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Abstract

We report a novel visual illusion we call the Ring Rotation Illusion (RRI). When a ring of stationary

points replaces a circular outline, the ring of points appears to rotate to a halt, although no actual

motion has been displayed. Three experiments evaluate the clarity of the illusory rotation. Clarity

decreased as the diameter of the circle and ring increased and increased as the number of points

forming the ring increased. The optimal interstimulus interval (ISI) between the circle and ring was

90ms when stimulus presentations lasted 100ms but 0ms with 500ms presentations. We com-

pare the RRI to the Motion Bridging Effect (MBE), a similar illusion in which a stationary ring of

points replaces an initial ring of points that spins so rapidly it looks like a stationary outline.

A rotation of the stationary ring is seen that usually matches the direction of the initial ring’s

invisible spin. Participants reported a slightly more frequent and clearer motion percept with the

MBE than RRI. ISI manipulations had similar effects on the two illusions, but the effects of number

of points and ring diameter were largely restricted to the RRI. We suggest that both the RRI and

MBE motion percepts are produced by a visual heuristic that holds that the transition from an

outline circle to a ring of points is plausibly explained by a rapid spin decelerating to a halt, but in

the case of the MBE, an additional direction-sensitive mechanism contributes to this percept.
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In 2010, Mattler and Fendrich reported an illusion of motion that implies the human visual

system can process temporal frequencies substantially more rapid than those that can medi-

ate the perception of flicker (�60Hz; e.g., Landis, 1954) and motion (�30Hz; Burr & Ross,

1982). A ring of 16 luminous points was rotated so rapidly observers perceived a continuous

circular outline and performed at chance when asked to report the rotation direction.

However, when this rapidly rotating ring was replaced by a static ring of 16 points, the

static ring appeared to briefly spin, predominantly (up to 82% of the time with a 1500�/s
angular rotation velocity) in the same direction as the rotating ring.

Mattler and Fendrich labeled the initial veridically rotating but apparently static ring as

the inducing ring and the veridically static and apparently rotating subsequent ring as the test

ring. Because the illusory test ring rotation was linked to the inducing ring rotation, they

termed this illusion theMotion Bridging Effect (MBE). The congruence between the direction

of the inducing and illusory test ring rotations indicates that, although it is not consciously

detectible, the direction of the inducing ring spin must somehow be encoded. This is the case

despite the fact that at every inducing ring location where a point is displayed the advancing

points of the inducing ring may be refreshed at rates of up to 125Hz (Stein et al., 2019).
Mattler and Fendrich presumed that the percept of motion in the test ring was per se

conveyed by the inducing ring’s spin. However, a continued investigation of the MBE’s

functional dependencies (Stein et al., 2019) raised the possibility that the motion percept

and motion direction information were in fact dissociable signals. This led to the speculation

that while the direction information must be derived from the inducing ring spin, the actual

motion percept might represent an instance of apparent motion produced by the transition

from an apparently continuous to a point defined ring outline.
An implication of this view is that the motion of the inducing ring should not be necessary

for the illusory motion percept to occur. That is, if a truly continuous stationary outline

circle replaces the spinning inducing ring, a motion percept should still be seen in the test

ring. In the experiments we report here, this prediction is confirmed. We term the illusion of

motion generated by the veridically continuous stationary inducer as the Ring Rotation

Illusion (RRI). For consistency, when discussing the RRI, we adopt the nomenclature

used to describe the MBE and refer to the inducing ring and test ring. Note that our use

of the “inducing ring” label indicates only that the outline circle is required to produce the

illusory motion percept in the test ring and is not intended to have implications regarding the

character or mechanism of the illusion. To designate the crucial difference between the two

types of display—the presentation of a rapidly rotating inducing ring in the case of the MBE

and a continuous stationary outline in the case of the RRI—we refer to the rotating and

stationary inducers.

Overview

We report three experiments. In the first, we investigate some basic stimulus dependencies of

the RRI, specifically, how it is affected by manipulations of the diameter of the rings, the

number of points used to form the test ring, and ISI between the ring presentations. A second

experiment compares the clarity of the illusory motion percept generated by the RRI’s sta-

tionary inducer and the MBE’s rotating inducer to evaluate the premise that both percepts

are mediated in the same manner. A third experiment extends this evaluation by comparing

the effects of the stimulus manipulations investigated in the first experiment with the two

display types.
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General Methods and Apparatus

In all three of the reported experiments, stimuli were displayed on an analog HAMEG HM
400 cathode-ray oscilloscope controlled by a PC with a 12-bit digital-to-analog converter.
The 8� 10 cm oscilloscope screen was customized with a very short persistence P15 phosphor
(50 ms luminance decay time to 0.1%) so that stimulus offsets on the CRT screen were nearly
instantaneous. Participants sat in a dark room with their head positions stabilized by a chin
and forehead rest 57 cm from the oscilloscope screen.

Experiment 1

Following initial observations of the RRI in which we confirmed that an illusory rotation
was seen when a ring of points replaced a stationary outline circle, we conducted Experiment
1 to evaluate some characteristics of this illusion. Specifically, we measured participants’
ratings of the clarity of the perceived test ring rotation as a function of the number of points
in the test ring, the diameter of the rings, the duration of the ring presentations, and the ISI
between the inducer and test ring.

Method

Participants. Twelve students of the University of G€ottingen participated in the Experiment
with an average age of 26.4 years (8 females, 4 males). Nine of them reported they were right-
handed, and three reported they were left-handed. All participants had normal or corrected-
to-normal vision as determined by the Landolt ring chart and received e7 per hour or student
credits. Each participant completed two 1-hour sessions, which were run on separate days.

Stimuli. On each trial, a stationary outline circle (the stationary inducer) was followed by
a stationary ring of points (the test ring). The sequence of events is shown in Figure 1.

Figure 1. Sequence of events in Experiment 1. Note, on the oscilloscope screen, stimuli were bright on a
dark background.
ISI¼ interstimulus interval.
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There were 1,440 potential display positions around the circumference of the stationary

inducer. The stationary outline circle was displayed using a rapid refresh rate algorithm

that prevented incidental local motion signals from occurring. Specifically, 160 points

were displayed at a randomly selected subset of the 1,440 outline circle locations every

millisecond. The random selection of point positions occurred without replacement so that

each of the entire 1,440 display positions was shown before any point was displayed again.

This resulted in a point being displayed at every circumference location with an average

temporal frequency of 111Hz. Therefore, every outline circle position was refreshed at a rate

substantially higher than the human critical flicker fusion frequency, eliminating detectable

local luminance fluctuations. In addition, the central fixation point was displayed 10 times

per millisecond.
The standard diameter of the rings (when diameter was not serving as an experimental

variable) was 6� of visual angle. When the number of points in the test ring was not serving as

an experimental variable, the test ring was constructed of 16 equally spaced luminous points.

When the ISI was not serving as an experimental variable, its standard duration was 60ms.

All points were slightly out of focus on the oscilloscope screen because we previously found

this strengthened the illusory motion percept being studied. The brightness of the stationary

outline circle was 0.099 cd/m2, and the point brightness of the test ring was 1.20 cd/m2 on a

dark background. The methods employed to obtain these brightness measurements are

described in Stein et al. (2019).

Procedure and Design. In the first session, the duration of each of the ring presentations was

500ms and the ISI was 60ms. The session began with an initial practice block that was

followed by eight 48 trial experimental blocks. In the first four blocks, we varied the number

of points in the test ring within each block with 8, 12, 16, or 20 equally spaced points

displayed. In the next four experimental blocks, we varied the diameter of the two rings

between the stimulus blocks (with the two rings always having the same diameter on any

trial), with diameters of 2�, 4�, 6�, and 8� of visual angle following a Latin Square Design.

