed on
biologically relevant timescales and whether other, spa-
tially irregular, long-living states emerge that better
reproduce the experimentally observed statistical proper-
ties of orientation maps. Moreover, we explore whether
the coordinated optimization of more than two maps can
lead to spatially irregular optima.

Optimization of Visual Cortical Maps
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in which a pinwheel-rich state is energetically favored. As we point

out this criterion can be easily assessed in models of arbitrary

complexity that otherwise evade analytical treatment. We further

explored the impact of inter-map wavelength differences, as

observed in certain species, on the structure of the resulting

solutions. Finally, we extended the models to explore the

coordinated optimization of more than two feature maps. To

examine whether the observed quantitative properties can be

reproduced in models for the coordinated optimization of maps we

calculated various pinwheel statistics during optimization. We find

that spatially irregular patterns decay relatively fast into locally

crystalline arrays. Further long-term rearrangement mainly leads

to the emergence of long-range spatial alignment of local

crystalline arrangements. We showed that our previous finding

that OD stripes are unable to stabilize pinwheels generalizes to the

case of detuned wavelengths. The observation that the coordinated

optimization of two interacting maps leads to spatially perfectly

periodic optima is also robust to detuned typical wavelengths and

to the inclusion of more than two feature maps. Our results suggest

that the coordinated optimization of multiple maps that would in

isolation exhibit spatially perfectly periodic optimal layouts on its

own does not offer a simple explanation for the experimentally

observed spatially irregular design of OP maps in the visual cortex

and its quantitative aspects. We consider alternative scenarios and

propose ways to incorporate inter-map relations and joint

optimization in models in which the optimal OP map layout is

intrinsically irregular already for vanishing inter-map coupling.

Results

Dynamical systems approach
We model the response properties of neuronal populations in

the visual cortex by two-dimensional scalar order parameter fields

which are either complex valued or real valued [50–52]. We

Figure 1. Comparison of pinwheel statistics for galago, ferret, dark-reared ferret, tree shrew, and PWC solutions. A Pinwheel density,
B,C,D Pinwheel nearest neighbor statistics. E,F Pinwheel density variability exponent E and coefficient F. The two hPWC solutions correspond to the
‘Braitenberg’ (1) and ‘Ipsi-center’ (2) PWC obtained in part (I). Bars are centered around the population mean and span the 95% confidence intervals.
Animal data from [42].
doi:10.1371/journal.pcbi.1002756.g001

Optimization of Visual Cortical Maps
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consider inter-map coupling between a complex valued map z(x)
and one or several real valued maps oi(x). The complex valued

field z(x) can for instance describe OP or direction preference of a

neuron located at position x. A real valued field o(x) can describe

for instance OD or spatial frequency preference. Although we

consider a model for the coordinated optimization of general real

and complex valued order parameter fields we view z(x) as the

field of OP throughout this article to aid comparison to the

biologically observed patterns. In this case, the pattern of preferred

stimulus orientation q is obtained by

q(x)~
1

2
arg(z): ð1Þ

The modulus Dz(x)D is a measure of orientation selectivity at

cortical location x.

OP maps are characterized by so-called pinwheels, regions in

which columns preferring all possible orientations are organized

around a common center in a radial fashion [50,53–55]. The

centers of pinwheels are point discontinuities of the field q(x)
where the mean orientation preference of nearby columns changes

by 90 degrees. Pinwheels can be characterized by a topological

charge q which indicates in particular whether the orientation

preference increases clockwise or counterclockwise around the

pinwheel center,

qi~
1

2p

þ
Ci

+q(x)ds, ð2Þ

where Ci is a closed curve around a single pinwheel center at xi.

Since q is a cyclic variable in the interval ½0,p� and up to isolated

points is a continuous function of x, qi can only have values

qi~
n

2
, ð3Þ

where n is an integer number [56]. If its absolute value Dqi D~1=2,

each orientation is represented only once in the vicinity of a

pinwheel center. In experiments, only pinwheels with a topological

charge of +1=2 have been observed, which are simple zeros of the

field z(x).

In case of a single real valued map o(x) the field can be

considered as the field of OD, where o(x)v0 indicates ipsilateral

eye dominance and o(x)w0 contralateral eye dominance of the

neuron located at position x. The magnitude indicates the strength

of the eye dominance and thus the zeros of the field corresponding

to the borders of OD domains.

If visual cortical maps are described by optima of an energy

functional E, a formal time evolution of these maps that represents

the gradient descent of this energy functional can be used to obtain

predicted map layouts. The field dynamics thus takes the form

Lt z(x,t)~F ½z(x,t),o1(x,t),o2(x,t), . . .�

Lt oi(x,t)~Gi½z(x,t),o1(x,t),o2(x,t), . . .�,
ð4Þ

where F ½z,oi� and Gi½z,oi� are nonlinear operators given by

F ½z,oi�~{
dE

dz
, Gi½z,oi�~{

dE

doi

. The system then relaxes towards

the minima of the energy E. The convergence of this dynamics

towards an attractor is assumed to represent the process of

maturation and optimization of the cortical circuitry. Various

biologically detailed models can be cast into the form of Eq. (4)

[22,52,57].

To dissect the impact of inter-map coupling interactions we split

the energy functional E into single field and interaction

components E~EzzEoi
z
P

i Uzo(z,oi)z
P

i=j Uoo(oi,oj). All

visual cortical maps are arranged in roughly repetitive patterns

of a typical wavelength L that may be different for different maps.

We chose Ez to obtain, in the absence of coupling, a well studied

model reproducing the emergence of a typical wavelength by a

pattern forming instability, the Swift-Hohenberg model [58,59].

This model has been characterized comprehensively in the pattern

formation literature and mimics the behavior of for instance the

continuous Elastic Network or the Kohonen model for orientation

selectivity (see [22]). We note that many other pattern forming

systems occurring in different physical, chemical, and biological

contexts (see for instance [60–63]) have been cast into a dynamics

of the same form. Its dynamics in case of the OP map is of the

form

Lt z(x,t)~L̂Lz(x,t){DzD2z, ð5Þ

with the linear Swift-Hohenberg operator

L̂L~r{ k2
czD

� �2
, ð6Þ

kc~2p=L, and D the Laplace operator. In Fourier representation,

L̂L is diagonal with the spectrum

l(k)~r{ k2
c{k2

� �2
: ð7Þ

The spectrum exhibits a maximum at k~kc, see Fig. 2A. For

rv0, all modes are damped since l(k)v0,Vk and only the

homogeneous state z(x)~0 is stable. This is no longer the case for

rw0 when modes on the critical circle k~kc acquire a positive

growth rate and grow, resulting in patterns with a typical

wavelength L~2p=kc. This model exhibits a supercritical

bifurcation where the homogeneous state looses its stability and

spatial pattern emerge.

While the linear part of the dynamics establishes a typical

wavelength, the nonlinear term in the dynamics leads to the

selection of the final pattern [64,65]. Considering the time

evolution following Eq. (5) initialized with a random OP map

and low selectivity (small DzD) several different stages of the

dynamics can be distinguished. The linear part forces modes on

the critical circle to grow with rate r while strongly suppressing

modes off the critical circle when starting from small amplitude

white noise initial conditions, see Fig. 2A. The OP map becomes

more ordered in this linear phase as one dominant wavelength

emerges. The total power of the field is given by

P(t)~SDz(x,t)D2Tx, ð8Þ

where STx denotes spatial average. The time dependence of the

power reflects the different growth rates among modes. The time

evolution of the power is depicted in Fig. 2B. Initially, the power

decreases slightly due to the suppression of modes outside the

circle of positive growth rate. At T~rt&1 there is a rapid increase

followed by the saturation of the power. The amplitudes of the

Fourier modes reach their stationary values and P!r. At this stage

of the evolution the influence of the nonlinear part becomes

comparable to that of the linear part. Once the modes saturate the

phase of nonlinear competition between the active modes along

with a reorganization of the structure of the OP map starts. The

competition between active modes leads to pattern selection i.e.

Optimization of Visual Cortical Maps
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the convergence toward one of the in principle infinitely many

periodic and aperiodic fixed points of the evolution equations. The

final pattern then consists of distinct modes in Fourier space

[59,64]. Once the active modes are selected a relaxation of their

phases takes place. These stages thus represent an initial process of

selectivity maturation and a process of convergence to a stationary

layout. This suggests to compare the first stage to the biological

developmental period in which neurons reach adult-like levels of

orientation selectivity and the later convergence stage to the

following period of developmental juvenile plasticity e.g. until the

closure of the developmental critical periods. To aid a detailed

comparison we are presenting all maps and layout parameters as a

function of time. In such displays time, during gradient descent

optimization, is represented in two different ways. Firstly,

following conventions in the pattern formation literature, time is

rescaled with the largest growth rate rz of the OP map, T~rzt.
Secondly, to aid comparison with biological observations, we also

graph all calculated layout properties as a function of ‘develop-

mental time’ TD~T=T� where T� is the time for which the OP

power reaches its peak value or, if there is no peak in the OP

power, reaches 90% of its final value. In these units TD~1
represents the time when orientation selectivity is essentially

mature and later times correspond to subsequent convergence

processes.

