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Abstract: A newly emerging field in statistics is distributional regression, where not only the mean
but each parameter of a parametric response distribution can be modelled using a set of predictors. As
an extension of generalized additive models, distributional regression utilizes the known link functions
(log, logit, etc.), model terms (fixed, random, spatial, smooth, etc.) and available types of distributions
but allows us to go well beyond the exponential family and to model potentially all distributional
parameters. Due to this increase in model flexibility, the interpretation of covariate effects on the shape
of the conditional response distribution, its moments and other features derived from this distribution
is more challenging than with traditional mean-based methods. In particular, such quantities of interest
often do not directly equate the modelled parameters but are rather a (potentially complex) combination
of them. To ease the post-estimation model analysis, we propose a framework and subsequently feature
an implementation in R for the visualization of Bayesian and frequentist distributional regression
models fitted using the bamlss, gamlss and betareg R packages.
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1 Introduction

For modelling parameters beyond the mean of a target distribution, generalized
additive models for location, scale and shape (GAMLSS) as introduced by Rigby and
Stasinopoulos (2005) provide the ability to link all parameters characterizing the
response distribution to a set of explanatory variables via an additive predictor,
similar in spirit to generalized additive models but without its distributional
limitations. Overcoming some of GAMLSS’ earlier restrictions, distributional
regression as coined by Klein et al. (2015c) presents a highly flexible modelling
framework with a variety of possible target distributions and a wide range of
effects including parametric penalized splines, random and spatial effects as well
as nonparametric effects such as regression trees.
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Implementations of distributional regression models feature gamlss
(Stasinopoulos and Rigby, 2007) and bamlss (Umlauf et al., 2018), the most
prominent extensions with a vast selection of available distributions and effects.
A number of software extensions have also been developed to support specific
instances of the distributional regression class, such as betareg (Grün et al.,
2012) for beta regression. While gamlss and betareg employ different types of
maximum likelihood estimation, bamlss implements a Bayesian approach featuring
posterior mode estimates which are subsequently used as starting values for Markov
chain Monte Carlo (MCMC) sampling. This has the added benefit of being able to
construct the posterior distribution of each parameter as well as potentially complex
functions of these parameters.

Moving beyond single-parameter regression models naturally leads to additional
challenges when it comes to the interpretation of the estimated effects since the same
covariate may show up in multiple regression predictors and applying a non-identity
link function additionally makes the interpretation depend on the remaining set of
covariates. Furthermore, in many cases the parameters employed to characterize the
distribution of interest do not directly equate the moments or other interpretable
characteristics of a distribution, making another transformation necessary to arrive
at interpretable figures.

As a consequence, applied researchers often appreciate the practical appeal
of distributional regression where regression relations beyond the mean can be
investigated but they struggle when it comes to understanding the output of
the regression estimates. To facilitate this process, we introduce a new package
distreg.vis that can deal with model classes from the bamlss, gamlss and
betareg packages to achieve the following tasks:

• moments(): Obtain predicted moments (Expected Value, Variance) of the target
distribution based on user-specified values of the explanatory variables, if they
exist.

• plot_dist(): Create a graph displaying the predicted probability density
function or cumulative distribution function based on the same user-specified
values.

• plot_moments(): View the marginal influence of a selected effect on the
predicted moments of the target distribution.

With those functions, applied scientists can directly translate regression objects
into publication-ready graphs without the need to worry about package-specific
predict and plotting functions, the connection between predicted parameters and
moments or the correct display of predicted probability density functions. To
make the process of interpreting fitted distributional regression models even more
accessible, distreg.vis features a rich Graphical User Interface (GUI) built on the
shiny framework (Chang et al., 2018). Using this GUI, the user can (a) obtain an
overview of the selected model fit and then use the functions mentioned above to (b)
easily select explanatory values for which to display the predicted distributions,
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(c) obtain marginal influences of selected covariates and (d) change aesthetical
components of each displayed graph. After a successful analysis, the user can obtain
the R code needed to reproduce all displayed plots, without having to start the
application again.