During the second session, a practice block was followed by 10 experimental blocks of 50

trials. Within each block, we quasi-randomly varied the ISI between the two stimuli with ISIs

of 0, 30, 60, 90, and 180ms. The duration of the ring presentations was 500ms in the first half

of these blocks and 100ms in the second half.
Participants were instructed to report the clarity (German “Deutlichkeit”) of the rotation

that they perceived after the presentation of the two-stimulus displays on a modified com-

puter keyboard with seven keys in a horizontal row that had the numbers 3, 2, 1, 0, 1, 2, 3

printed on them. The keys on the left indicated a counterclockwise rotation and those on the

right a clockwise rotation, with “3” indicating a maximal, “2” a middle, and “1” minimal

clarity. The middle key was assigned the value zero, and participants were instructed to use

this key when they could not specify a rotation direction. The space bar below this row of

keys was used to start the next block of trials. Ratings were collapsed across clockwise and

counterclockwise directions to determine the average clarity rating for each participant in

each experimental condition.

Statistical Analyses. Forty-eight (50) trials were evaluated in each condition of the first (second)

session. The average clarity ratings of each participant in each condition were analyzed with

three repeated measures analyses of variance (ANOVAs): one evaluating the effect of

Number of Points, one evaluating Diameter, and the third evaluating the independent vari-

ables ISI and Stimulus Duration. Degrees of freedom were corrected using Greenhouse–
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Geisser estimates of sphericity, but for the sake of readability, the uncorrected degrees of

freedom are reported.

Results

The results of Experiment 1 are presented in Figure 2. Overall, a clockwise rotation was

reported on 50.83% of the trials and counterclockwise on 18.85%. On the remaining 30.32%

of the trials, participants were unable to specify the motion direction. This could have

occurred because they did not perceive any motion or because they perceived a spatial or

temporal mix of motion directions, so that neither a clockwise nor counterclockwise response

was exclusively correct. In Experiment 2, where participants could distinguish these alter-

natives, “mixed motion” percepts were, in fact, reported a little more often than “no-motion”

percepts.

Number of Points. The main effect of Number of Points was significant, F(3, 33)¼ 14.94,

p¼ .002, gp
2¼ .576, with the clarity of the rotation increasing as number of points increased

(Figure 2A).

Diameter. Mean clarity ratings trended downward when the ring diameter increased

(Figure 2B), but this trend failed to reach statistical significance, F(3, 33)¼ 2.13, p¼ .121,

gp
2¼ .162.

ISI and Duration. The main effects of ISI and Stimuli Duration were both significant, F(4,

44)¼ 20.55, p< .001, gp
2¼ .651, and F(1, 11)¼ 18.64, p¼ .001, gp

2¼ .629, respectively, and

the interaction of these factors was significant, F(4, 44)¼ 19.30, p< .001, gp
2¼ .637

(Figure 2C). Overall, clarity was greater with the 500ms ring durations than 100ms ring

durations, but there was a pronounced interaction of ISI with duration. With 100ms

stimulus duration, clarity was at its minimum when the ISI was 0, increased to a maximum

at 60–90ms, and then declined. With 500ms stimulus duration, the clarity was at its

maximum with 0ms ISI, stayed relatively stable to 60ms, and then declined.

A B C

Figure 2. Mean clarity ratings of the Ring Rotation Illusion in Experiment 1 as a function of (A) the number
of points in the test ring, (B) the diameter of the rings, and (C) the interstimulus interval (ISI) between the
inducing and test ring presentations for ring presentation with durations of 100 and 500 ms. In both A and B,
the duration of the two rings was 500 ms. The error bars show 95% confidence intervals for the within-
subject difference in means (Cousineau, 2005; Morey, 2008).
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Summary

In Experiment 1, we found the clarity of the RRI increased as the number of points in the test

ring increased and was modulated by the ISI between the inducing and test rings in a manner

that was strongly dependent on the duration of the ring presentations. We also found motion

clarity was better with smaller diameter rings, but this effect was statistically nonsignificant.

We note, however, that in Experiment 3 (reported later), in which a shorter stimulus duration

was employed, a similar effect of diameter did reach significance.
The source of these effects remains to be determined, but we note that both increasing the

number of points and decreasing the ring diameter have the effect of reducing the separation

between the test ring points, raising the possibility that this could be a mediating factor in

both cases (see Stein et al., 2019). We also note a link between our data and a finding in the

traditional apparent motion literature. Kahneman (1967) reported an effect of stimulus

durations on apparent motion that parallels our ISI findings. An optimal apparent

motion was found with an ISIs of 75–100ms when stimulus durations were 25–125ms but

an ISI of 0ms when stimulus durations were 800ms. We return to the possibility that the

RRI is a form of apparent motion in the general discussion.

Experiment 2

To the extent that the rapidly rotating inducing ring of the MBE display and stationary

inducer display are visually indistinguishable, it might be argued that the RRI and MBE are

simply instances of the same illusion. We believe, however, that there are strong grounds for

distinguishing between the MBE and RRI. A crucial aspect of the MBE is the transfer of

invisible direction information from the inducing ring to test ring, and this attribute has no

RRI counterpart because with the stationary inducer there is no inducing ring motion. The

core measure previously used to quantify the MBE – the degree of congruence between

the actual direction of the rapidly rotating inducing ring and the direction that is perceived

in the test ring – therefore cannot be applied to the RRI. If the MBE is deemed to have two

components, one that generates the illusory test ring motion and one that biases the direction

of that motion, the motion generating component may well be common to the two illusions,

but the direction biasing component will be unique to the MBE. In this case, it would be

reasonable to expect the illusory rotation generated by these displays to be equivalent if one

disregards motion direction. This is not, however, a necessary equivalence. The rotation of

the inducing ring in the MBE display might not just bias rotation direction but also act to

augment the motion percept that the MBE and RRI share. In Experiment 2, we evaluated

this possibility by empirically determining whether the rotating MBE and stationary RRI

inducing rings were genuinely indistinguishable and then examining whether the illusory

motion percepts generated by the two types of inducer had the same degree of clarity.

Data we report suggest some augmentation of the illusory motion by the inducing ring

spin does in fact occur.

Method

Participants. Twelve new University of G€ottingen students (10 females, 2 males) with an

average age of 24.1 years participated in the Experiment. Nine of them reported they were

right-handed, and three reported they were left-handed. All had normal or corrected-

to-normal vision as determined by the Landolt ring chart and received e7 per hour or student

credits. Each participant completed three 1-hour sessions, which were run on separate days.
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Stimuli. The stimulus display sequence is shown in Figure 3. In all the experimental sessions,

either the stationary inducer or rotating inducer was initially presented for 91ms. Inducer

Type was varied randomly between trials. The diameter of the rings was 7.5� of visual angle.
The stationary inducer was created in the manner described in Experiment 1. The rotating

inducer was rotated by concurrently advancing 16 equally spaced points every millisecond by

a specified number of steps around the 1,440 possible point locations on the ring circumfer-

ence. This updated the display with an effective frame rate of 1000Hz. The rotation was

clockwise or counterclockwise at angular velocities of 250 or 1500�/s. These rotation rates

were respectively achieved by advancing the points by 1 or 6 steps each frame and resulted in

points being refreshed at each utilized display position on the inducing ring circumference at

temporal frequencies of 11.11 and 66.67Hz. At the 1500�/s rotation speed, the inducing ring

appeared (like the stationary ring) to be a continuous outline circle. The time-averaged

brightness of inducing ring points was 0.017 and 0.099 cd/m2 at the 250 and 1500�/s veloc-
ities, respectively. Note that the location and timing of the point presentations in the sta-

tionary and rotating rings was identical when the velocity of the rotating ring was 1500�/s,
with the only difference being that the sequence of point positions in the stationary ring was

scrambled. In Sessions 2 and 3, after a 60-ms ISI, the stationary 16-point test ring followed

the inducer for 500ms. The test ring point brightness was 1.50 cd/m2 on a dark background.