Inter-map coupling can influence the time evolution on all

stages of the development depending on whether this coupling

affects only the nonlinear part or also the linear one. When

incorporating additional maps into the system in all cases we

rescaled the dynamics by the bifurcation parameter of the OP map

i.e. T~rzt. The coupled dynamics we considered is of the form

Lt z(x,t)~L̂Lz z(x,t){DzD2z{
dU

dz

Lt oi(x,t)~L̂Loi
oi(x,t){o3

i {
dU

doi

zc,

ð9Þ

where L̂Lfo,zg~rfoi ,zg{ k2
c,foi ,zg

zD
� �2

, and c is a constant. To

account for the differences in the dominant wavelengths of the

patterns we chose two typical wavelengths Lz~2p=kc,z and

Loi
~2p=kc,oi

. In the sections ‘Final states’ and ‘Kinetics of

pinwheel crystallization’ we assume kc,o~kc,z~kc i.e. the Fourier

components of the emerging pattern are located on a common

circle. In the subsequent sections we also consider a potential

detuning of the typical wavelength. The dynamics of z(x,t) and

oi(x,t) are coupled by interaction terms which can be derived from

a coupling energy U . Many optimization models of the form

presented in Eq. (4) have been studied [22–38]. The concrete

dynamics in Eq. (9) is the simplest which in the uncoupled case

leads to pinwheel-free OP stripe patterns and to a stripe-like or

patchy layout of the co-evolving real valued fields.

As revealed by the symmetry-based classification of coupling

energies

U~ao2DzD2zb D+z:+oD2zto4DzD4zE D+z:+oD4, ð10Þ

parametrizes a representative family of biologically plausible

coupling energies for a single real valued map o, see part (I), [39].

The numerical integration scheme to solve Eq. (9) is detailed in

the Methods part. For numerical analysis we focused on the high

order gradient-type inter-map coupling energy. This energy can

reproduce all qualitative relationships found between OP and OD

maps, does not suffer from potential OP map suppression, and

leads to a relatively simple phase diagram for two interacting maps

near threshold.

Final states
In part (I) we calculated phase diagrams for different inter-map

coupling energies [39]. In all cases, hexagonal PWCs can be

stabilized only in case of OD hexagons. We tested these results

numerically. Numerical simulations of the dynamics Eq. (9) with

the coupling energy

U~E D+z:+oD4, ð11Þ

are shown in Fig. 3. All remaining inter-map coupling energies in

Eq. (10) are assumed to be zero. Initial conditions for the OD map

were chosen as spatially irregular patterns or stripe patterns with

saturated power plus Gaussian white noise. Initial conditions for

the OP map are either pinwheel-free OP stripes or band-pass

filtered Gaussian white noise for which the average pinwheel

density is bounded from below by the constant p [22]. The initial

Figure 2. Swift-Hohenberg equation. A Cross section through the spectrum l(k) of the Swift-Hohenberg operator Eq. (7), r~0:1. B Time
evolution of the Power, Eq. (8), for spatial white noise initial conditions.
doi:10.1371/journal.pcbi.1002756.g002
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conditions and final states are shown for different bias terms c and

inter-map coupling strengths E. We observed that for a substantial

contralateral bias and above a critical inter-map coupling

pinwheels are preserved for all times or are generated if the initial

condition is pinwheel-free. Without a contralateral bias the final

states were pinwheel-free stripe solutions irrespective of the

strength of the inter-map coupling.

Kinetics of pinwheel crystallization
To characterize the process of pinwheel annihilation, preserva-

tion, and creation during progressive map optimization we

calculated the pinwheel density as well as various other pinwheel

statistics (see Methods) during the convergence of patterns to

attractor states. The time evolution of the pinwheel density is

shown in Fig. 4. Initial conditions for the OD map were chosen as

hexagonal patterns plus Gaussian white noise. Initial conditions for

the OP map are either pinwheel-free OP stripes or band-pass

filtered Gaussian white noise. Note the logarithmic time scales.

Pinwheel densities rapidly diverge from values near 3.1 as soon as

the map exhibits substantial power 1vTv10. In the uncoupled

case (E~0) most of the patterns decayed into a stripe solution and

their pinwheel density dropped to a value near zero. At small

coupling strengths (E~200) the pinwheel density converged either

to zero (stripes), to values near 3.5 for the rPWC (see Fig. S6 in

part (I), [39]), or to approximately 5.2 for the contra-center hPWC

(see Fig. S7 in part (I), [39]). At high inter-map coupling (E~2000)

pinwheel free stripe patterns formed neither from pinwheel rich

nor from pinwheel free initial conditions. In this regime the

dominant layout was the contra-center hPWC. When starting

from OD and OP stripes, see Fig. 4C (green lines), the random

orientation between the stripes first evolved towards a perpendic-

ular orientation (T&1). This lead to a transient increase in the

pinwheel density. At the time (T&10) where the OD stripes

dissolve towards OD hexagons hPWC solutions formed and the

pinwheel density reached its final value.

Regions of hPWC layout can however be inter-digitated with

long lived rPWC patterns and stripe domains. Figure 4D shows

the time course of the normalized power Pn(t)~SDz(x,t)dynD
2T

x=SDz(x,t)thD
2Tx, where STx denotes spatial average. The field zth is

obtained from the solution of the amplitude equations (see [39])

while zdyn is the field obtained from the simulations. Starting from

a small but nonzero power the amplitudes grew and saturated after

T&1. When the amplitudes were saturated the selection of the

final pattern started. Quantitatively, we found that with weak

backreaction the critical coupling strengths were slightly increased

compared to their values in the limit rz%ro. Snapshots of the

simulation leading to the hPWC solutions at three time frames are

shown in Fig. 5. Already at T&0:8 a substantial rearrangement of

the pattern took place and one can identify different domains in

the pattern that are locally highly stereotyped.

For the time evolution of the maps we also calculated the

distributions of pinwheel next-neighbor distances d , measured in

units of the column spacing L. The distributions of distances for

simulations leading to rhombic and hPWC solutions are shown in

Fig. 6. They are characterized by three stages in the evolution of

the pinwheel distances. At early stages of the evolution (10{2
ƒT )

there is a continuous distribution starting approximately linearly

from d~0. At the time where the amplitudes saturated (T&1) the

distribution of pinwheel distances became very inhomogeneous.

Different domains with stripe-like, rhombic, or hexagonal patterns

appeared until for Tw10 the rhombic or hexagonal pattern took

over the entire system.

As pinwheels carry a topological charge we could divide the

distributions according to distances between pinwheels of the same

charge or according to distances between pinwheels of the

opposite charge. In Fig. 7 we present pinwheel distances for the

final states of the dynamics. In case of the rhombic solutions there

is only a single pinwheel to pinwheel distance with d~

1=
ffiffiffi
3
p

L&0:58L. In numerical simulations small variations in

the amplitudes lead to a slightly larger distance between pinwheels

Figure 3. Pinwheel annihilation, preservation, and generation in numerical simulations for different strengths of inter-map
coupling E and OD bias c. Color code of OP map with zero contours of OD map superimposed. A c~0,E~0 B c~0,E~2000 C and D
c~0:15,E~2000. Initial conditions identical in A–C, ro~0:2,rz~0:02,Tf ~104,kc,o~kc,z .
doi:10.1371/journal.pcbi.1002756.g003
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of equal charge than between pinwheels of opposite charge.

Therefore their distance distributions do not collapse exactly, see

Fig. 7A. In case of the hPWC there are three peaks at

d&0:28L,d&0:36L and d&0:56L in the pinwheel distance

distribution of arbitrary charge, see Fig. 7B. These three peaks all

result from distances between pinwheels carrying the opposite

charge while the distance between pinwheels of the same charge

shows two peaks at d&0:48L and d&0:64L in the distribution.

The origin of the peaks is indicated in Fig. 7C and Fig. 7D.

These results confirm that inter-map coupling can induce the

stabilization of pinwheels in the OP pattern. This however does

not mean that the pinwheels initially generated by spontaneous

symmetry breaking will be preserved during convergence of the

map. To what extent are the pinwheels in the crystalline OP maps

preserved from pinwheels of the initial OP pattern? To answer this

question we calculated the pinwheel annihilation a(t) and creation

c(t) rate during time evolution, see Methods. The time evolution

of these rates, averaged over 20 simulations leading to a hPWC, is

shown in Fig. 8A. We observe that both rates were fairly similar

throughout development, with a slightly higher creation rate in the

later stage of development. During the initial stages of time

evolution creation and annihilation rates decay algebraically

c,a!1=T . At T&3 both rates deviate from this algebraic decay.

From thereon annihilation and creation rates increase, reflecting

the nonlinear rearrangement of the pattern. After T&15 no

pinwheels are created or annihilated anymore and the pinwheels

of the final pattern are present.

Pinwheels are created and annihilated until a first crystal-like

pattern is formed. How many pinwheels of the initial pattern are

still present in the final pattern? For a given set of pinwheels at an

initial time T~Tinit we further calculate the fraction s(t) of those

pinwheels surviving until time T . The fraction of pinwheels

present at time Tinit that survive up to the final time T~Tf is

given by p(t). Both fractions are shown in Fig. 8B for Tinit~0:01
and in Fig. 8C for Tinit~2, a time where the power P(t) has

almost saturated, see Fig. 4D. We observed that about 20% of the

initial pinwheels are preserved until the final time and therefore

most of the pinwheels of the crystal pattern are created during

development. From those pinwheels which are present when the

power saturates about 65% are also present in the final pattern.

Detuning OD and OP wavelengths: OD stripes
The analytical results obtained in [39] as well as the previous

numerical results (see Fig. 3B) predict that OD stripes do not lead

to spatially complex patterns and are not capable of stabilizing

pinwheels. In case of gradient-type inter-map couplings the OP

map consists of stripes which run perpendicular to the OD stripes.