The idea of calculating conditional values of the response distribution by way of
plot moments() is not new. In fact, many other R packages feature aspects of the
functionality of distreg.vis. Notably, the effects package (Fox and Weisberg,
2019) is an extensive library for calculating conditional means of the response
distribution depending on varying explanatory covariates in linear, generalized
linear and mixed effects-type models. Lacking the graphing capabilites of effects
while putting more focus on the estimation of marginal means, the prediction
(Leeper, 2019) package offers a bigger range of supported model classes and even
non-parametric effects.

Certainly the most general marginal effects packages are emmeans (Lenth, 2019),
formerly called lmmeans (Lenth, 2016), and ggeffects (Lüdecke, 2018), as they
not only offer a large variety of supported model classes and predictor effects,
but contrary to effects and prediction also include the compatibility to
all of distreg.vis’ supported distributional regression model classes: gamlss,
betareg and bamlss (only supported by ggeffects). However, even the latter
two effects packages are only able to compute marginal means of moment values for
betareg and fail to provide the same functionality for bamlss and gamlss, where
predictions remain restricted to the parameter-level. As such, distreg.vis is the
only package which supports both gamlss, bamlss and betareg in full generality
and can calculate marginal effects on the moments and not only the parameters of a
distribution.

The package distreg.vis is available on the Comprehensive R Archive
Network (CRAN) at https://cran.r-project.org/web/packages/
distreg.vis/index.html.

The remainder of this article is structured as follows: Section 2 provides an
example tutorial on analysing income distributions in which using distreg.vis
yields a benefit. Section 3 covers the methodological background of the distributional
regression model class and its implementations, while Section 4 offers a glimpse into
the GUI. Section 5 concludes the article. The appendices provide an in-depth guide
to the implementation of the two main functions of the package (Section A) and
the Graphical User Interface (Section B), display special cases of distreg.vis’
functions (Section C) and provide complementary graphs (Section D). The R script
including the dataset as well as the appendices are available in the online supplemental
materials at http://www.statmod.org/smij/archive.html.

2 Motivating example: Drivers of yearly income

To illustrate the usefulness of distreg.vis, we will give a short example based on
a dataset about the yearly income of 3,000 male workers in the Mid-Atlantic region
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of the United States, provided by the ISLR package (James et al., 2017). This dataset
will then be used continuously throughout Sections 2 and 4 as well as parts of the
Appendix to illustrate distreg.vis’ abilities.

The dataset consists of 11 variables, both continuous and categorical. Our variable
of main interest, that is, the response in the following regression analyses, is given
by individual’s raw yearly income in thousand US$ (variable wage). The remaining
variables mostly contain socioeconomic information, including the person’s age in
years (age), their ethnic origin (ethnicity), their level of education (education)
and the year in which the observation was recorded (year). Considering its
non-negative nature, we start by assuming a log-normal distribution for the wages,
y ∼ Lognormal(µ, σ2). Though more complex distributions would provide a slightly
better fit than the log-normal, it was chosen for its simplicity and popularity.

To find out what drives a person’s income, we will link both parameters of the
log-normal distribution to the aforementioned explanatory variables. The model
specification therefore has the following form:

µ = β10 + f11(age) + β12 · year + f13(education) + f14(ethnicity)
log(σ) = β20 + f21(age) + β22 · year + f23(education) + f24(ethnicity)

(2.1)

where the functions f11, f21 are modelled nonparametrically using penalized splines
(Eilers and Marx, 1996), while f13, f23, f14 and f24 are modelled as simple fixed
categorical effects of the respective variables. All effects with more than one degree
of freedom are therefore consistently denoted with fij(·) to emphasize that the original
input variable has to be recoded prior to inclusion in the model. The standard
deviation parameter σ is connected to the explanatory variables using a log-link
function to ensure a positive support.