Procedure and Design. In the first session, we examined participants’ ability to distinguish the

rotating inducer from the stationary inducer. Participants indicated whether the stimulus was

stationary or rotating, irrespective of the rotation direction, by pressing one of two keys. In

the first four blocks, the inducer rotated with a low velocity of 250�/s; in the following four

blocks, the velocity was 1500�/s. The first block of each group of four blocks was considered

practice and excluded from analysis. Across the remaining six experimental blocks of 48

trials each, we gathered 144 trials for each velocity. On half of the trials in which the rotating

inducer was presented it turned clockwise, and on the other half it turned counterclockwise.
In Sessions 2 and 3, the stationary ring of points (test ring) followed the inducer (see

Figure 3). The inducing ring was presented for 91ms, and the test ring was presented for

500ms. The stationary and the rotating inducer were each shown on half the trials. On half

Figure 3. The stimulus sequence in Experiment 2. On a given trial, the inducing ring rotated either
counterclockwise (as shown in the figure) or clockwise. The points on the oscilloscope were bright on a dark
background. The start and stop positions of the inducer points always matched the test ring point positions.
ISI¼ interstimulus interval.
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of the trials in which the rotating inducer was presented it turned clockwise, and on the other
half it turned counterclockwise. The velocity of the rotating inducer was always 1500�/s. In
one of the two sessions, participants were asked to rate the clarity of rotation. In the other
session, to obtain a second supporting measure of the strength of the perceived rotation,
participants were asked to judge the distance the points moved during the perceived rotation.
The order of the two tasks was balanced across participants.

Ratings of motion clarity and distance were given after the presentation of the second
stimulus. Five response keys were arranged in a horizontal line on a modified computer
keyboard, with the leftmost key indicating a very clear (very far) rotation in counterclock-
wise direction, the rightmost key a very clear (very far) rotation in clockwise direction, and
the middle key a “rotation in both directions.” The remaining two keys were assigned to less
clear (less far) counterclockwise and clockwise rotations. Below this line of keys, there was
the space bar that allowed subjects to report “no-motion” percepts. Following a practice
block, in each of the sessions, eight blocks of 48 trials each were run, providing 192 trials of
data for both the stationary and the rotating inducer.

Statistical Analyses. To evaluate participants’ ability to distinguish between the stationary and
rotating inducers, we performed a signal detection analysis (Macmillan & Creelman, 2005).
“Rotating” responses to rotating inducers were considered hits, and “rotating” responses to
stationary inducers were considered false alarms. Hit and false alarm rates were determined
for each subject in each condition, and the log-linear correction rule of Hautus (1995) was
applied. To compare the strength of the RRI and MBE illusory motion percepts, we respec-
tively assigned rating values of 0, 1, and 2 to participants’ “no” or “bidirectional motion”,
less clear (less far), and very clear (very far) responses. Mean rating values for clockwise and
counterclockwise rotations in each of the inducer conditions were calculated and then col-
lapsed across direction. t tests were used to evaluate condition-dependent differences in d 0

and the mean clarity and distance ratings. We also contrasted the frequency of the reports of
“no motion” or “motion in both directions” in the conditions when the stationary and
rotating inducer had been presented using two-tailed Wilcoxon signed-rank tests to meet
the nonnormal distribution of these variables. Finally, to determine whether there was an
MBE when the rotating inducer was displayed, we determined the frequency of direction
reports that were congruent with the actual spin direction of that inducer.

Results

Discrimination of the Inducer Type. Participants were perfect at distinguishing the stationary
from rotating inducer when the rotation velocity was 250�/s, t(11)¼ 35.45, p< .001, but
performed at chance when the velocity was 1500�/s, t(11)¼ 1.42, p¼ .09, with respective
mean d’s of 4.59 and 0.25 (see Figure 4A).1

The Incidence of Motion Percepts in the Clarity Task. Clockwise and counterclockwise rotations
were, respectively, reported on 49.39% and 30.73% of the RRI trials and 50.56% and
38.54% of the MBE trials in which participants reported the motion clarity. Of the remain-
ing 19.88% of the RRI trials, 11.16% were reports of a “rotation in both directions” and
8.72% were “no-motion” reports. Of the remaining 10.9% of the MBE trials, 6.38% were
reports of a “rotation in both directions” and 4.52% were “no-motion” reports. The
increased incidence of bidirectional and no-motion reports in the RRI condition relative
to the MBE condition were both statistically significant, W(11)¼ 56, p¼ .014 and W(11)¼
28, p< .02, respectively.
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Motion Clarity. Mean ratings of the clarity of the RRI are shown in Figure 4B. While ratings

were generally similar with the rotating and stationary inducers (1.38 and 1.19, respectively),

a slightly greater clarity was found with the rotating inducer which was statistically signif-

icant, t(11)¼ 4.73, p< .001.

Incidence of Motion Percepts in the Distance Task. The distribution of clockwise, counterclock-

wise, bidirectional, and no-motion reports in the distance judgment trials was similar to that

found in the clarity task. Clockwise and counterclockwise rotations were, respectively,

reported on 52.73% and 31.86% of the RRI trials and 52.99% and 37.80% of the MBE

trials. Of the remaining 15.41% of the RRI trials, 9.94% were reports of a “rotation in both

directions” and 5.46% were “no-motion” reports. Of the remaining 9.21% of the MBE trials,

6.56% were reports of a “rotation in both directions” and 2.64% were “no-motion” reports.

As was the case with the clarity task, the increased incidence of bidirectional and no-motion

percepts in the RRI condition relative to the MBE condition were both statistically signif-

icant, W(11)¼ 56.5, p¼ .013 and W(11)¼ 26, p< .05, respectively.

Distance Ratings. Ratings of the distance the test ring points appeared to move yield a similar

outcome to those found for clarity (see Figure 4C). Mean ratings were comparable with the

rapidly rotating and stationary inducers (1.35 and 1.19, respectively), but the small advan-

tage with the rotating inducer proved to be statistically reliable, t(11)¼ 3.11, p¼ .010.

MBE Congruency Effect. The frequency of congruent responses on trials with the rotating

inducer confirmed that it produced the MBE effect. Participants reported perceived rotations

in the same direction as the rapid rotation on 67.9 and 69.1% of the trials in the clarity and

distance rating sessions, respectively. These correspond to mean d 0 values of 1.42 and 1.51,

respectively.
The mean clarity rating was only a little greater on the MBE trials with congruent direc-

tion reports compared to MBE trials with incongruent direction reports (1.58 vs. 1.43), but

this difference did prove significant, t(11)¼ 3.47, p¼ .005. The mean distance rating was also

A B C

Figure 4. Strength of the Ring Rotation Illusion in Experiment 2. (A) Participants sensitivity to the difference
between the rotating and stationary inducer when the rotation velocity was low or high. (B) Mean rating of
the clarity of the rotation for stationary inducers and rotating inducers with a velocity of 1500�/s. (C) Mean
rating of the distance covered by the rotation for stationary inducers and rotating inducers with a velocity of
1500�/s. The error bars show 95% confidence intervals for single means in A, and for the within-subject
difference in the means in B and C (Cousineau, 2005; Morey, 2008).
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slightly greater on trials with congruent versus incongruent perceived directions, but this
difference did not reach significance – 1.49 versus 1.43; t(11)¼ 1.09, p¼ .299.