In case of the product-type inter-map coupling high gradient

regions of both maps avoid each other by producing again OP

stripes but now oriented parallel to the OD stripes. In numerical

Figure 4. Time evolution of the pinwheel density, U~EE D+z:+oD4, rz~0:05,ro~0:25,ª~0:15. For each parameter set A–C simulations in blue
started from an identical set of 20 initial conditions. Red dashed lines: r~4 cos(p=6) and r~6 cos(p=6), black dashed line: r~p. A E~0 B E~200 C
E~2000. D Normalized power of OP map, E~0 (red), E~200 (blue), and E~2000 (green). In green C: OD and OP stripes as initial conditions.
Parameters: 128|128 mesh, C~22.
doi:10.1371/journal.pcbi.1002756.g004
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Figure 5. Snapshots of the pinwheel crystallization process. Top panel: OP map, bottom panel: selectivity Dz(x)D. Left: T~0:01, middle:
T~0:8, right: T~Tf ~104 . Parameters as in Fig. 4(c), E~2000,c~0:15.
doi:10.1371/journal.pcbi.1002756.g005

Figure 6. Distribution of nearest neighbor pinwheel distances during development. A–C rPWC D–F hPWC. Distance to the next pinwheel
of arbitrary A,D, opposite B,E, and equal C,F topological charge. Parameters as in Fig. 4B.
doi:10.1371/journal.pcbi.1002756.g006
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simulations we also investigated the case of OD stripes of larger

wavelength than OP columns, as is the case in macaque monkey

primary visual cortex [7,46]. In case of a gradient-type inter-map

coupling we find that the OD bands are perpendicular to the OP

bands independent of the ratio Lo=Lzw1, see Fig. 9C,D and Fig.

S1. In case of the product-type inter-map coupling, if the ratio

Lo=Lzw1, the orientation representation does not collapse as it

would be the case for Lo~Lz, see [39]. The system, however,

again finds a way to put zero contours (Re z~0 and Im z~0)

along lines of maximal OD resulting in an orientation fracture

line, see Fig. 9E,F and Fig. S1. The angle between the active OP

and OD modes is given by a~arccos kc,o=kc,z corresponding to

the resonance condition ~kk1,z{~kk2,z{2~kk1,o~0, see Fig. 9A.

The time evolution of all pinwheel statistics and its comparison

to the case of equal wavelengths is shown in Fig. 10 and Fig. S2.

Initial conditions are band-pass filtered Gaussian white noise with

Figure 7. Distribution of nearest neighbor distances for final states (T~Tf ~104). A rPWC, B hPWC with pinwheels of equal (red) and
opposite (blue) charge. C and D Illustration of occurring pinwheel distances between pinwheels of equal (red lines) and opposite (blue lines) charge.
Pinwheels are marked with star symbols according to their charge. Units are given in L. Parameters as in Fig. 4B.
doi:10.1371/journal.pcbi.1002756.g007

Figure 8. Pinwheel annihilation and creation. A Creation (blue) and annihilation (red) rates during time evolution. Fit: c,a~0:08=T (black line). B,C
Survival fraction (red) and fraction of preserved pinwheels (blue) compared to the initial time Tinit~0:01 B and Tinit~2 C. Parameters as in Fig. 4C.
doi:10.1371/journal.pcbi.1002756.g008
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Figure 9. Map interactions with detuned wavelengths and OD stripes. C–F OD stripes interacting with OP columns where Lo=Lzw1. G OD
stripes interacting with OP columns where Lo~Lz . A,B Illustration of active modes in Fourier space with kc,ovkc,z, a~arccos kc,o=kc,z . C,D

U~ED+z:+oD4 , E~2000, E–G U~to4DzD4, t~2000, C,E Lo=Lz~1:3, D,F Lo=Lz~2. G From left to right: initial condition, TD~10, TD~200,
T~Tf ~5:104 . Parameters: rz~0:05,ro~0:2,c~0,Co~20,256|256 mesh.
doi:10.1371/journal.pcbi.1002756.g009
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initial power a few percent of the final power. Note, the pinwheel

statistics are shown for the timescale T and TD~T=T� which

relates the pinwheel statistics to the rise and saturation of the

orientation selectivity. The power of the OP map reached about

90 percent of its final value earliest at T&2. A non-monotonic

time dependence of OP power can result from inter-map coupling.

In particular, the rise of OD power leads to OP suppression. This

suppression is absent if the pattern arranges such that the inter-

map coupling energy is zero i.e. for perpendicular stripe patterns.

In all cases, at TD~10 the average pinwheel density clearly

deviates from the experimentally observed value. Furthermore,

pinwheel densities are for all cases outside of the confidence

interval of the species grand average pinwheel density obtained in

[42]. Note, in case of equal wavelength and a product-type inter-

Figure 10. Pinwheel statistics with detuned wavelengths and OD stripes. Lo=Lz~26=20,t~2000 (blue), Lo=Lz~40=20,t~2000 (red),
Lo=Lz~26=20,E~2000 (green), Lo=Lz~40=20,E~2000 (orange), Lo=Lz~22=22,t~2000 (brown), Lo=Lz~22=22,E~2000 (cyan). A,B OP Power.
C,D Pinwheel density. E,F Mean pinwheel density. Dashed line: r~p. Light green region: Confidence interval of species grand average pinwheel
density, see. [42]. Black rectangles indicate times §10T� . Parameters as in Fig. 9.
doi:10.1371/journal.pcbi.1002756.g010
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map coupling energy the OP map develops towards orientation

scotoma solutions which are selective to only two preferred

orientations, see Fig. 9G and part (I).

Detuning OD and OP wavelengths: OD hexagons
In case of identical wavelengths kc,o~kc,z strong interaction

with a system of hexagonal OD patches leads to hPWC solutions.

For these solutions pinwheel positions are correlated with OD

extrema. For instance in case of the higher order gradient-type

inter-map coupling energy, for which the contra-center PWC

corresponds to the energetic ground state, half of the pinwheels are

located at OD extrema while the remaining half are located near

OD borders (see Fig. S7 of part (I), [39]). If, however, the typical

wavelengths of OD and OP patterns are not identical such a

precise relationship cannot be fulfilled in general. We therefore

studied whether a detuning of typical wavelengths can lead to

spatially irregular and pinwheel rich OP patterns. In numerical

simulations which lead to OD hexagons with a fixed wavelength

we varied the OP wavelength using as initial conditions band-pass

filtered Gaussian white noise with power a few percent of the final

power. Wavelength ratios were chosen such that each pattern

exhibited an integer aspect ratio. Wavelength ratios were

Lo=Lz~n=41 with n an integer. Examples of final patterns of

such simulations are shown in Fig. 11 and Fig. S3 using the high

order gradient-type inter-map coupling energy. In all studied cases

the final patterns are spatially regular. The observed patterns are

either fractured stripe patterns with two active modes Fig. 11C or

rPWC solutions (two modes plus the corresponding opposite

modes). We also studied map interactions with wavelength ratios

were Lz=Lo~n=41 with nv41. In this case, however, we found

only pinwheel-free stripe patterns as final states. Much larger

domains than used in the current simulations would be needed to

simulate values intermediate to the wavelength ratios used here.

Our results, nevertheless, clearly establish that OD induced

pinwheel stabilization can occur also with detuned wavelengths.

They furthermore confirm that wavelength detuning does not by

itself generates irregular stable maps in the considered model. The

time evolution of all pinwheel statistics and its comparison to the

case of equal wavelengths is shown in Fig. 12 and Fig. S4. The

pinwheel density appears to exhibit a complex dependence on the

wavelength ratio. The power of the OP map reached about 90

percent earliest at T&2. At TD~10, however, the average

pinwheel density in all conditions clearly deviates from the

experimentally observed value. Furthermore, at TD~10 the

pinwheel density for all conditions is outside of the confidence

interval of the species grand average pinwheel density as obtained

in [42]. For three conditions, the mean pinwheel density

transiently reentered the confidence interval at a later stage for a

short period of time. For no condition, however, there was a

robust and stable convergence of the predicted pinwheel density to

the confidence interval for TD§10. Note, in case of equal

wavelength the OP map develops towards contra-center PWCs,

see also Fig. 3C,D and part (I).

Higher feature space dimensionality
The inclusion of more feature dimensions into the dynamics was

performed as in Eq. (9), Eq. (10) as the geometric correlations

between the different types of maps seem to be qualitatively similar

[9,10,14,26,40]. We used the higher order gradient-type inter-map

coupling with three and four maps which are mutually coupled,

see Fig. 13 and Fig. S5. Initial conditions for all maps were band-

pass filtered Gaussian white noise with the initial power a few

percent of the final power, see Fig. 14. Whereas in the case of two

maps the coupling energy is zero if the two stripe solutions are

perpendicular to each other the interactions between more maps

could potentially lead to frustration as not all of the individual

coupling energies can simultaneously vanish. Using the gradient

coupling energy

U~U1zU2zU3~E1 D+z:+o1D4zE2 D+z:+o2D4zE3 D+o1
:+o2D4, ð12Þ

no OD bias (c~0), and equal coupling strengths E1~E2~E3~E we

observed two types of stationary solutions, see Fig. 13. When all

bifurcation parameters were equal, the OP map consisted of

stripes. Also the two real fields consisted of stripes, both

perpendicular to the OP stripes i.e.

z(x)~Ae1
~kk1
:~xx

o1(x)~2B1 cos(~kk2
:~xx)

o2(x)~2B2 cos(~kk2
:~xxzy) , ~kk1

:~kk2~0:

ð13Þ

The energy in this case is given by U1~U2~0, U3~
B4

1B4
2p

16
18z16 cos(2y)zcos(4y)ð Þ which is minimal for y~p=2, i.e. the

energy is minimized by shifting one real field by one quarter of

the typical wavelength. When the bifurcation parameter of the

OP map was smaller than that of the two real fields we obtained

PWC patterns, see Fig. 13B. The pinwheels were arranged such

that they are in the center of a square spanned by the two

orthogonal real fields and the resulting pinwheel density is r~4.

All intersection angles between iso-orientation lines and borders

of the real fields were perpendicular. When extending the system

by a third real field we observed a similar behavior.