Combined with the sample-based estimation technique of bamlss,
distreg.vis can produce credible intervals around marginal influence plots. For
this reason, we choose bamlss for model estimation, using the following code:

R> wage_model <- bamlss(

+ list(

+ wage ˜ s(age) + ethnicity + year + education,

+ sigma ˜ s(age) + ethnicity + year + education

+ ),

+ data = Wage,

+ family = lognormal_bamlss()

+ )

After successful estimation, it makes sense to have a look at the model summary.
Using the built-in summary.bamlss() function, we can take a look at the results:
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R> print(summary(wage_model), digits = 1)

[output shortened]

Formula mu:

---

wage ˜ s(age) + ethnicity + year + education

-

Parametric coefficients:

Mean 2.5% 50% 97.5% parameters

(Intercept) 36.834 14.075 36.606 61.579 38.0

ethnicity2. Black 0.008 -0.077 0.007 0.101 0.0

[output shortened]

-

Smooth terms:

Mean 2.5% 50% 97.5% parameters

s(age).tau21 0.33 0.06 0.23 1.21 0.3

s(age).alpha 1.00 1.00 1.00 1.00 NA

s(age).edf 5.99 4.52 5.96 7.63 6.4

---

Formula sigma:

---

sigma ˜ s(age) + ethnicity + year + education

-

Parametric coefficients:

[output shortened]

-

Smooth terms:

Mean 2.5% 50% 97.5% parameters

s(age).tau21 2.5 0.5 2.0 7.7 2

s(age).alpha 0.9 0.4 1.0 1.0 NA

s(age).edf 6.3 4.7 6.3 7.6 6

---

[output shortened]
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As visible in the code output, bamlss provides estimation results for each effect
used to describe the target distribution parameters (µ and σ in this case). Even
though making statements about each effects’ significant difference from zero is
possible, the interpretation of such statements as well as for the raw effect estimates
is difficult. Model results of penalized splines, for example, only show estimates
for their degree of smoothness (τ and α) and estimated degrees of freedom. Without
appropriate graphs showing the marginal effect they can therefore not be interpreted.
Furthermore, even the absolute coefficients for the categorical effects cannot be taken
at face value, since they only affect the distributional parameters µ and σ, and not
the moments.

To overcome these limitations, we use distreg.vis. If, for example, we are
interested in the impact of education on the marginal income distribution, we
create a data.frame object in which all different education categories are present
and all other numeric variables are set to their mean. This can be easily achieved by
the function set_mean() in combination with model_data, which obtains the
explanatory covariates of the model and sets them to the mean. Further defining
the row.names of the data.frame to be the different education levels ensures
improved legends in further graphs.

R> df <- set_mean(

+ model_data(wage_model),

+ vary_by = "education"

+ )

R> row.names(df) <- levels(Wage$education)

R> df

ethnicity year education age

1. < HS Grad 1. White 2006 1. < HS Grad 42

2. HS Grad 1. White 2006 2. HS Grad 42

3. Some College 1. White 2006 3. Some College 42

4. College Grad 1. White 2006 4. College Grad 42

5. Advanced Degree 1. White 2006 5. Advanced Degree 42

Now, it will be interesting to see the predicted distribution for all five cases. To
achieve this, we first use distreg.vis‘ preds() function and obtain the predicted
distributional parameters. Then, we include them into plot_dist() to plot the
complete distributions:
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Figure 1 Predicted distributions for each covariate combination specified in the df data.frame object

R> pp <- preds(model = wage_model, newdata = df)

R> pp

mu sigma

1. < HS Grad 4.485241 0.2691822

2. HS Grad 4.603004 0.2886467

3. Some College 4.722890 0.2826761

4. College Grad 4.836627 0.3278559

5. Advanced Degree 5.002570 0.3490710

R> plot_dist(wage_model, pred_params = pp)

Figure 1 displays the predicted distributions for each covariate combination
specified in df. We can see that the predicted income not only changes in location
(higher education shifts the distribution to the right) but also in the variance (higher
education leads to a lower variance).

Figure 1 is useful to get a visual feel of the influence of education on the modelled
distribution. However, we would also like to know the influence of age, which is
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not a categorical covariate, on the predicted moments of the log-normal distribution.
Normally, this would be a tedious task, as the modelled non-parametric effect has to
be transformed two times: First, via the link function to ensure the correct support
of the modelled parameters. And second, from the parameters to the distributional
moments, as the parameters of the log-normal distribution do not directly equate its
moments.