Summary

Experiment 2 compared the illusory test ring rotation when the inducing stimulus was a
stationary outline circle to the illusory test ring rotation when the inducer was a rapidly
rotating ring of points (the MBE display). Data from an initial session indicated that par-
ticipants could not distinguish between the two inducer types when these stimuli were pre-
sented without the test ring. In the following two sessions, we asked participants to rate the
clarity of the perceived test ring rotation and the distance the points moved during the
perceived rotation. While similar ratings were obtained with the two types of inducer,
there was a small but significant increase in both the reported clarity and distance estimates
when the rapidly rotating inducing ring was shown. The increase in clarity with the MBE
display was most pronounced when the direction of the illusory rotation matched the direc-
tion of the inducer rotation. In addition, there were significantly fewer cases where no or a
directionally ambiguous motion was perceived with the MBE display. While the overall
similarity of the motion percepts produced by the stationary and rapidly rotating inducers
is commensurate with the supposition that the same process generates both of these percepts,
the small but persistent advantage found when the rotating inducer is shown suggests that
the rotation of the inducing ring in the MBE display, although not consciously visible, serves
to augment the illusory ring rotation. It should also be noted that although clarity ratings
were slightly better in the MBE trials with directional congruency than without congruency,
this effect was quite small, and congruency failed to have a statistically reliable effect on the
distance-traveled ratings. The absence of a more pronounced effect of congruency on the
clarity and distance ratings supports the hypothesis that the induction of motion and the
processing of the direction signal are separable mechanisms.

Experiment 3

Experiment 2 provided evidence that generally similar motion percepts are generated by the
stationary and rotating inducers. However, clarity and distance ratings were slightly but sig-
nificantly higher when the inducer was the rapidly rotating ring. A more stringent way of
evaluating whether the same process generates the motion percepts with the stationary inducer
display and the MBE display is to determine whether those percepts exhibit similar functional
dependencies. In Experiment 3, we did this by examining whether the display variables inves-
tigated in Experiment 1 – specifically, ring diameter, the number of points in the test ring, and
the ISI between the inducing and test ring presentations – had similar effects on motion clarity
ratings when the test ring followed the stationary and rotating inducers.

In previous studies, the measure of the MBE has been the congruence between the direc-
tion of the invisible inducing ring rotation and illusory test ring rotation (Mattler &
Fendrich, 2010; Stein et al., 2019, 2020). This method cannot be used to compare the
MBE and RRI because in the case of the stationary inducer display, the inducer does not
rotate. In Experiment 3, we therefore used motion clarity ratings such as those employed in
Experiments 1 and 2 to compare the two motion illusions. Because our clarity rating scale
required that participants indicate the direction as well as clarity of the perceived motion, we
were still able to measure direction congruence when the rotating inducer was shown.
On these trials, we were therefore able to determine the extent to which congruence and
motion clarity covaried.
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Method

Participants. Twelve new students from the University of G€ottingen (12 females, 0 males) with
an average age of 20.9 years participated in Experiment 3. Eleven of them reported they were
right-handed, and one reported she was left-handed. All participants had normal or
corrected-to-normal vision as determined by the Landolt ring chart and received e7 per
hour or student credits. Each participant completed four 1-hour sessions, which were run
on separate days.

Stimuli. On half of the trials, the stationary outline circle (stationary inducer) was shown, and
on the other half, the rotating ring of points (rotating inducer) was shown. The Inducer Type
was varied randomly between trials in all sessions orthogonal to the variation of the other
independent variables. The stationary inducer was created in the manner described in
Experiment 1, and the motion of the rotating inducer was created in the manner described
in Experiment 2. Average brightness values were the same as in these earlier experiments.
When the rotating inducer was presented, its rotation direction was clockwise on half of the
trials and counterclockwise on the other half. The sequence of events corresponded to that
used in Experiment 2 (cf. Figure 3) except that the inducer and test ring were presented for
121ms each. The standard parameters of the stimuli were 16 points, a diameter of 6� of visual
angle, an inducing ring velocity of 1500�/s, and an ISI of 60ms. The brightness of the test
ring points was 1.2 cd\m2 (as in Experiment 1).

In Session 1, we varied the number of test ring points (8, 12, 16, or 20) randomly between
trials. In a given trial, when the rotating inducer was shown it had the same number of points
as the test ring. In Session 2, we varied the diameter of the rings (with diameters set to 2�, 4�,
6�, and 8� of visual angle). The diameter was varied blockwise, and the order of conditions
was balanced across participants according to a Latin square. In Session 3, we varied the ISI
(0, 30, 60, 90, or 180ms) randomly between trials. In Session 4, the stationary circle and the
rotating ring were presented alone, with identical stationary circle presentations but the
number of points that formed the rapidly rotating inducer varied randomly between trials
(8, 12, 16, or 20 points). All stimulus parameters except for the one being varied were set to
the standard values. In all sessions, we considered the initial block of trials as practice, and
these trials were not included in the analyses.

Tasks. In the first three sessions, participants were asked to report the clarity of the perceived
rotation after the presentation of the stimuli. We used the same instructions and modified
keyboard as in Experiment 1 in these sessions. In Session 4, participants were instructed to
indicate whether the stimulus was stationary or rotating, irrespective of its direction, by
pressing one of the two arrow keys. They were informed that the stationary stimulus
would be presented on half of the trials and the rotating stimulus on the other half.

Procedure and Design. There were eight experimental blocks of trials in each session. An
additional first block of practice trials was excluded from analyses. Each experimental
block was comprised of 48 trials except Session 3, where each block was comprised of 60
trials, so that we gathered 96 trials for each of the experimental conditions in a session.
Responses were assigned values of 0, 1, 2, or 3, based on participants’ key responses (see
earlier). The value of the clarity rating served as the dependent variable to quantify the
perceived illusory rotations. On trials where the rotating inducer was shown, the direction
indicated by the keypress was compared to the actual rotation direction to determine con-
gruency rates.
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Statistical Analyses. In each experimental session, RRI clarity ratings were collapsed across the
clockwise and counterclockwise directions, and the average clarity rating was determined in
each stimulus condition. The effects of the independent variables on the averaged ratings
were evaluated by two-factor repeated measures ANOVAs that combined the factor Inducer
Type (rotating vs. stationary) with Number of Points, Diameter, or ISI. Participants’ ability
to distinguish between the rapidly rotating inducer and the stationary inducer was analyzed
by a signal detection analysis (see Experiment 2). In addition, we examined the effects of
Number of Points, Diameter, and ISI on congruency rates to determine how these variables
affected the MBE.

Unexpectedly, in contrast to the results obtained in Experiment 2, in the final session of
Experiment 3 when 16 points were rotated at 1500�/s, participants reported a rotation slight-
ly more often when a rotating inducer was shown than when a stationary inducer was shown,
indicating they could distinguish between the inducer types at a better than chance level. We
therefore performed additional analyses in which the data from the three initial sessions were
reanalyzed with an ANOVA that included the between-subjects factor Inducer Sensitivity
(poor vs. good). These analyses are reported in the section on “Sensitivity to Inducer
Motion.” All reported ANOVA p values were Greenhouse–Geisser corrected, but for the
sake of readability, we report the uncorrected degrees of freedom.

Results

Results are presented in Figure 5. Across Sessions 1, 2, and 3, clockwise and counterclock-
wise rotations were, respectively, reported on 45.45% and 24.33% of the trials with the
stationary inducer and 48.84% and 32.17% of the MBE trials with the rotating inducer.
On the remaining 30.22% of stationary inducer trials and 18.99% of rotating inducer trials,
participants reported they could not specify a motion direction. As noted in our presentation
of Experiment 1, this could have occurred because they did not perceive any motion or
because there was more than a single rotation direction perceived. The difference in the
frequency of these reports proved significant on a two-tailed Wilcoxon signed-rank test,
W(11)¼ 76, p¼ .003.