Figure 13C,D shows the stationary states of a complex field

coupled to three real fields. In case of equal bifurcation

parameters the stationary patterns were OP stripes, perpendic-

ular to stripe and wavy real patterns. When the bifurcation

parameter of the OP map was smaller than the other bifurcation

parameters we again observed pinwheel crystallization. Note,

that in this case all pinwheels were located at the border of one

of the three real fields. In summary, pinwheel crystallization was

only observed when the OP map is driven by the real field i.e.

when the OP amplitudes are small. In all observed cases the final

patterns were spatially perfectly periodic. The time evolution of

all pinwheel statistics is shown in Fig. 14 and Fig. S6. The power

of the OP map reached about 90 percent of its final power

earliest at T&2T�. At TD~10 the average pinwheel density in

all cases clearly deviates from the experimentally observed value.

Furthermore, at T~10T� the pinwheel density in all cases is

outside of the confidence interval of the species grand average

pinwheel density as obtained in [42].

Discussion

Summary of results
In this and the accompanying analytical study, we presented a

dynamical systems approach to the coordinated optimization of

maps in the visual cortex such as orientation preference (OP) and

ocular dominance (OD) maps. In part (I) we examined in

particular the predicted optima of various candidate energy

functionals [39]. We calculated phase diagrams for different

energy functionals showing that for strong inter-map coupling

pinwheel crystals are optima of the system. In the current study,

we numerically analyzed the dynamics of two representative

examples of these coordinated optimization models. We focused

on the high order gradient-type inter-map coupling energy that
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can reproduce all qualitative relationships found experimentally

between OP and OD maps, does not suffer from potential OP map

suppression, and has a relatively simple phase diagram near the

symmetry breaking threshold. The main phenomenon character-

izing the considered models, crystallization induced by coordinated

optimization and inter-map coupling, was confirmed numerically.

This phenomenon was found to be robust to the influence of a weak

backreaction of the OP map on the OD map, to detuning of the

typical wavelengths, and was found to persist in models with higher

feature space dimensionality. We characterized the complex

dynamics during crystallization and calculated all pinwheel statistics

known for the common design of OP maps found experimentally.

The crystalline periodic layout of pinwheel-rich solutions persisted

in all studied conditions. Characterizing the behavior of transients,

we found that spatially irregular transient states decayed relatively

fast into locally ordered patterns during optimization.

The dynamics of developmental optimization
The optimal layouts predicted by the models considered in the

current studies deviate qualitatively and quantitatively from

experimentally observed map layouts. It is therefore not reasonable

to assume that a genetically encoded pattern of cortical columns has

been optimized on evolutionary timescales following the optimiza-

tion principles formalized by our models. Two alternative scenarios,

however, are raised by our results. First, visual cortical maps could

be considered as optimized with respect to principles qualitatively

distinct from those examined here (see e.g. [66,67]). Second, visual

cortical maps might be incompletely optimized by a developmental

dynamics that reduces an energy functional such as the ones

considered here but does not reach optimized states due to a finite

duration of the period of juvenile plasticity. In the following we first

discuss the incomplete optimization scenario and propose quanti-

tative criteria for testing its plausibility. We then discuss likely

ingredients of fundamentally different optimization principles that

appear better suited to explain visual cortical architecture.

In our simulation studies, we examined the sequence of stages

predicted, for the maps under the assumption of developmental

optimization. Our results consistently show that our coordinated

optimization models exhibit a complex dynamics that persistently

reorganizes maps over different timescales before attractors or

optima are reached. As can be predicted from symmetry principles

[22,68], at early stages of development maps must be spatially

irregular if they develop from weakly tuned random initial

conditions. Such OP patterns are essentially random exhibiting a

model insensitive, universal spatial organization throughout the

initial emergence of orientation selectivity. The average pinwheel

density in these early maps is bounded from below by the

mathematical constant p and the distributions of nearest pinwheel

distances are continuous and broad. As soon as orientation selectivity

started to saturate the patterns typically reorganized towards one of a

few crystalline spatial patterns. This early phase of local crystalliza-

tion rapidly leads to the occurrence of different spatial domains

within the pattern, with a locally stereotypical periodic layout. Even

in the cases exhibiting the slowest decay of irregular patterns, this

process was complete after ten intrinsic timescales T�. The slower

dynamics that characterizes further development progressively aligns

these domains leading to a long-range ordered perfectly periodic

crystalline array. This long-ranged reorganization of patterns lasts

substantially longer than the intrinsic timescale. Similar behavior was

also observed when starting near spatially irregular unstable fixed

points of the orientation map dynamics. Pinwheel crystal (PWC)

solutions represent attractor states and we found no other, spatially

irregular, long-living states in the dynamics. The overall progression

of states observed in our models has been found previously in

numerous pattern forming dynamics both highly abstract as well as

in detailed ab initio simulations [59,64,65].

Comparing the dynamics of coordinated optimization to
stages of visual cortical development

Does the observed rapid decay of irregular OP layouts into

crystalline patterns speak against the biological plausibility of an

optimization dynamics of the type considered here? Can one

reasonably expect that a similar crystallization process could also

unfold relatively rapidly during the development of the brain? Or is it

more likely that what seems rapid in our numerical simulations would

take very long in a biological network - potentially so long that the

cortical circuitry has already lost its potential for plastic reorganiza-

tion before substantial changes have occurred? To answer these

questions it is important (1) to examine whether secondary

reorganization processes subsequent to the initial establishment of

selectivity are occurring during biological development, (2) to delimit

the fundamental timescales of the postnatal development of visual

cortical circuits subserving orientation preference and ocular

dominance and (3) to discuss how these timescales can be compared

to the formal timescales that appear in dynamical models of map

formation and optimization. In the following we address these issues.

We will first summarize available evidence for ongoing pattern

reorganization subsequent to the initial emergence of feature

selectivity. We will then discuss the theoretically predicted properties

of the fundamental time scale of the map dynamics and finally discuss

how to empirically estimate it relative to the duration of visual cortical

critical period plasticity. For comparing simulation results to

developmental stages in the biological system the most important

quantity is the relative duration of the period of juvenile plasticity; the

ratio of the absolute duration of juvenile plasticity T and the

fundamental time scale of the map dynamics T�. Secondary map

rearrangement has been experimentally found by several studies [69–

73]. It is expected if this ratio is substantially larger than one. How far

developmental reorganization can be expected to progress towards

attractor states during the period of juvenile plasticity is determined

by its absolute value. Current empirical uncertainties do not permit to

determine the relative duration of the period of juvenile plasticity with

great accuracy. It is however, possible to estimate a conservative

lower bound and a worst case estimate upper bound. We argue that

plausible candidate models should correctly predict map layouts in

adult visual cortex when T=T� reaches the lower bound. In general

model predictions should be compared to biological observations

throughout the range delimited be the lower and upper bounds for a

systematic assessment of the robustness of model behavior. Current

data implies a conservative lower bound to the duration of the period

of juvenile plasticity of about 10T�.

Juvenile plasticity supports an ongoing reorganization of
OP and OD

Accumulating evidence suggests that juvenile plasticity supports

an ongoing pattern reorganization [69–73]. For cat visual cortex,

Figure 11. Map interactions with detuned wavelength and OD hexagons. U~E D+z:+oD4 . A Lo=Lz~38=41&0:927, B
Lo=Lz~34=41&0:829, C Lo=Lz~26=41&0:634, D Lo=Lz~24=41&0:586, E Lo=Lz~22=41&0:537, F Lo=Lz~20=41&0:488. From left to right:
initial condition, TD~10, TD~200, T~Tf ~5:104 . Parameters: rz~0:05,ro~0:2,c~0:15,E~2000,t~0,Co~41, 256|256 mesh. Initial condition
identical in all simulations.
doi:10.1371/journal.pcbi.1002756.g011
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Kaschube and coworkers have demonstrated that the spatial

organization of orientation columns in striate cortex is progres-

sively reorganized between the sixth and the 14th postnatal week

such that the organization of orientation columns that are

reciprocally connected to extra-striate visual cortex and contra-

lateral hemisphere striate cortex are better matched [70]. A second

line of evidence is related to the fact that the surface area of cat

striate cortex substantially increases postnatally [71,74–76]. The

spatial periodicity of both orientation as well as OD columns,

however, remains basically unaffected during this period

[70,71,77]. Keil and coworkers reported that this areal growth

in the presence of maintained mean column spacing induces a

specitifc kind of spatial reorganization of the layout of OD

columns within cat striate cortex [71]. Independently, growth

related rearrangement of orientation columns has also been

suggested previously by Kiorpes and coworkers from observations

on a smaller data set from juvenile macaques [46].

Perhaps the most striking demonstration that the functional

preferences of visual cortical neurons can reorganize over long

time scales during the period of juvenile plasticity has emerged

from studies of the mouse visual cortex. In the mouse, as in cat,

visual cortical neurons first develop orientation selectivity around

Figure 12. Pinwheel statistics with detuned wavelength and OD hexagons. Lo=Lz~ 38/41 (blue), 34/41 (red), 26/41 (green), 24/41 (orange),
22/41 (violet), 20/41 (brown), 22/22 (cyan). A,B OP Power. C,D Pinwheel density. E,F Mean pinwheel density. Black dashed line: r~p. Light green
region: Confidence interval of species grand average pinwheel density, see. [42]. Black rectangles indicate times §10T� . Parameters as in Fig. 11.
doi:10.1371/journal.pcbi.1002756.g012

Figure 13. Map interactions in higher feature dimensions. A,B Map layout by interactions between three columnar systems (z(x),o1(x),o2(x)).
All maps are mutually coupled. Superimposed on the OP map there are the borders of two real fields (black, white). A rz~ro1

~ro2
~0:1 B

rz~0:01,ro1
~ro2

~0:1. C,D Interactions with four columnar systems (z(x),o1(x),o2(x,t),o3(x,t)). C rz~ro1
~ro2

~ro3
~0:1. D rz~0:01,ro1

~ro2
~ro3

~0:1.
Superimposed on the OP map there are the borders the of three real fields (black, gray, white). From left to right: initial condition, TD~10, TD~200,
T~Tf ~5:104 . Parameters in all simulations: E~2000,c~0,C~22, 128|128 mesh.
doi:10.1371/journal.pcbi.1002756.g013
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the time of first eye opening in the second postnatal week

[69,72,73]. Similar to the developmental time course in the cat,

the duration of the period of juvenile plasticity in the mouse is

quite long and extends beyond the third postnatal month [78,79].