The function plot_moments() was written to solve this task. It takes both a
fitted distributional regression object and combinations of explanatory variables
for which the influence is of interest. In our case, we specify both the df and
wage_model objects as arguments of the function:

R> plot_moments(

+ wage_model,

+ int_var = "age",

+ pred_data = df,

+ rug = TRUE,

+ samples = TRUE,

+ palette = "viridis",

+ uncertainty = TRUE

+ )

Executing the above code results in what can be seen in Figure 2. The plot is
divided into two parts representing the first two moments of the target distribution
labelled ‘Expected Value’ and ‘Variance’. On both graphs, the y-axis depicts the
moment values, while x-axis displays the variable of interest, which is age in our
case.

The lines seen in each graph represent the previously specified covariate
combinations, and then display how the moment changes over the whole range of the
variable of interest. In our case the five different lines represent different education
levels. We can now see that the expected wage level first rises with age until around
the age of 40, when it is lowered a bit. Then the income levels increase again up
until the age of 60, at which point the wage then decreases. We can also see that this
shape roughly stays the same for each education level, which stems from the lack of
a modelled interaction effect between age and education.

A strong advantage of the sample-based approach of bamlss is its ability to easily
construct credible intervals around the parameter estimates. In Figure 2 we can see
small shadows representing credible intervals above and below each of the five lines
describing the age effect on the first two moments in each education category.
Since the first and highest education categories do not overlap, we can conclude
that their effect is significantly different from each other, just from observing the
graph.
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Figure 2 Impact of variable age on the first two predicted moments of the target wage distribution,
including its 95% credible intervals

Looking at the right part of Figure 2, we can see that the modelled variance levels
of the target distribution show similar linkage to age as the expected value: Two
high points can be observed around the age of 40 and 60, both at which the modelled
distribution reaches the highest wage variance.

Even though Figure 2 only shows the influence of age on the first two moments,
plot_moments() is easily able to include other metrics that depend on the predicted
parameters, using its argument ex_fun. A good example in wage distributions would
be the Gini coefficient (Lerman and Yitzhaki, 1984), an economic figure measuring a
distributions’ inequality. Including this measure in our effect plots can be done using
the following code:

R> gini <- function(par) {

+ 2 * pnorm((par[["sigma"]] / 2) * sqrt(2)) - 1

+ }

R> moments_plot_exfun <- plot_moments(

+ wage_model, int_var = "age",

+ pred_data = df, samples = TRUE,

+ uncertainty = TRUE, ex_fun = "gini",

Statistical Modelling 2022; 22(6): 527–545



536 Stanislaus Stadlmann and Thomas Kneib

Figure 3 Impact of variable age on the first two predicted moments of the target wage distribution
(equivalent to Figure 2) as well as a user-specified function (gini), including its credible intervals

+ rug = TRUE

+ )

As visible in Figure 3, a new graph window was added in comparison to 2 depicting
the influence of age on our specified metric, the Gini coefficient. Further noticable
are the credible intervals which we can also obtain if we combine plot_moments()
with the sample-based approach of bamlss.

The function plot_moments() is also able to display the difference in moments
depending on a categorical covariate. No other arguments have to be specified -
distreg.vis is able to detect the variable type automatically. In the following
code chunk, the variable ethnicity is selected as the variable of interest.

R> plot_moments(

+ wage_model, int_var = "ethnicity",

+ pred_data = df, samples = TRUE,

+ palette = "viridis", uncertainty = TRUE

+ )
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Figure 4 Impact of variable ethnicity on the first two predicted moments of the target wage distribution

Figure 4 now shows the result of the code chunk above. On the x-axis we can see
the categories of our variable of interest, ethnicity. The y-axis now denotes the
moments broken up by both the variable of interest and the categories ofeducation,
which we specified in the code chunk on page 532. The error bars on the ends of each
bar represent credible intervals (95%). From analysing the bars with its error fields
we can conclude that the variable education mostly yields significantly different
expected values of wage, while ethnicity does not.

From the provided example on modelling wages, it became apparent that
distributional regression is a useful tool to handle complex model scenarios.
Nonetheless, visualizing the fitted regression models using existing tools is difficult, as
transformations are necessary to arrive at interpretable figures. This process is made
easier by distreg.vis, which gives the abilities to quickly visualize predicted
distributions and display marginal moment influences.