Number of Points. Number of Points had a significant main effect on the clarity of the test
ring’s perceived rotation, F(3, 33)¼ 16.82, p< .001, gp

2¼ .605 (Figure 5A). Clarity increased
as the number of points in the rings increased. The main effect of Inducer Type was also
significant, F(1, 11)¼ 17.51, p¼ .002, gp

2¼ .614, indicating clearer motion percepts with the
rotating than the stationary inducer, an outcome also observed in Experiment 2. In addition,
there was a significant Inducer Type�Number of Points interaction, F(3, 33)¼ 17.65,
p< .001, gp

2¼ .616. Separate post hoc analyses confirmed what is apparent in Figure 5A:
This interaction occurs because the improvement in motion clarity occurs only with the
stationary inducer, F(3, 33)¼ 26.50, p< .001, gp

2¼ .707. Clarity is poorer with the stationary
inducer than the rotating inducer when the number of points is low but improves as number
of points increases until at the highest point-number tested the clarity is almost identical with
the two inducer types. Number of Points has no effect on clarity when the rotating inducer is
shown, F(3, 33)¼ 0.32, p¼ .739, gp

2¼ .029.
The effect of Number of Points on the MBE congruency effect when the rotating inducer

was presented was quantified in terms of d 0 values (Figure 5D). An ANOVA confirmed that
the main effect of Number of Points on MBE congruence was significant, F(3, 33)¼ 7.30,
p¼ .002, gp

2¼ .399, with the MBE decreasing as the number of points increased. This finding
replicates a previous finding by Stein et al. (2019) but contrasts with both the null effect of
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Number of Points on motion clarity ratings following presentations of the rotating inducer

and the positive effect on clarity following presentations of the stationary inducer

(Figure 5A).

Diameter. Visual inspection of Figure 5B suggests the clarity of the illusory test ring rotation

gradually diminished as the diameter of the rings increased, but the main effect of Diameter

A B C

D

G

E F

Figure 5. Measures of the Ring Rotation Illusion and the Motion Bridging Effect in Experiment 3. Top row:
mean rating of clarity of the illusionary rotation with rapidly rotating and stationary inducers as a function of
(A) Number of Points, (B) Diameter, and (C) the inducer-test ring interstimulus interval (ISI). Middle row:
sensitivity to the congruence of the rotating inducing ring and perceived test ring rotation directions (the
MBE) as a function of (D) Number of Points, (E) Diameter, and (F) the inducer-test ring ISI. Bottom row: (G)
mean frequency of perceiving the inducer alone as rotating or stationary as a function of number of points
and inducer type. Because Number of Points could only be varied with the rotating inducer, the black line
indicates the overall incidence of reports of rotation when the stationary inducer was shown. In A–F, the
stationary test ring followed the inducer. In G, the inducer appeared alone. Error bars in A–F show the 95%
confidence intervals for the within-subject difference in means, in G for single means.
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did not reach statistical significance, F(3, 33)¼ 2.99, p¼ .084, gp
2¼ .213. However, the main

effect of Inducer Type was once again significant, F(1, 11)¼ 5.82, p¼ .035, gp
2¼ .346, indi-

cating that there was a clearer RRI with the rotating inducer (Figure 5B), and this effect
significantly interacted with Diameter, F(3, 33)¼ 5.75, p¼ .007, gp

2¼ .343. Post hoc analyses
revealed this interaction occurred because Diameter produced a significant reduction in the
motion clarity when the stationary inducer was shown, F(3, 33)¼ 5.03, p¼ .015, gp

2¼ .314,
but not when the rotating inducer was shown, F(3, 33)¼ 1.31, p¼ .285, gp

2¼ .107. Note, that
in Experiment 1, where the stimulus duration was 500ms, a similar but nonsignificant reduc-
tion in RRI clarity was found (see Figure 2B).

As shown in Figure 5E, the MBE congruency effect increased as a function of Diameter.
This increase was significant, F(3, 33)¼ 5.46, p¼ .025, gp

2¼ .332. This finding contrasts with
both the null effect of Diameter on motion clarity following the rotating inducer and the
decrease in clarity following the stationary inducer (Figure 5B) but replicates a previous
finding by Stein et al. (2019).

ISI. The main effect of ISI on the clarity of the test ring motion was significant, F(4, 44)¼
9.57, p¼ .003, gp

2¼ .465. Figure 5C shows a clear inverted U-shaped function that indicates
the illusion was maximal with an ISI of 60-90ms. This function replicates the one found in
Experiment 1 when the inducer presentation was brief. As in Experiment 2, the main effect of
Inducer Type was also significant, F(1, 11)¼ 9.01, p¼ .012, gp

2¼ .450, with the rotating
inducer producing a clearer motion percept than the stationary inducer. Importantly, the
interaction Inducer Type� ISI did not reach significance, p¼ .77, indicating that the effect of
ISI was similar with the two inducer types.

Figure 5F shows MBE congruency was also an inverted U-shaped function of ISI with
a maximum when the ISI is 90ms. ANOVA results confirmed the significance of this effect,
F(4, 44)¼ 14.34, p< .001. This function not only accords with the present clarity outcomes
(Figure 5C) but also with a previous finding by Mattler and Fendrich (2010).

Sensitivity to Inducer Motion. Figure 5G shows the frequency participants reported seeing a
rotation as a function of Number of Points when the rotating or the stationary inducer
was shown without the test ring. The main effect of Number of Points on d 0 was significant,
F(3, 33)¼ 52.41, p< .001, gp

2¼ .827, with mean values of d 0 ¼ 2.22, d 0 ¼ 1.07, d 0 ¼ 0.52, and
d 0 ¼ 0.33 for 8, 12, 16, and 20 points, respectively. Post hoc one-tailed t tests revealed that
mean sensitivity was above chance in all cases (all p< .01).

The finding that participants’ sometimes discriminated the stationary from the rotating
inducer in the standard 16-point condition, t(11)¼ 4.92, p< .001, distinguishes this result
from the one obtained in Experiment 2. The source of this discrepancy is not clear to us: It
could reflect individual differences in the groups of participants in the two experiments, or
differences in the experimental contexts. We note with regard to the latter possibility that in
Experiment 3 conditions where the inducer was constructed with less than 16 points
improved the ability of the participants to detect rotations. These trials may have trained
subjects to attend to subtle motion cues. But whatever the source of this discrepancy, it raises
the possibility that an ability to distinguish between the inducer types contributed to the
effects of Inducer Type in Experiment 3. To assess this possibility, we first examined the
correlation between each participant’s sensitivity to the presence of an inducer motion (d 0)
and the size of the effect of Inducer Type on their clarity ratings at each of the tested number
of points settings. We reasoned that if the effect of Inducer Type on the clarity of the RRI
(Figure 5A) was produced by differences in the perception of the inducer (Figure 5G), this
would lead to a correlation between the two measures. Across participants, d 0 values for the
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discrimination of inducer type and clarity rating differences correlated with r¼ .60, .38, –.14,
and –.18 (p¼ .04, .22, .66, and .57) for trials with 8, 12, 16, and 20 points, respectively. Thus,
no correlation occurred in the 16-point condition (see scatterplots illustrating these outcomes
in supplementary Figure S1).