At a duration of more than 10 weeks, it is thus substantially longer

than required for the expression of adult-like single neuron

selectivities. Wang and coworkers demonstrated that neurons in

the binocular segment of mouse visual cortex change their

preferred orientations during this period [69]. Neurons in the

binocular segment of mouse striate cortex were found to first

exhibit widely different preferred orientations in the left and right

eye. The two different preferred orientations then underwent

secondary reorganization and became matching at an age of 5

weeks postnatally after the peak of the OD critical period [69]. In

the monocular segment of mouse visual cortex, Rochefort and

coworkers found substantial changes in the complement of

preferred orientations and preferred directions represented during

the first postnatal month [72]. It is noteworthy that a substantial

Figure 14. Pinwheel statistics in higher feature dimensions. Blue: z,o1,o2,rz~0:01,roi
~0:1, red: z,o1,o2,rz~roi

~0:1, green:
z,o1,o2,o3,rz~0:01,roi

~0:1, orange: z,o1,o2,o3,rz~roi
~0:1. A,B Power of OP map. C,D Pinwheel density. E,F Mean pinwheel density. Black dashed

line: r~p. Light green region: Confidence interval of species grand average pinwheel density, see. [42]. Black rectangles indicate times §10T�.
Parameters as in Fig. 13.
doi:10.1371/journal.pcbi.1002756.g014
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long-term reorganization of cortical preferences has also been

demonstrated for the preferred direction for whisker deflection in

the rat barrel cortex [80]. Here Kremer and coworkers found that

preferences for the direction of whisker deflection reorganize over

the course of the first three postnatal months. Long-term

reorganization might thus potentially constitute a general feature

of sensory cortical representations.

Timescales of developmental plasticity
Experimental evidence thus clearly supports that circuits in

sensory cortical areas remain in a state of flux for weeks and

months after the initial emergence of sensory responsiveness and

stimulus selectivity. To judge how far the rearrangement of

cortical circuitry can progress towards a stationary optimized state

one has to relate the duration of the period of juvenile plasticity to

the fundamental timescale of the map dynamics. This time scale

essentially is the duration of the process of establishing mature

levels of response selectivity and in our models is the time T�. Let

us first discuss the determinants of this time scale from a

theoretical perspective. All models for the development of visual

cortical functional selectivity from an unselective or weakly

selective initial condition are known to exhibit a distinct intrinsic

time scale for the emergence of stimulus selectivity in individual

neurons, see e.g. [36,50,52,81–83]. In the abstract order

parameter models used here this time scale is set by the inverse

of the maximum eigenvalue rz. It is important to note that this

time scale represents an effective parameter describing a collective

circuit property. Consequently this parameter is not rigidly related

to any particular cellular or synaptic time constant such as e.g. the

characteristic times required for the expression of LTP, spine

growth, homeostatic plasticity or other functional or morpholog-

ical synaptic changes. Theoretical studies of microscopic models in

which the effective time scale was explicitly calculated established

that the intrinsic time scale depends (1) on the ensemble of activity

patterns driving development and also (2) on characteristics of the

local cortical circuits [57,83,84]. For instance in a representative,

analytically solvable microscopic model for the emergence of OD

patterns the maximum eigenvalue is given by

lmax~{
s2

tsyn

z
1

tsyn

ð
d2x CL(x)zCR(x){2CLR(x)ð Þ

where tsyn is the characteristic time scale for synaptic changes, s
the spatial extend of co-activated neuron groups in the model

cortex and CL(x), CR(x) and CLR(x) are auto- and cross-

correlation functions of the activity patterns in the left and right

eye layers of the LGN [57]. The effective time scale for the

emergence and saturation of response selectivity is thus expected

not to be faster than the fundamental processes of synaptic change.

A broad range of time constants, however, is in principle consistent

with Hebbian models of sensory cortical development depending

on details of circuit interactions.

A lower bound to the relative duration of juvenile
plasticity

An empirical estimate for the relative duration of juvenile

plasticity can be obtained by comparing the characteristic time

scale of initial map emergence and the duration of the period from

map emergence to the closure of critical periods for visual cortical

plasticity. How long does the emergence of stimulus selectivity in

the visual cortex take under normal conditions? For orientation

selectivity in the primary visual cortex this information has been

experimentally obtained for cat and ferret. In both species

orientation selectivity is established starting from an initial

condition in which cells are only weakly orientation biased. Data

indicate a period between a few days and at most one week to

reach mature levels of single cell orientation selectivity

[11,17,21,85–88]. Similar time scales are sufficient for substantial

morphological changes of thalamo-cortical axonal structure [89].

A conservative estimate for the intrinsic time scale of map

dynamics is thus that T� is about one week.

As mentioned above the period of juvenile cortical plasticity is

known to last substantially longer. Best established experimentally

is the period of susceptibility to monocular deprivation in the cat

that lasts for several months of postnatal life [86,90–95]. The

primary visual cortex of the cat is maximally susceptible to

monocular deprivation in kitten of four weeks of age [90–92]. An

initial establishment of OP and OD maps in kittens occurs around

the time of eye opening and is complete at the end of the second

postnatal week [85,87]. A maximal degree of plasticity is thus

reached two weeks after the emergence of maps and the onset of

natural vision. After the first postnatal month susceptibility to

monocular deprivation gradually declines back to levels compa-

rable to those present at the onset of vision and initial map

emergence. The closure of the period of developmental plasticity

was estimated by three independent studies to occur between the

14th and 18th postnatal week [90–92]. This is 12 to 16 weeks after

single neurons first exhibit adult like levels of orientation selectivity

and eye dominance. The reported durations for the period of

juvenile plasticity thus are 12 to 16 fold of our conservative

estimate for the fundamental time scale. A lower bound for the

relative duration of juvenile plasticity is thus 10T�. According to

this estimate, plausible candidate models should thus predict map

layout consistent with biological observations in the adult at 10T�.

The fundamental timescale is likely to speed up towards
the peak of the critical period

The simulations presented in the current studies were designed

to assess the convergence of model maps to final attractor states.

We presented our results in a way that enables comparison of

predicted and biologically observed layouts throughout a broad

time span including 10T� but also extending beyond this stage.

This approach enables to assess the dynamical stability and

robustness of the layout obtained.

Considering this robustness is not only interesting for theoretical

reasons. Experimentally it cannot be excluded that the relative

duration of the period of juvenile plasticity is substantially longer

that the lower bound estimated above. The fact that the maximal

level of plasticity is observed not at eye opening but two weeks

later means that similar size changes will unfold on shorter time

scales as the peak of the critical period is approached. Several

studies have attempted to assess the fundamental time scale for the

establishment of stimulus selectivity near the peak of the critical

period. Classical studies by Blakemore and Mitchell [96], and

Imbert and coworkers [97–99] examined how much visual

experience is needed to achieve selectivity from an unselective

initial condition at the time of peak OD plasticity. To this end they

examined the newly generated selectivity of neurons in kitten dark-

reared until the peak of the OD critical period and then given

short epochs of normal visual experience. These studies indicate

that 6 hours of visual experience are sufficient to induce a

substantial degree of selectivity in visual cortical neurons. Recent

studies provide further evidence for relevant time scales of visual

cortical plasticity on such an accelerated time scale. Mitchell,

Sengpiel and coworkers examined how many hours of normal

visual experience are sufficient to prevent gross neuronal changes

of selectivity and impairment of perceptual abilities under visual
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deprivation [100–103]. They report that two hours of normal

visual experience per day are sufficient to completely prevent

deprivation induced impairments of visual function. Directly

imaging the emergence of direction preference columns in a

network initially lacking such columns has been achieved by Li et

al. in juvenile ferrets [104]. This study found that even under

anesthesia, balanced visual stimulation over 3–6 hours was

sufficient to drive the de novo formation of a system of columns.

These novel experiments fundamentally differ from previous

pairing studies [105–108] in that visual cortical neurons were not

artificially trained to adopt a particular stimulus preference but

were stimulated by a set of opposing motion patterns. Neurons

were not artificially activated and were free to develop preference

and anti-preference for any stimulus from a balanced set. It

appears unlikely that this stimulation paradigm artificially

accelerates changes. A corresponding process in the brain of an

awake and attending animal is thus expected to be orders of

magnitude slower. These studies thus substantially extend prior

observations in anesthetized animals in which visual cortical

neurons were artificially activated. Also under these more artificial

conditions visual cortical preferences for stimulus orientation,

direction, or preference for one eye were found to undergo

substantial activity induced changes within a few hours [105–108].

Various studies thus confirm the basic expectation that around

the peak of the critical period the typical time scale for the

emergence of selectivity from unselective network states and for

changes of selectivity is substantially shorter than one week. In

particular, in light of these results it is required to assess the

robustness and dynamical stability of model predictions beyond

10T�. A pessimistic estimate for the resulting prolongation of

realistic simulations can be obtained by assuming that the

accelerated time scale is effectively relevant for the most of the

10–14 week period of juvenile plasticity. Assuming T�~6 h, larger

that the times reported in the above experiments, the duration of

the period of juvenile plasticity would correspond to 280–370 T�.