3 The distributional regression model class

Distributional regression models represent an umbrella class for models where it is
possible to link the parameters beyond the mean of a target distribution to available
predictors (Klein et al., 2015c). Any choice of the underlying parametric target
distribution is valid, as long as the probability density function is twice continuously
differentiable with respect to the parameters and, in particular, is not limited to
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the exponential family typically employed in generalized additive models. Assuming
a parametric distribution y ∼ D(θ1, . . . , θl, . . . , θL) with L distributional parameters
θ1, . . . , θL, we arrive at the model specification

gl(θl) = f1l(X1l; β1l) + . . . + fQll(XQll; βQll), (3.1)

where gl(·), l = 1, . . . , L denotes the link function used to uphold the support
of parameter θl, fql(·), q = 1, . . . , Ql represents the possibly non-parametric effect
of covariate(s) Xql on the modelled parameter and βql, q = 1, . . . , Ql depict the
regression parameters which are to be estimated.

Depending on the software package used to fit a distributional regression model, a
vast selection of possible effects are available, including but not limited to penalized
splines (also in multivariate forms), spatial effects based on Gaussian random fields
or Markov random fields, varying coefficient terms and random effects (see Fahrmeir
et al., 2013, Ch. 9 for an overview). More recently, new research is done on connecting
the distributional regression framework to effects known from Machine Learning,
for example, Random Forest (Schlosser et al., 2019). Multivariate extensions have
also gained considerable interest in the past, see for example Klein et al. (2015a),
Klein and Kneib (2016) or Marra and Radice (2017).

Due to the high flexibility in the target distributions, the predictors and the
specified link function, distributional regression encompasses many well-known
regression approaches, such as generalized linear models (Nelder and Wedderburn,
1972, GLM), generalized additive models (Hastie and Tibshirani, 1990, GAM),
generalized additive mixed models (Lin and Zhang, 1999, GAMM) and generalized
additive models for location, scale and shape (Rigby and Stasinopoulos, 2005,
GAMLSS). Although in theoretical proximity to GAMLSS, the term distributional
regression was coined since distributional parameters do not always represent either
the location, scale or shape of a distribution (Klein et al., 2015c).

3.1 Implementations of GAMLSS

For estimating distributional regression models in R, the two most capable software
implementations are gamlss (Stasinopoulos and Rigby, 2007) and bamlss (Umlauf
et al., 2018), with the package betareg (Grün et al., 2012) only focusing on beta
regression. The main difference in gamlss and bamlss are rooted in their estimation
techniques, which will be described below:

gamlss

The gamlss package features a frequentist approach employing (penalized)
maximum likelihood inference. Its main estimation algorithm RS, short for Rigby
and Stasinopoulos, uses iteratively reweighted least squares (IRLS) in combination
with a modified backfitting algorithm to arrive at coefficient estimates. The
algorithm system is broken up into inner and outer iterations, with each inner
iteration depicting the fitting of one distributional parameter θl. Here, a working
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variable zl consisting of all used predictors, the first derivative of the likelihood (score
function) and ‘iterative weights’ wl, determined with a local scoring algorithm, is
calculated. Then, the working variable is fitted to the explanatory variables using
backfitted weighted least squares and penalized weighted least squares for parametric
and non-parametric coefficients, respectively. The inner iteration is repeated until
the inner global deviance has converged. This procedure is done for every θl, after
which one outer iteration is finished. The outer iterations are further repeated, until
the outer global deviance has also converged (Stasinopoulos et al., 2017, Ch. 3).

Estimating parameters with backfitting has the advantage of avoiding the need for
cross-derivatives and is therefore quite efficient. Uncertainty assessments typically rely
on asymptotic normality assumptions and have been found to be pretty conservative
in simulation studies (see, for example, Klein et al., 2015b).