In addition, we divided our participants into two subgroups based on their ability to
distinguish the inducer types in the 16-point condition: a poor performance subgroup
(mean d 0 ¼ 0.205) and a good performance subgroup (mean d 0 ¼ 0.841). Then, we conducted
additional ANOVAs, which included the between-subjects factor Inducer Sensitivity (poor
vs. good), to see whether this factor influenced reports of motion clarity. No statistically
significant main effect of Inducer Sensitivity on motion clarity was found in any of the
extended ANOVAs (p¼ .11 or greater in all tests), and, importantly, there was no interaction
of Inducer Sensitivity with the effect of Inducer Type (p¼ .12 or greater in all tests). Likewise,
all of the interactions of Inducer Sensitivity with Number of Points, Diameter, and ISI were
nonsignificant (p¼ .14 or greater). Thus, we found no evidence that perceived differences
between the stationary and rotating inducers had an effect on ratings of the clarity of the
RRI in the initial three sessions.2

The Relation Between Direction Sensitivity and Motion Clarity. To further examine the relationship
between sensitivity to motion direction in the MBE trials (Figure 5D to F) and the motion
clarity ratings in those trials (Figure 5A to C), we evaluated whether participants’ ability to
detect the motion direction was correlated with their clarity ratings. To clarify the graphical
presentation of these analyses, we normalized both the direction sensitivity and clarity values
to M¼ 0 and computed the correlation between these measures for each participant in each
experimental condition of Experiment 3. The scatterplots in Figure 6 depict these correla-
tions. Values of r range from –0.13 to 0.63 with a Fisher z-transformed average of r¼ .33.
The variability of these correlations and the fact that all but two of them are nonsignificant
support the view that the MBE congruency effect and the perceived clarity of test ring
rotation result from separable processes. The fact the 11 of the 13 correlations are positive,
however, suggests the two processes may interact (see the General Discussion section).

Summary

Experiment 3 compared the stimulus dependencies of the motion illusions produced by
stationary inducer displays and MBE displays. As in Experiments 2, motion clarity ratings
are slightly but significantly higher and reports of no or bidirectional motion less frequent
with the MBE display than with the stationary inducer display. Unexpectedly, participants
had a limited ability to distinguish the stationary inducer from a rotating inducer with 16
points in Experiment 3, although they could not distinguish identical stimuli in Experiment
2. However, our analyses revealed no evidence that this capability was related to the finding
that there was greater motion clarity with rotating inducers.

The same distinctive inverted U-shaped motion clarity function is found with the two
display types as the ISI between the inducer and test ring presentations gets longer. This is
commensurate with the hypothesis that the RRI and MBE motion percepts are at least
partially attributable to a common mechanism, as one would expect given the similarity in
the appearance of the displays and the illusions they produce. However, the other stimulus
dependencies we investigated are not identical for the two display types. A reduction in
motion clarity with increasing ring diameter that occurs with the stationary inducer display
is strongly attenuated with the MBE display, and an improvement in motion clarity as test
ring point-number is increased occurs with the stationary inducer display but not with the

Mattler et al. 15



MBE display. Furthermore, ring diameter and test ring point-number both modulate the
MBE congruency effect in the reverse direction of their modulation of RRI motion clarity.
Finally, there was no consistent relationship between participants’ sensitivity to the motion
direction of the rotating inducer – the congruency effect – and the clarity of the perceived
motion. Together, these outcomes suggest that the MBE congruence effect is mediated by a
separate mechanism than the one that generates the RRI motion percept, and the MBE
inducer spin does not just bias the direction of illusory rotation but also acts to augment and
support that illusion.

General Discussion

In this study, we introduced the “Ring Rotation Illusion,” which is defined as the illusory
rotation of a stationary ring of points when it replaces a stationary outline circle. The sta-
tionary inducer display is very similar to the display that generates the MBE – the illusory
rotation of a stationary ring of points that replaces a ring of points that rotates so rapidly it
appears to be a continuous outline. The MBE is distinguished by the fact that the direction of
the initial rotating ring determines the direction of the subsequent illusory rotation. We
compared the RRI and MBE and found not only functional similarities but also crucial
differences, which suggest that the two illusions cannot be considered equivalent, although a
common mechanism may be operating in the generation of the rotation percept in both
cases. In the following discussion, we compare the RRI to instances of apparent motion,
address the relation between the RRI and the MBE, consider possible mechanisms that could
determine the direction of the illusory rotation, and note the limitations of our measure of
the illusory motion.

The RRI and Apparent Motion

The display that generates the RRI bears a resemblance to the displays used to produce
another illusion, which has been variously termed Singularbewegung (Wertheimer, 1912),
polarized gamma movement (Kanizsa, 1979), the line-motion illusion (e.g., Hikosaka et al.,
1993), motion induction (e.g., von Grünau & Faubert, 1994), and illusory line motion (e.g.,

Figure 6. Relation between the congruency effect and motion clarity in the MBE trials of Experiment 3.
Individual d 0 values of the congruency effect and individual clarity ratings are normalized to M¼ 0 for each
experimental condition. Left panel: data of the session in which the number of points was varied between
trials. Middle panel: data of the session in which the diameter of the rings was varied blockwise. Right panel:
data of the session in which the inducer-test ring interstimulus interval (ISI) was varied between trials.
Symbols signify the levels of the independent variable.
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Kawahara et al., 1996). We will adopt the designation “line motion illusion” with its “LMI”

acronym.
In LMI experiments, an initial target shape (typically a dot or small square) is followed by

the presentation of an adjacent spatially extended shape (typically a line or elongated rect-

angle). For convenience, we will refer to the initial shape as the cue and to the second shape

as the line. Observers perceive the line to form by growing rapidly outward from the cue.

Multiple instances of the LMI in a spatial array can be seen to occur simultaneously

(Faubert & von Grünau, 1995; Kawahara et al., 1996; Tang et al., 2013). Moreover, the

order of the cue and line presentations can be reversed, in which case the line is seen to

contract into the cue (e.g., Downing & Treisman, 1997). This latter case highlights the RRI’s

similarity to the LMI: in both illusions, switching between one or more spatially extended

stimuli (the line or lines in the case of the LMI and the outline circle in the case of the RRI)

and one or more localized discrete stimuli (the cue or cues in the case of the LMI and test

ring points in the case of the RRI) creates an illusory motion.
Contemporary research on the LMI was initiated by Hikosaka et al. (1993) who regarded

it as an attention-related phenomenon. However, Downing and Treisman’s (1997) finding

that participants continued to perceive a smooth illusory motion when they reversed the

order of the line and cue (so that attention is not drawn to an initial focal point) and

demonstrations that the LMI can occur at multiple locations simultaneously (Faubert &

von Grünau, 1995; Kawahara et al., 1996; Tang et al., 2013) are difficult to reconcile with an

attention-based account. In addition, studies that used endogenous (Christie & Klein, 2005)

and exogenous spatial cues (Fuller & Carrasco, 2009) to create shifts of attention have failed

to find these cues had any effect on the LMI. Low-level processes based on shifts in lumi-

nance or contrast profiles have also been proposed to explain the LMI (Hock & Nichols,

2010; Zanker, 1994). However, low-level models of this kind cannot easily account for

instances with complex LMI displays where motions are perceived that violate the predic-

tions made by motion energy models (e.g., Tse & Logothetis, 2002; see the review in Han

et al., 2016).
Downing and Treisman (1997) offer a high-level alternative to account for the LMI. They

relate the LMI to apparent motion and suggest it represents a case of an “impletion” process

that fills in the missing intermediary positions of objects undergoing apparent motion. The

LMI is regarded as “a progressive transformation of shape induced by the binding of the cue

and the line as successive states of one moving object” (p. 777). Downing and Treisman

suggest the impletion process reflects a visual inference that interprets a stimulus sequence in

terms of the real-world state of affairs likely to produce it. Hsieh et al. (2005) expand on this

idea and speak of visual “heuristics.” These high-level accounts treat the LMI as an instance

of what Tse et al. have termed transformational apparent motion (TAM; Tse et al., 1998; Tse

& Logothetis, 2002). This is the motion percept that occurs when a visual figure is suddenly

replaced by another spatially overlapping figure and observers see the first figure morphing

smoothly into the second.
The RRI might be viewed as a global version of the LMI in which multiple segments of

the outline of the circular inducer contract in unison into the circular array of points

that form the test ring. A study by Tang et al. (2013) provides support for this view.