An absolute upper bound for the relative duration of
juvenile plasticity

The above considerations are a useful reminder that that the

current understanding and experimental characterization of the

timescales of circuit dynamics are substantially limited. New

experimental approaches that provide a more direct and certain

assessment of what one might call circuit turnover times, would in

fact be very informative for calibrating dynamical and optimiza-

tion studies. In the absence of such information, it appears also

useful to estimate a maximal upper bound to the relative duration

of juvenile plasticity that is very unlikely to be ever overturned by

future improvements in experimental technology. Such a worst-

case estimate is obtained by the ratio of the longest duration ever

reported for critical period plasticity in the visual cortex to the low

end of the accelerated time scales. To our best knowledge the

longest estimate for a critical period in cat visual cortex was

obtained by Jones, Spear and Tong [93]. These authors examined

juvenile cats deprived at older ages than in the classical studies

cited above in an attempt to determine whether visual areas higher

in the cortical processing hierarchy exhibit a delayed or extended

period of developmental plasticity. They reported that substantial

modifications of responses could still be induced up to the 35th

postnatal week [93]. Remarkably their results indicate that the

period of susceptibility extends longer in the primary visual cortex

than in areas higher in the visual processing hierarchy. This would

amount to an entire duration of the period of juvenile plasticity of

33 weeks. Assuming a fundamental timescale in the lower range of

the experimentally reported peak critical period time scales i.e. 3h

one estimates an absolute upper bound for the relative duration of

the period of juvenile plasticity in the cat of 1850 T�.

When does a dynamical model successfully explain adult
functional cortical architecture?

Even in light of the most conservative considerations presented

above it appears of limited value to compare maps from a

simulation obtained when selectivity first reaches mature levels to

biological patterns present in the adult cortex. Maps in the adult

visual cortex of the cat have been subject to more than ten weeks

of ongoing plasticity. They are thus better viewed as dynamic

equilibria that are largely maintained under a continuous process

of ongoing activity-driven synaptic turnover. Current experimen-

tal evidence, nevertheless, indicates that the maps emerging

initially over the first days of normal vision exhibit many layout

properties that are preserved throughout the juvenile period of

plasticity and into adulthood [11,42]. Taking the long duration of

the period of juvenile plasticity into account, this is likely to mean

that these properties have been actively maintained by an ongoing

dynamics. The requirement to generate and maintain a realistic

column layout is a more selective criterion for the identification of

appropriate candidate models than the mere ability to initially

generate good looking maps as demonstrated by our current

results as well as many prior theoretical studies (reviewed in [42],

supplement). It is thus a more stringent test of a models

explanatory power to compare the maps obtained at later stages,

e.g. 10T� to the biologically observed functional organization of

the visual cortex. Our estimates suggest that it is reasonable to

require of a biologically plausible model that states which resemble

the adult functional architecture are predicted at least one order of

magnitude later than the maturation of average selectivity. Using

this criterion, the states observed in our simulations in fact suggest

that the considered models are not capable of explaining the

biological organization in a satisfying fashion: Patterns observed

after 10 intrinsic timescales are dominated by crystalline local

arrangements that are distinctly different from the spatially

irregular layout of orientation maps observed in both juvenile

and adult visual cortex. Quantitatively layout parameters at this

time substantially deviate from biological observations.

Pinwheel stabilization by map interactions
The numerical studies presented here further elucidate the

conditions for pinwheel stabilization by map interactions. The

analytical results presented in part (I) showed that in several

models OD stripes are not able to stabilize pinwheels near

symmetry breaking threshold and for only one real-valued scalar

field. This result appeared to be insensitive of the specific type of

inter-map interaction [39]. Our numerical results show that this

result is also insensitive to a detuning of typical wavelengths. For

different ratios of the typical wavelengths of OP and OD,

pinwheel-rich patterns either decay into pinwheel-free OP stripes

or patterns with OP fracture lines when interacting with OD

stripes. These findings support the conclusion that in models for

the joint optimization of OP and OD maps a patchy OD layout is

important for pinwheel stabilization by crystallization.

In the current study we also generalized our dynamical systems

approach to include any additional number of columnar systems.

One reason to consider additional visual cortical maps originates

from the finding that the removal of the OD map in experiments

does not completely destabilize pinwheels [29]. Moreover, in tree

shrews, animals which completely lack OD columns, OP maps

contain pinwheels and exhibit a pinwheel arrangement essentially

indistinguishable from species with columnar OD segregation

[13]. This might reflect the influence of additional columnar

Optimization of Visual Cortical Maps

PLOS Computational Biology | www.ploscompbiol.org 19 November 2012 | Volume 8 | Issue 11 | e1002756



systems such as spatial frequency columns that can be expected to

interact with the OP map in a similar fashion as OD columns [40].

From a theoretical perspective, one might suspect that couplings

between more than two systems that promote a mutually orthogonal

arrangement are harder to satisfy the more maps are considered. In

principle this could lead to the emergence of irregular patterns by

frustration. In numerical simulations we examined coordinated

optimization with three and four columnar systems. In these cases

pinwheel stabilization is possible even without an OD bias. The

resulting stationary OP patterns are, however, still either stripes or

PWC solutions. For more than two feature maps, asymmetry of one

feature dimension is thus not a necessary condition for pinwheel

stabilization by coordinated optimization.

We also characterized the dynamics of pinwheel crystallization

from pinwheel-free initial conditions. With the analytical approach

presented in part (I) we were able to show that pinwheel-rich

solutions correspond to the energetic ground state of our models for

large inter-map coupling [39]. This can be confirmed by simulations

in which pinwheels are created even when starting from an initial

OP stripe pattern. Assessing pinwheel creation from pinwheel-free

initial conditions could more generally serve as a simple test for the

existence of a pinwheel-rich attractor state in models of OP

development that can be applied to models of arbitrary complexity.

One should note, however, that the production of pinwheels from a

pinwheel-free initial condition provides only a sufficient but not a

necessary criterion to verify the existence of a pinwheel-rich

attractor state. This criterion may be violated if pinwheel-free and

pinwheel-rich attractor states coexist. Nevertheless, the pinwheel

production criterion can be used to demonstrate that pinwheels are

not just a remnant of random initial conditions.

Pinwheel crystallization in other models
Pinwheel crystals have been previously found in several abstract

[109–111] as well as in detailed synaptic plasticity based models

[81,112,113]. Remarkably, in a model of receptive field develop-

ment based on a detailed dynamics of synaptic connections the

resulting OP map showed a striking similarity to the hPWC

presented above, compare Fig. (7) and [39,112]. These observa-

tions indicate that pinwheel crystallization is not an artifact of the

highly idealized mathematical approach used here. In fact, the first

OP map predicted ever by a synaptically based self-organization

model presented by von der Malsburg in 1973 exhibited a clearly

hexagonal column arrangement [81]. Von der Malsburgs calcu-

lations as well as those presented in [112] utilized a hexagonal grid

of cells that may specifically support the formation of hexagonal

patterns. Our numerical and analytical results clearly demonstrate

that patterns of hexagonal symmetry do not critically depend on

the use of a hexagonal grid of cells as our simulations can generate

hexagonal patterns also for square lattices of cells. To determine

whether the hexagonal layout in Von der Malsburgs model is

intrinsically stable it should be implemented for other grids both of

square symmetry as well as for irregular positions of cells. In our

study, we examined whether the non-crystalline layout of visual

cortical maps could result from a detuning of OP and OD

wavelengths. However, while destabilizing hPWC solutions,

wavelength detuning leads to spatially regular solutions in all

studied cases. This suggests that a spatially regular layout is not an

exceptional behavior in models for the coordinated optimization of

visual cortical maps that would require fine tuning of parameters.

Is there evidence for hexagonal orientation column
patterns?

Recently, Paik and Ringach have argued that a roughly

hexagonal arrangement of iso-orientation domains would provide

evidence for a defining role of retinal ganglion cell mosaics for the

spatial arrangement of orientation columns [114–116]. It is

interesting to consider this claim in view of our results as well as

in view of the wealth of activity-dependent models that predict

hexagonal arrangements irrespective of the arrangement of retinal

ganglion cells [66,67,81,112,117–119]. Since all of these distinct

models are known to generate hexagonal arrays of orientation

columns it seems questionable to view evidence for a hexagonal

arrangement as evidence for a particular activity-independent

mechanism. Our characterization of the dynamics of crystalliza-

tion, however, enables to identify more selective predictions of a

retinal ganglion cell mosaic based formation of hexagonal iso-

orientation domains. If the pattern of OP columns was seeded by

retinal ganglion cell mosaics, as initially proposed by Soodak [120]

and recently re-articulated by Paik and Ringach [114], hexagonal

structures should be detectable from the very beginning of

development, i.e. already at stages when orientation selectivity is

still increasing. Hexagonal PWCs in self-organizing models, in

contrast, form from an initially irregular and isotropic state. Thus

the time dependence of hexagonal-like column arrangements can

distinguish in principle between self-organized as opposed to

retinal ganglion cell mosaic imprinted hexagonal arrangements. As

we found in all models examined hexagonal arrangements are

frequently of rather high pinwheel density of about 5 pinwheels

per hypercolumn. Also the hexagonal pattern constructed by Paik

and Ringach appear to exhibit relatively high pinwheel density of

r&3:5. Thus both theories appear inconsistent with observed

pinwheel densities. A mixed scenario in which retinal ganglion cell

mosaics seed the initial pattern of iso-orientation domains and

later activity-dependent refinement drives a rearrangement of OP

maps towards the experimentally observed design therefore

predicts a substantial degree of net pinwheel annihilation.

Kaschube et al. presented evidence for essentially age independent

pinwheel densities in ferret visual cortex between week 5 and 20.

No indication of substantial pinwheel annihilation is visible in this

data [42]. One should note that in ferret visual cortex orientation

columns first arise in the fifth postnatal week [11]. The relation of

the analysis by Paik and Ringach and the statistical laws described

by Kaschube and coworkers ask for further analysis and

comparison.