The collection of gamlss packages provides a vast number of distributions via its
accompanying package gamlss.dist (Stasinopoulos and Rigby, 2019) as well as
several extensions concerning spatial data effects (gamlss.spatial, De Bastiani
et al., 2018) or truncated distributions (gamlss.tr, Stasinopoulos and Rigby,
2018), for example.

bamlss

The bamlss package (Umlauf et al., 2018, BAMLSS) provides a highly
customizable Bayesian estimation framework with both posterior mode estimates via
penalized likelihood and fully Bayesian inference implemented via MCMC simulation
techniques. By default, it revolves mainly around two functions: bamlss::bfit()
and bamlss::GMCMC(). The first function, bfit(), utilizes an optimizing function
which seeks to find the mode of the posterior distribution via penalized likelihood
with respect to the effect coefficients. Then, those values are used as starting numbers
for MCMC simulations (function GMCMC()), which are based on iteratively weighted
least squares proposals that rely on multivariate normal proposals obtained from
locally quadratic approximations of the log-full conditional (Brezger and Lang,
2006).

Both functions can be swapped by the user with optimizer and sampler functions
that more closely resemble the subjective preference. As such, the implementation of
bamlss represents a lego-type toolbox that enables replacing specific parts of the
model specification with alternative and potentially more flexible variants without
altering the rest of the model implementation. Compared to gamlss, the number of
supported distributions is more limited but the access to posterior samples facilitates
finite sample inference also for complex functionals of the original parameters.
Default priors are assigned to all parameters of the model specification but these
can also be controlled by the user.

3.2 Distributional compatibility

To ensure a wide user audience, distreg.vis is able to support a variety
of distributions from the gamlss, bamlss and betareg packages. Table 1
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Table 1 Supported dependent variable distributions in distreg.vis. Table (b) shows distributions where
only visualizing the pdf/cdf depending on specified covariate combinations is possible (plot_dist()).
Table (a) lists the distributions where both the density/cumulative distribution function and the ‘moments
plot’ detailing the influence of a covariate on the distributional moments (plot_moments()) is supported

Name of
distribution

class Name of
distribution

class

beta bamlss NO2 gamlss
binomial bamlss NOF gamlss
cnorm bamlss PARETO2 gamlss
gamma bamlss PARETO2o gamlss
gaussian bamlss PE gamlss
gaussian2 bamlss PE2 gamlss
glogis bamlss PIG gamlss
gpareto bamlss PO gamlss
lognormal bamlss RG gamlss
multinomial bamlss SHASHo gamlss
poisson bamlss SICHEL gamlss
BE gamlss SN1 gamlss
BEo gamlss SN2 gamlss
BNB gamlss SST gamlss
DEL gamlss ST2 gamlss
EGB2 gamlss ST3 gamlss
exGAUS gamlss ST3C gamlss
EXP gamlss ST4 gamlss
GA gamlss ST5 gamlss
GB2 gamlss TF gamlss
GEOM gamlss TF2 gamlss
GEOMo gamlss WEI gamlss
GG gamlss WEI2 gamlss
GIG gamlss WEI3 gamlss
GPO gamlss ZAGA gamlss
GT gamlss ZALG gamlss
GU gamlss ZANBI gamlss
IG gamlss ZAP gamlss
IGAMMA gamlss ZAPIG gamlss
JSU gamlss ZASICHEL gamlss
JSUo gamlss ZAZIPF gamlss
LG gamlss ZIBNB gamlss
LO gamlss ZINBI gamlss
LOGNO gamlss ZIP gamlss
NBF gamlss ZIP2 gamlss
NBI gamlss ZIPF gamlss
NBII gamlss ZIPIG gamlss
NO gamlss ZISICHEL gamlss
betareg betareg - -

Name of
distribution

class Name of
distribution

class

BCCG gamlss LOGNO2 gamlss
BCCGo gamlss LQNO gamlss
BCPE gamlss SEP gamlss
BCPEo gamlss SEP1 gamlss
BCT gamlss SEP2 gamlss
BCTo gamlss SEP3 gamlss
BEINF gamlss SEP4 gamlss
BEINF0 gamlss SHASH gamlss
BEINF1 gamlss SHASHo2 gamlss
BEOI gamlss ST1 gamlss
BEZI gamlss ZABB gamlss
BI gamlss ZABI gamlss
DPO gamlss ZAIG gamlss
GB1 gamlss ZIBB gamlss
GP gamlss ZIBI gamlss
LOGITNO gamlss ZINBF gamlss

gives an overview, and divides the available distributions into those that can
be used in both plot_dist() and plot_moments() (Table 1a), and those
that can only be used in combination with plot_dist() (Table 1b). Table 1b
consists of distributions which do not have existing moments or do not have any
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Figure 5 Plot tab output when specifying five different scenarios with different education levels

implementations yet, rendering them incompatible with plot_moments(). To
include as many distributional families as possible, we worked together with both
the authors of gamlss (Stasinopoulos and Rigby, 2007) and bamlss (Umlauf et al.,
2018) and implemented the moment functions for almost all available distributions
in their respective packages.