These investigators studied circular arrays of various synchronous TAM stimuli of the

LMI type. They found that multiple TAM stimuli could integrate to yield a coherent

global motion percept. The finding that grouped TAM arrays can generate a global

motion percept accords with the hypothesis that in the case of the RRI, a local contraction

of segments of the inducer into the test ring points generates a global percept of rotation.
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This hypothesis, however, raises the new problem of explaining why all the points in the
RRI test ring yoke and rotate together in a common direction. The global rotations reported
by Tang et al. (2013) were supported by directional cues that the local TAM elements in their
displays provided. In the case of the RRI, however, no local directional cues are present.
A plausible percept in the case of the RRI would be to see the segments of the inducing ring
adjacent to each of the test ring points contracting symmetrically into those points. Downing
and Treisman (1997) reported just such a percept with an LMI display: When a line presen-
tation was followed by two cues, one at each of its ends, the line was seen to divide at its
center and contract into both the cues. We have not, however, observed a percept of this sort
in this or any of our prior investigations, and no participant has reported such a percept.

Another variant of the LMI reported by Downing and Treisman (1997) bears on the
yoking issue. When two horizontally aligned cues were followed by two lines, one between
the cues and one to the right of the rightward cue, both cues were seen to expand rightward
to form the lines (see also Faubert & von Grünau, 1995). This suggests a perceptual yoking
of the perceived motion directions. Yoking across discrete instances of apparent motion has
also been reported by Ramachandran and Anstis (1983). These investigators presented
bistable pairs of points that could be seen to be undergoing either a horizontal or vertical
oscillation when repetitively switched between their alternative states. When groups of these
point-pairs were presented and switched simultaneously, the same perceived direction of the
oscillation was entrained into all the pairs. Ramachandran and Anstis (1983) suggest that
their finding provides support for the view that their display is perceptually interpreted as a
single object moving through space. This interpretation could also be applied to the RRI
display and would provide a plausible account for our finding of a common direction of the
rotation of all the test ring points.

The character of the RRI’s dependency on ISI may distinguish it, however, from the LMI.
Following brief inducer presentations, the clarity of the RRI motion is not at its maximum
when the ISI between the test and inducing ring is zero: It rather increases to a maximum
with an ISI of 60–90ms, and then decreases as the ISI grows longer. We are aware of only
one LMI study which inserted an ISI between the presentations of the cue and line. Hikosaka
et al. (1993) coupled a cue that was flashed for only 2ms with cue-to-line stimulus-onset
asynchronies (SOAs) ranging from 1 to 4,800ms so that all but their shortest SOAs were
effectively also ISIs. They found the LMI was maximal with SOA of about 100ms and for
four out of five observers remained at this level until the SOA exceeded 400ms. The differ-
ence in the profiles of the RRI and LMI as ISI increases suggests that the two illusions may
not have a common basis.3 It should be acknowledged, however, that the MBE congruency
effect is modulated by ISI in the same way as clarity is, so the pattern we observed could be
attributable to a general modulation of the coupling between the inducing and test rings
rather than the modulation of a specific motion generating process.

Most important, the character of the motion percept distinguishes the RRI from the LMI.
In the many LMI variations that have been reported, it is always the line stimulus that hosts
the motion percept, either by growing or contracting. In the RRI, however, it is the points of
the test ring that host the motion percept by appearing to rotate. To the best of our
knowledge, there is no LMI counterpart to this. The global rotational movement reported
by Tang et al. (2013) comes closest, but in their displays, the global percept is also conveyed
by visible local line segments.

To sum up, accounting for the RRI remains a challenge. It bears a similarly to the LMI,
but the limited data available suggest its temporal dependency on ISI is different from that
found with the LMI. Moreover, the RRI differs from all reported instances of the LMI
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because the motion percept is conveyed by the rotation of the points and not the growth or
shrinking of a line. Thus, whether the RRI is in fact a novel form of TAM or a completely
new type of illusory motion is not entirely clear. In either case, a high-level approach to
explaining the RRI that we think merits serious consideration is the visual “heuristics” model
proposed by Hsieh et al. (2005). Some examples of possible “heuristics” mentioned by Hsieh
et al. are that objects tend to change shape continuously, rarely appear out of nowhere, and
rarely disappear into thin air. In the case of the RRI, the argument would be the visual
system generates a percept that fits with a heuristic that holds that the real-world event most
likely to account for an outline circle suddenly becoming a ring of points is a rapid rotation
suddenly coming to a halt. Explanations based on lower level motion processing mechanisms
cannot, however, be ruled out.

The Relation Between the RRI and the MBE

The observed pattern of results appears compatible with the view that the perceived illusory
motion of the test ring in the MBE and RRI displays is at least in part generated by a
common mechanism, but in the case of the MBE, there is a second mechanism produced by
the inducing ring rotation, which although not consciously visible acts to bias the direction of
the illusory motion. We propose this second mechanism interacts with the primary motion
generating mechanism in a manner that not only biases the perceived motion direction but
also augments the strength of the illusion of rotation.

We see at least two ways this augmentation might occur. One possibility is that the motion
direction signal conveyed by the rapidly rotating inducer directly supplements or bolsters the
primary process. This could be occurring at a relatively low level in the visual system. An
alternative high-level account is also plausible. Note that the direction of the perceived
rotation in the case of the RRI is inherently ambiguous. If the spin of the inducing ring
with the MBE display helps to resolve this ambiguity, an overall impression of greater
motion clarity could result. This account would lead one to expect the greatest clarity
when the direction of the test ring and inducing ring motions are congruent, which is in
fact what we observed.

If variations in the ring diameter and number of points that form the rings weaken and
strengthen the MBE motion biasing process in the reverse direction of their effect on the
primary motion generating process, as the congruency data indicates (Figure 5D and E), this
could account for the reduced effect of ring diameter and number of points with the MBE
display relative to the stationary inducer display. Specifically, the benefit for the RRI pro-
duced by the increase in test ring number of points could be countered by an associated loss
of the putative motion augmentation generated by the second process, and the weakening of
the RRI motion percept with increased diameter could be countered by an increase in motion
augmentation by the second process.

We note in this regard that opposing modulations might be mediated by mechanisms
operating on different components of the MBE display. To keep the number of points that
formed the MBE inducing and test rings the same, an increase in the number of test ring
points was always accompanied by a matching increase in the number of inducing ring
points. While the improvement in clarity of the illusory motion observed with the stationary
inducer display when the number of test ring points was raised can only be attributed to the
test ring change, the associated reduction in the strength of the motion biasing mechanism
with the MBE display can be attributed instead to the increase in the number of inducing
ring points. This could occur because increasing the number of inducing ring points increases
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the temporal frequency of the inducing ring point presentations as the inducer rotates and/or

because it decreases the spacing between the inducing ring points. Both these possibilities are

addressed in Stein et al. (2019).

The Spatial Relationship Between the Inducing and Test Rings

While the present report does not investigate the extent to which the RRI depends upon the

precision of the spatial overlap of the inducing and test rings, some data regarding the effect

of spatial overlap in the case of the MBE are provided in the 2010 report of the MBE by

Mattler and Fendrich. In this study, Test Procedures 6 to 9 in the section on phenomeno-

logical testing investigated the effects of making the test ring diameter 1� or 3� of visual angle
larger than the inducing ring and the effect of displacing the test ring position 1� or 3�

upward from the inducing ring. In these tests, a rotating inducer with a velocity of 1500�/s
and 90ms duration was presented, followed by an ISI of 60ms, followed by a 500ms test

ring. With these parameters, it had been previously found that when the positions of the test

and inducing rings were superimposed, an inducing ring motion was almost always seen and

the illusory test ring rotation matched the direction of the inducing ring on 77% of the trials.