Stabilization of spatially irregular layouts
The reason for the substantial differences to experimentally

observed maps might thus be the presence of biological factors

neglected in the models examined here. Candidate factors are a

greater distance from the pattern formation threshold, different

kinds of biological noise, or the presence of long-range neuronal

interactions. Vinals and coworkers demonstrated for the case of

stripe patterns that a Swift-Hohenberg model sufficiently far from

the bifurcation point can exhibit stable disclination defects [121].

Although the results indicate only a spatially sparse set of stabilized

defects it will be interesting to examine whether this also applies to

the case of multidimensional coupled models and to establish

which properties the model solutions develop very far from the

bifurcation point. Theoretically, it is well understood that in

principle so called ‘nonadiabatic effects’ can induce the pinning of

grain boundaries in pattern forming media [122–125]. In one

spatial dimension and for models with several interacting order

parameter fields similar mechanisms may even lead to the

emergence of spatially chaotic solutions [126–128]. These studies

suggest to examine whether spatial incommensurability far from

threshold can induce spatially chaotic patterns in one and two

dimensional coordinated optimization models. Such studies may
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uncover a completely novel scenario for explaining the emergence

of spatially irregular states in models of cortical map optimization.

A second interesting direction will be the inclusion of frozen

spatial disorder in models for the self-organization of multiple

cortical maps. Such disorder could represent a temporally fixed

selectivity bias that favors particular feature combinations at

different position in the cortical sheet. For OP, the proposals of

Waessle and Soodak recently revisited by Ringach and coworkers

that retinal ganglion mosaics might constrain and seed orientation

column patterns would represent a specific mechanisms for such a

fixed local bias [114–116,120,129]. Experimental evidence that

retinal organization can impose local biases was revealed by

Adams and Horton’s finding that the pattern of retinal blood

vessels can specifically determine the layout of OD columns in

squirrel monkey visual cortex ([130,131], for a modeling study see

also [132]).

Spatial disorder terms in dynamical models can also be designed

to represent randomness in the interactions between neurons at

different positions. This might result from heterogeneities in lateral

interactions within the cortical sheet. In particular this later type of

modification has been examined in simple examples of order

parameter equations and was found to qualitatively change the

type of the bifurcation and the nature of the unstable modes [133–

136]. It will be important to investigate how different types of

spatial disorder modify the behavior of models derived from

biologically meaningful energy functionals. We hope that for such

studies of the influence of ‘biological noise’ a thorough

understanding of the properties of perfectly homogeneous and

isotropic systems as achieved here will provide a solid basis for

disentangling the specific contributions of randomness and self-

organization.

Finally, a third promising direction for modifying the type of

models considered here is the inclusion of long-ranging intra-

cortical interactions in the equations for the individual order

parameter fields. The impact of long-ranging intra-cortical

interactions has been studied previously both with respect to the

properties of patterns emerging during the phase of initial

symmetry breaking [32,137–139] as well as for its influence on

long-term pinwheel stabilization and pattern selection [66,67,140].

Models for orientation maps that include orientation-selective

long-ranging interactions exhibit a good quantitative agreement of

both attractors and transient states to the biological organization of

OP maps in the visual cortex [42]. Including orientation-selective

long-ranging interactions in models for the coordinated optimiza-

tion of multiple cortical maps could provide a transparent route

towards constructing improved models for the coordinated

optimization of column layouts matching the spatial structure of

orientation maps.

Modeling areal borders and experimentally induced
heterogeneities

Viewed from a practical perspective, the presented theoretical

approach offers also convenient ways to model the impact of

spatial inhomogeneities in the visual cortex on OP map structure.

For this purpose, the co-evolving field does not represent a feature

map but would be designed to describe a real or artificial areal

border or a disruption of local circuitry. To this end, the OP map

would be coupled, using low order coupling energies, to a fixed

field describing the areal border such that its values are for

instance one inside and minus one outside of the area with a steep

gradient interpolating between the two. Outside the areal border a

strong coupling to such a field can lead to complete suppression of

orientation selectivity. Using a gradient-type inter-map coupling

energy inter-map coupling can also be used to favor a

perpendicular intersection of iso-orientation lines with the areal

borders as observed in some experiments [13,141]. Artificial

heterogeneities and areal borders have been induced by local

ablation or other local interventions [141,142]. Viral approaches

such as the silencing of cortical regions by transfection with

hyperpolarizing ion-channels now make it possible to impose such

heterogeneities with minimal intervention and potentially in a

reversible fashion [143,144].

A hierarchy of visual cortical maps
In the current studies we focused on a particular hierarchy of

visual cortical maps. In the analytical calculations and most

simulations the OD map was assumed to be dominant which

corresponds to a choice of control parameters that satisfy ro&rz.

That maps form a hierarchy under such conditions can be seen

from the limiting case in which inter-map interactions become

effectively unidirectional. In this case the dynamics of the OP map

is influenced by OD segregation while the OD dynamics is

effectively autonomous. This limit substantially simplifies the

analysis of map-interactions and the identification of ground states.

The effect of a backreaction on the OD map can be studied within

the presented approach either by solving amplitude equations

numerically or by solving the full field dynamics. We observed

that, although the presented optima persist, with increasing

backreaction on the OD map the minimum inter-map coupling

strength necessary for the stability of hexagonal pinwheel crystals

increases. By solving the full field dynamics numerically we

confirmed this conclusion. In the presented numerical simulations

the backreaction, however, was relatively small. The simulations

nevertheless establish that our results are not restricted to the limit

rz=ro?0 i.e. that limit is not singular. A comprehensive analysis of

the effect of strong backreaction is beyond the scope of the current

study. One should note that the decoupling limit rz=ro?0 does not

lead to completely unrealistic OD patterns. In particular,

compared to the architecture of macaque visual cortex the

uncoupled OD dynamics has stationary patterns which qualita-

tively resemble the layout of observed OD maps. Macaque

primary visual cortex appears to exhibit essentially three different

kinds of OD patterns: Fairly regular arrays of OD stripes in most

of the binocular part of the visual field representation, a pattern of

ipsilateral eye patches in a contralateral background near the

transition zone to the monocular segment and of course a

monocular representation in the far periphery. These qualitatively

correspond to the three fundamental solutions of the OD

equation: stripes, hexagons, and a constant solution, which are

stable depending on the OD bias (see Fig. 16 of [39]). In cat visual

cortex the observed OD layout is patchy throughout V1 [49,145–

148].

Conclusions
The presented models for the coordinated optimization of maps

in the visual cortex, that were studied analytically in part (I) and

numerically in part (II), lead in all studied conditions to spatially

regular energy minima. In local regions on the order of a few

hypercolumn areas, column layout rapidly converges to one of a

few types of regular repetitive layouts. Because of this behavior the

considered models cannot robustly explain the experimentally

observed spatially irregular common design of OP maps in the

visual cortex. As expected from these qualitative differences all

pinwheel statistics considered, exhibit substantial quantitative

deviations from the experimentally observed values. These

findings appear robust with respect to finite backreaction, detuning

of characteristic wavelengths, and the addition of further feature

space dimensions. Recent work demonstrated that the spatially
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irregular pinwheel-rich layout of pinwheels and orientation

columns in the visual cortex can be reproduced quantitatively by

models that represent only the orientation map but include long-

range interactions [42,66,67]. In the visual cortex of species widely

separated in mammalian evolution we previously found virtually

indistinguishable layout rules of orientation columns that are

quantitatively fulfilled with a precision of a few percent [42]. In

view of these findings the current results suggest that models in

which pinwheel stabilization is achieved solely by coordinated

optimization and strong inter-map coupling are not promising

candidates for explaining visual cortical architecture. In order to

achieve a quantitatively more viable coordinated optimization

theory one might consider taking additional ‘random’ factors into

account. One should however not conclude that coordinated

optimization does not shape visual cortical architecture. Using the

general approach developed here it is possible to construct a

complementary type of models in which the complex OP map is

dominant. Such models, using non-local terms in the energy

functional of the OP map, can be constructed to reduce to the

model in [42,66,67] in the weak coupling limit. Because long-

range interaction dominated models can reproduce the spatially

irregular layout of OP maps, one expects from such models a

better reproduction of the observed architecture for weak

coupling. Alternative scenarios might emerge from the inclusion

of quenched disorder or very far from the pattern formation

threshold. Because of its mathematical transparency and tracta-

bility the approach developed in the present studies will provide

powerful tools for examining to which extend such models are

robust against coupling to other cortical maps and to disentangle

the specific contribution of coordinated optimization to visual

cortical architecture.

Methods

Tracking and counting pinwheels
During the evolution of OD and OP maps we monitored the

states from the initial time T~0 to the final time T~Tf using

about 150 time frames. To account for the various temporal scales

the dynamics encounters the time frames were separated by

exponentially increasing time intervals. Pinwheel centers were

identified as the crossing of the zero contour lines of the real and

imaginary parts of z(x). During time evolution we tracked all the

pinwheel positions and, as the pinwheels carry a topological

charge, we divided the pinwheels according to their charge. The

pinwheel density r is defined as the number of pinwheels per unit

area L2. By this definition, the pinhweel density is independent of

the spacing of columns and dimension-less. The distribution of

pinwheel distances indicates the regularity and periodicity of the

maps. Therefore we calculated the minimal distance between

pinwheels, measured in units of the column spacing L, during time

evolution. In simulations we used periodic boundary conditions. In

order to correctly treat pinwheels close to map borders we

periodically continued the maps. Nearest neighbors of pinwheels

are thus searched also in the corresponding periodically continued

maps.