4 Introduction of the graphical user interface

To understand the fit of the predicted distribution and the magnitude of
included effects, plot_dist() and plot_moments() are powerful tools.
However, constructing the correct scenarios and specifying them in the appropriate
data.frame format takes time. Furthermore, the resulting graphs are then static,
as changing the scenarios each time after viewing the results is a slow process.

To make using distreg.vis as uncomplicated as possible, it features a rich
Graphical User Interface, in which the user can select his/her covariate scenarios
and produce publication-ready graphs interactively. In doing so, distreg.vis is
strongly based on shiny (Chang et al., 2018), which is an R package designed to
create interactive visualizations with HTML code and R functions.

In its core, a shiny application is built using R functions and can therefore
be called similarly. In the case of distreg.vis, there are two ways one can
start the application. First, the user can run the function vis(). Second, it can
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Figure 6 Influence of age on the first two moments of the predicted distributions for wage_model

also be called using the open source Graphical User Interface RStudio (RStudio
Team, 2020). When opened, one can click on the ‘Add-Ins’ button and then select
‘Distributional Regression Model Visualizer’ if distreg.vis is installed (Figure
D10 in the Appendix). This will also trigger the function vis().

To give a short glimpse on the look of the GUI, Figures 5 and 6 are provided. In
both figures Section 2’s analysis was repeated using the interactive GUI. Specifically,
in Figure 5 the covariate combinations with only education levels varying were
interactively specified, leading to the same values as on page 532. Defining all five
covariate combinations leads to its predicted distributions appearing on the right
side of the interface, the graph of which is then also a direct copy of Figure 2 from
Section 2.

Figure 6 shows the second main functionality of the interface, which is the
‘influence graph’ depicting the impact of a covariate on the first two moments based
on the function plot_moments(). It appears after clicking the ‘Properties’ button
and selecting the covariate of interest, in our case age. On the right side of the plot,
numerous ways to customize it are provided. Clicking on the ‘Obtain Code’ button
reveals a pop-up window displaying the R code needed to reproduce the graph. For
a more comprehensive description of the GUI functionality, see Section B in the
Appendix.
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5 Discussion

This article laid out the foundations of Distributional Regression models and its
implementations in R. It became clear that distributional regression provides a highly
flexible modelling framework, from which researchers will increasingly benefit in the
future. To make fitted models more accessible for users this article introduced the
software distreg.vis based on the bamlss, gamlss and betareg R packages.

Using distreg.vis, the user can visualize predicted response distributions
based on interactively chosen covariate combinations. Furthermore, distreg.vis
provides the ability to show the influence of a selected explanatory covariate on
the first two moments of any response variable, including continuous and discrete
distributions. Both of these key functions help the user draw useful inference from
fitted Bayesian and frequentist distributional regression models.

Moreover, distreg.vis is designed to be highly customizable. The
user-specified covariate combinations (that represent the core of the analysis) can
be individually edited and expanded. The graphical appearance of all plots can
be changed to display other colour palettes or other distribution types (pdf/cdf).
Succeeding the finished analysis, the user can obtain R code to reproduce the displayed
plot with all chosen options.

With this new tool at hand, users will hopefully be more encouraged about
applying distributional regression models and then draw more resilient conclusions.
Nevertheless, further work on making distributional regression models more
understandable can be done. The idea of visualizing predicted distributions and
making influence plots could also be applied to other variations of distributional
regression, for example BayesX (Brezger et al., 2005), VGAM (Yee, 2015) or GJRM
(Marra and Radice, 2017), which offer a large variety of supported distributions.

Supplementary materials

Supplementary materials for this article including R codes and data are available at
http://www.statmod.org/smij/archive.html.
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