When the test ring diameter was 1� larger than the inducing ring, motion was seen on the

96% of the trials and a congruent motion on 55% of the trials. When the test ring diameter

was 3� larger than the inducing ring, motion was seen on 68% of the trials and a congruent

motion on 35% of the trials. When the test ring was displaced 1� upward, motion was seen

on 97% of the trials and a congruent motion on 58% of the trials. When the test ring was

displaced 3� upward, motion was seen on 92% of the trials and a congruent motion on 49%

of the trials.
Thus, a 1� position mismatch between the inducing and test ring positions substantially

degraded the MBE congruency effect and a 3� mismatch totally abolished it. However, the

incidence of the motion percepts was largely unaffected by the 1� position mismatch and

reduced but not eliminated by a 3� mismatch. These outcomes provide additional support for

the hypothesis that the illusory test ring rotation observed with both the RRI and MBE and

the direction biasing effect that characterizes the MBE are produced by separable processes,

with the processes that produce the test ring rotation being considerably more tolerant of

spatial position mismatches than the processes that produce the direction biasing.
If this is the case, a small spatial misalignment between the inducing and test rings should

eliminate the improvement in motion clarity found with rotating relative to stationary

inducers, but the clarity of the RRI should be largely unaffected by the misalignment.

Further research could readily evaluate this prediction. In addition, we note that we have

made experimental observations that indicate the congruency effect observed with the MBE

is exceedingly sensitive to the spatial alignment of the end position of the inducing ring points

with the positions of the subsequent test ring points when the test ring replaces the rotating

inducing ring – to the extent that certain misalignment conditions can actually reverse the

biasing direction (Stein, 2020).

The Direction of Perceived Rotation

In the case of the MBE, the perceived direction of rotation usually matches the direction of

the rotating inducer. However, in all our experiments with both RRI and MBE, participants

reported clockwise rotations more frequently than counterclockwise rotations. While there

were substantial individual differences in the strength of this clockwise bias, with a given
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participant, the strength of the bias tended to persist across the experimental sessions.
Overall this bias was not conspicuously different in the 29 right and 7 left-handed partic-
ipants, who respectively reported clockwise rotations on 64.9% and 72.2% of the trials in
which the motion direction was specified. A similar clockwise rotational bias has been found
in the ‘silhouette illusion’ created by Nobuyuki Kayahara (Troje and McAdam, 2010; see
Wexler, Duyck, & Mamassian, 2015, and Karim, Proulx, & Likova, 2016, for examples of
directional biases in other perceptual and motor tasks). We do not know the source of this

clockwise bias, but top-down effects related to attention and expectations seem possible.
There may, for instance, be a perceptual bias produced by our familiarity with clockwise
rotations due to our experiences with analog clocks. Commensurate with this speculation,
Morikawa and McBeath (1992) have shown that reading direction can exert a robust bias on
the direction of an ambiguous lateral apparent motion. These considerations point to the
general need for further research on the character of the signals that determine the direction
of ambiguous motions.4

Measures of the Strength of the Illusory Motion

Measuring the subjectively perceived properties of visual illusions is challenging. Here, we
employed a clarity rating that has been used in previous research on apparent motion (e.g.,
Kahneman, 1967) and the LMI (e.g., Christie & Klein, 2005; Downing & Treisman, 1997;
Hubbard & Ruppel, 2011, 2018). This measure has been shown to be statistically robust
(Norman, 2010). The systematic variations in the clarity ratings we found in Experiment 1
were replicated in Experiment 3, which argues for the veracity of the rating patterns we
observed.

Nevertheless, clarity is an inherently subjective and therefore somewhat fuzzy metric and
can be based on idiosyncratic criteria. A replication of the present findings with objectively
quantifiable psychophysical measures of the illusion would therefore be desirable. We are
currently working to develop such alternative approaches. Cancellation techniques in which
real motions are used to null illusory motions offer one possibility (e.g., Blake & Hiris, 1993;

Han et al., 2016; Steinman et al., 1995; Wright & Johnston, 1985). Han et al. used this
approach to quantify the motion seen in the LMI (see also Fuller & Carrasco, 2009; Ha
& Hamm, 2019). Measures that take advantage of the fact that moving stimuli can shift the
perceived position of stationary stimuli offer another possibility (e.g., Durant & Johnston,
2004; Faubert & von Grünau, 1995; Scarfe & Johnston, 2010; Whitney, 2006). The actual
displacement that is necessary to compensate the motion-induced displacement of the two
stimuli can be used as a measure to quantify perceived motion. Whitney (2006) has used this
approach to study illusory line motions. Comparison techniques might also be employed.
For example, the illusory rotation might be compared to an actual rotation, or the end time
of the illusory rotation might be compared to the offset time of an external reference.

Displays that use this last approach are being evaluated in our lab.

Conclusion

We report evidence for a new illusion, the “Ring Rotation Illusion,” which occurs when a
circular outline is followed by a stationary ring of points. This can produce a brief but
compelling illusory rotation of that ring of points in one direction. We quantified the
strength of this illusion by subjective ratings of the clarity of the rotation. Mean clarity
was modulated by the number of points in the stationary ring, the diameter of the rings,
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the ISI between rings, and the duration of the rings. We compare the RRI with the MBE, a

similar illusion in which the inducer is a ring of points that rotates so rapidly it appears to be

a continuous outline. We find the similarity of the two illusions is commensurate with their

sharing a common generative mechanism. However, a crucial characteristic of the MBE, the

congruence between the direction of the inducer’s spin and the apparent test ring rotation, is

necessarily dependent on the inducer spin and therefore has no RRI counterpart. This

rotation-dependent mechanism appears to influence the perceived clarity of the MBE

motion percept as well as its direction, augmenting that clarity and potentially countering

the functional dependencies found with the RRI. We suggest that the RRI is a variant of

apparent motion, which may be the result of a visual heuristic that interprets the stimulus

sequence in a manner that accords with a conjectured sequence of events in the real world.
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Notes

1. To additionally confirm that individual differences in participants’ sensitivity to the inducer type did

not modulate the effect of inducer type on their clarity and distance judgments, we correlated

participants’ sensitivity levels with the effect of inducer type of their clarity and distance ratings

in the 1500�/s condition. These correlations were not significant (clarity: r¼ –.25, p¼ .43; distance:

r¼ –.21, p¼ .51).
2. A reviewer raised the issue whether eye movements could play a role in the inducer discrimination

task. This is in principle possible. Saccades (including microsaccades), for instance, could briefly

shift the retinal path along which moving inducer stimuli advance, producing systematic local

distortions with a rotating inducer not present with a stationary inducer. The orientation of the

retinal traces painted during saccades could also reveal a moving inducer’s rotation direction.

However, these effects can only occur if participants move their eyes during the brief presentations

of the inducer (91ms and 121ms in Experiment 2 and 3, respectively). Moreover, we deem it very

unlikely that saccades are contributing in a major way to the MBE as the information provided by
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saccades would be available irrespective of whether the test ring is presented, but judgments of the

rotation direction are only above chance when the test ring follows the inducer. In the case of the

RRI, the inducer is stationary, so there is no clear reason why eye movements would have any effect.
3. We do not know of any study that examined the effect of ISI on instances of TAM other than the

LMI, but note that Tse and Logothetis (2002) wrote: “TAM, in contrast, does not require a blank

ISI between images to see the results of form-based matching and may actually be diminished by

such an ISI” (p. 258). If this is true, it bolsters evidence the RRI and TAM differ.
4. We note that Wexler et al. (2013) have proposed that in the case of another rotation illusion they call

the high-phi phenomenon, the direction of an illusory rotation is determined by a “motion seed”

that can link to broadband motion energy. It is possible a similar hypothesis could be applied to the

RRI and MBE.
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