To calculate pinwheel density variability in subregions of size A
we sampled for each map circular shaped regions of various size

and placed their centers at random locations of the map. Sizes of

circular regions were uniformly distributed. To calculate pinwheel

density variability for a given area Ai, we randomly selected from

all regions in the set up to 1000 regions with size in the interval

Ai,AizdA½ � where dA~min DAiz1{Ai D,0:1L2
� �

, and calculated

the standard deviation SD of pinwheel densities. To characterize

density variability as a function of area size we estimated the

variability coefficient c and the exponent c by fitting the function

SD(A)~c SrT=Að Þc to the SD(A)-curves.

The rearrangement of OP maps leads to annihilation and creation

of pinwheels in pairs. Between two time frames at Ti and Tiz1 we

identified corresponding pinwheels if their positions differed by less

than Dx~0:2L and carry the same topological charge. If no

corresponding pinwheel was found within Dx it was considered as

annihilated. If a pinwheel at Tiz1 could not be assigned to one at Ti it

was considered as created. We define the pinwheel creation c(t) and

annihilation a(t) rates per hypercolumn as

c(t)~
dNc

L2dt
, a(t)~

dNa

L2dt
, ð14Þ

where Nc and Na are the numbers of created and annihilated

pinwheels. Creation and annihilation rates were confirmed by

doubling the number of time frames.

To what extend are the pinwheels of the final pattern just

rearrangements of pinwheels at some given time T? To answer

this question for a given set of pinwheels at an initial time T~T�

we further calculated the fraction s(t) of those pinwheels surviving

until time T . Finally, the fraction of pinwheels present at time T�

that survive up to the final time T~Tf is given by p(t).

Numerical integration scheme
As the Swift-Hohenberg equation is a stiff partial differential

equation we used a fully implicit integrator [149]. Such an

integration scheme avoids numerical instabilities and enables the

use of increasing step sizes when approaching an attractor state.

The equation

Lt z(x,t)~L̂Lz(x,t){N½z(x,t)� , L̂L~r{ k2
czD

� �2
, ð15Þ

is discretized in time. Using a Crank-Nicolson scheme this

differential equation is approximated by the nonlinear difference

equation

ztz1{zt

Dt
~

L̂Lztz1zN½ztz1�
� �

z L̂LztzN½zt�
� �

2
: ð16Þ

This equation is solved iteratively for ztz1 with the help of the

Newton method which finds the root of the function

G½ztz1�~ {L̂Lz
2

Dt

	 

ztz1{N½ztz1�{ L̂Lz

2

Dt

	 

ztzN½zt�

	 

: ð17Þ

The field z(x) is discretized. For a grid with N meshpoints in the x-

direction and M meshpoints in the y-direction this leads to an

M|N dimensional state vector u. Discretization is performed in

Fourier space. The Newton iteration at step k is then given by

DG(uk)Duk~{G(uk), ukz1~ukzDuk, ð18Þ

with DG the Jacobian of G. Instead of calculating the matrix DG

explicitly a matrix free method is used, where the action of the

matrix is approximated using finite differences. To solve the linear

system Ax~b with A~DG(uk), b~{G(uk) we used the Krylov

subspace method [149]. The Krylov subspace of dimensionality k

is defined as

Kk(A,v1)~spanfv1,Av1,A2v1, . . . ,Ak{1v1g: ð19Þ
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In the Generalized Minimum Residual (GMRES) algorithm the Krylov

subspace is generated by v1~r0=Dr0D with r0~Ax0{b, and x0 an

initial guess, see [149]. After k iterations, the refined solution is

given by

xk~x0zVky , ð20Þ

where the matrix Vk~ v1, . . . ,vkð Þ has the base vectors of the

Krylov subspace as its columns. The vector y is chosen by

minimizing the residuum

Eb{AxkE2~Er0{AVkyE2 ~
!

min, ð21Þ

where E:E2 denotes the Euclidean norm. For this procedure an

orthonormal basis of the Krylov subspace is generated with an

Arnoldi process. With the use of the similarity transformation

AVk~Vkz1
~HHk, ð22Þ

where ~HHk is an upper Hessenberg matrix, v1~r0=Dr0D, and the

orthogonality of Vk, the optimality condition Eq. (21) becomes

E ~HHky{DbDe1E2 ~
!

min, ð23Þ

with e1~ 1,0, . . . ,0ð Þ the first unit vector of dimension kz1. For a

y that minimizes this norm the approximate solution is given by

xk~x0zVky. To improve the convergence of this iterative

method preconditioning was used. A preconditioner M is

multiplied to Ax~b such that M{1A is close to unity. A

preconditioner suitable for our model is the inverse of the linear

operator in Fourier space with a small shift 0vE%1 in order to

avoid singularities i.e.

M~ Ez k2{k2
c

� �2
z

2

Dt

	 
{1

: ð24Þ

The convergence of Newton’s method is only guaranteed from a

starting point close enough to a solution. In the integration scheme

we use a line search method to ensure also a global convergence

[150]. Newton’s method Eq. (18) is thus modified as

ukz1~ukzlDuk, ð25Þ

where the function

f (uk)~
1

2
G(uk)G(uk), ð26Þ

is iteratively minimized with respect to l.

This integrator was implemented using the PetSc library [151].

As the dynamics converges towards an attractor an adaptive

stepsize control is very efficient. The employed adaptive stepsize

control was implemented as described in [152]. The described

integration scheme has been generalized for an arbitrary number

of real or complex fields. The coupling terms are treated as

additional nonlinearities in N. As a common intrinsic timescale we

choose T~trz with rz the bifurcation parameter of the OP map.

Due to the spatial discretization not all points of the critical circle

lie on the grid. Thus, the maximal growth rate on the discretized

circle is not exactly equal to r, the theoretical growth rate. In

particular, some modes may be suppressed or even become

unstable. Due to this we expect deviations from analytical

solutions. To minimize such deviations the size of the critical

circle was chosen such that this disbalance between the active

modes was minimized. Periodic boundary conditions were applied

to account for the translation invariance of the spatial pattern.

Supporting Information

Figure S1 Map interactions with detuned wavelengths
and OD stripes. C–F OD stripes interacting with OP columns

where Lo=Lzw1. G OD stripes interacting with OP columns where

Lo~Lz. A,B Illustration of active modes in Fourier space with

kc,ovkc,z, a~arccos kc,o=kc,z. C,D U~ED+z:+oD4, E~2000, E–G

U~to4DzD4, t~2000, C,E Lo=Lz~1:3, D,F Lo=Lz~2. G From

left to right: initial condition, T~10, T~200, T~Tf ~5:104.

Parameters: rz~0:05,ro~0:2,c~0,Co~20,256|256 mesh.

(TIF)

Figure S2 Pinwheel nearest neighbor statistics and
count variance with detuned wavelengths and OD
stripes. Lo=Lz~26=20,t~2000 (blue), Lo=Lz~40=20,
t~2000 (red), Lo=Lz~26=20,E~2000 (green), Lo=Lz~40=
20,E~2000 (orange), Lo=Lz~22=22,t~2000 (brown), Lo=Lz

~22=22,E~2000 (cyan). A–F Mean nearest neighbor pinwheel

distance of arbitray A,B, equal C,D, and opposite charge E,F. G–
J Standard deviation SD of pinwheel density. Shown are the fit

parameters for SD(A)~c SrT=Að Þc. Dashed lines: c~0:5. Pa-

rameters as in Fig. 9.

(TIF)

Figure S3 Map interactions with detuned wavelength
and OD hexagons. U~E D+z:+oD4. A Lo=Lz~38=41&0:927, B
Lo=Lz~34=41&0:829, C Lo=Lz~26=41&0:634, D Lo=Lz~

24=41&0:586, E Lo=Lz~22=41&0:537, F Lo=Lz~20=41
&0:488. From left to right: initial condition, T~10, T~200,

T~Tf ~5:104. Parameters: rz~0:05,ro~0:2,c~0:15,E~2000,

t~0,Co~41, 256|256 mesh. Initial condition identical in all

simulations.

(TIF)

Figure S4 Pinwheel nearest neighbor statistics and
count variance with detuned wavelength and OD
hexagons. Lo=Lz~ 38/41 (blue), 34/41 (red), 26/41 (green),

24/41 (orange), 22/41 (violet), 20/41 (brown), 22/22 (cyan). A–F
Mean nearest neighbor distance of arbitray A,B, equal C,D, and

opposite charge E,F. G–J Standard deviation SD of pinwheel

density. Shown are the fit parameters for SD(A)~c SrT=Að Þc.

Dashed lines: c~0:5. Parameters as in Fig. 11.

(TIF)

Figure S5 Map interactions in higher feature dimen-
sions. A,B Map layout by interactions between three columnar

systems (z(x),o1(x),o2(x)). All maps are mutually coupled.

Superimposed on the OP map there are the borders of two real

fields (black, white). A rz~ro1
~ro2

~0:1 B rz~0:01,ro1
~ro2

~0:1. C,D Interactions with four columnar systems

(z(x),o1(x),o2(x,t),o3(x,t)). C rz~ro1
~ro2

~ro3
~0:1. D rz~

0:01,ro1
~ro2

~ro3
~0:1. Superimposed on the OP map there

are the borders the of three real fields (black, gray, white). From

left to right: initial condition, T~10, T~200, T~Tf ~5:104.

Parameters in all simulations: E~2000,c~0,C~22, 128|128
mesh.

(TIF)

Figure S6 Pinwheel nearest neighbor statistics and
count variance in higher feature dimensions. Blue:
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z,o1,o2,rz~0:01,roi
~0:1, red: z,o1,o2,rz~roi

~0:1, green:

z,o1,o2,o3,rz~0:01,roi
~0:1, orange: z,o1,o2,o3,rz~roi

~0:1. A–
F Distance to the next pinwheel of arbitrary A,B, equal C,D, and

opposite E,F topological charge. G–J Standard deviation SD of

pinwheel density. Shown are the fit parameters for

SD(A)~c SrT=Að Þc. Dashed lines: c~0:5,c~0:75. Parameters

as in Fig. 13.

(TIF)
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