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ABSTRACT

Context. Understanding convection is important in stellar physics, for example, when it is an input in stellar evolution models.
Helioseismic estimates of convective flow amplitudes in deeper regions of the solar interior disagree by orders of magnitude among
themselves and with simulations.
Aims. We aim to assess the validity of an existing upper limit of solar convective flow amplitudes at a depth of 0.96 solar radii obtained
using time-distance helioseismology and several simplifying assumptions.
Methods. We generated synthetic observations for convective flow fields from a magnetohydrodynamic simulation (MURaM) using
travel-time sensitivity functions and a noise model. We compared the estimates of the flow amplitude with the actual value of the flow.
Results. For the scales of interest (` < 100), we find that the current procedure for obtaining an upper limit gives the correct order
of magnitude of the flow for the given flow fields. We also show that this estimate is not an upper limit in a strict sense because it
underestimates the flow amplitude at the largest scales by a factor of about two because the scale dependence of the signal-to-noise
ratio has to be taken into account. After correcting for this and after taking the dependence of the measurements on direction in Fourier
space into account, we show that the obtained estimate is indeed an upper limit.
Conclusions. We conclude that time-distance helioseismology is able to correctly estimate the order of magnitude (or an upper limit)
of solar convective flows in the deeper interior when the vertical correlation function of the different flow components is known and
the scale dependence of the signal-to-noise ratio is taken into account. We suggest that future work should include information from
different target depths to better separate the effect of near-surface flows from those at greater depths. In addition, the measurements
are sensitive to all three flow directions, which should be taken into account.
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1. Introduction

Helioseismic inferences of convective motions in the solar inte-
rior yield consistent results in near-surface layers using differ-
ent techniques (e.g., De Rosa et al. 2000; Braun & Lindsey
2003; Hindman et al. 2004; Gizon & Birch 2004; Langfellner
et al. 2014, 2015). One important statistical property of convec-
tive motions is their spatial power spectrum, which quantifies
the scale-dependent amplitude of the velocities. Inferences of
the power spectrum of convective motions in deeper regions of
the solar interior have led to conclusions that differ by more
than an order of magnitude (Hanasoge et al. 2012, hereafter
HDS2012; Greer et al. 2015). Understanding these differences
and obtaining reliable estimates of the spectrum of convective
motions in the Sun is important for several processes in stellar
interiors, such as the maintenance of differential rotation, and for
understanding the role of convection in the emergence of active
regions. This is even more urgent because convective velocities
from numerical simulations of solar convection exhibit large-
scale convective motions that are far too strong, even compared
to surface observations (Gizon & Birch 2012; Lord et al. 2014).
This last issue is often referred to as the convective conundrum.

To date, the only methods that have been used to constrain
the spectrum of convective motions in the deeper solar interior
are time-distance helioseismology (Hanasoge et al. 2010, 2012)
and ring-diagram analysis (Greer et al. 2015). As helioseismic
techniques, both infer solar interior flows from surface observa-
tions of stochastically excited sound waves and surface-gravity
waves, which propagate through the interior. To do so, time-
distance helioseismology (Duvall et al. 1993) uses travel times
of waves that travel different distances and hence probe differ-
ent depths. In ring-diagram analysis (Hill 1988), observations of
the local power spectrum of the surface oscillations are used and
the Doppler-shifted frequency of the seismic waves is measured
by way of a background flow field. Gizon & Birch (2005) and
Gizon et al. (2010) reviewed these local helioseismic techniques,
and Hanasoge et al. (2016) reviewed their application to probing
interior convection. In addition, global helioseismology can be
used to infer properties of time-dependent flows such as convec-
tion (e.g., Roth & Stix 2003; Woodard 2016; Mani & Hanasoge
2020). This method relies on global properties of the oscillations
such as mode frequencies or amplitudes. Time-dependent flows
result in mode coupling, which can be measured in global obser-
vations and be used to reveal flow properties.
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For the case of time-distance helioseismology, Hanasoge
et al. (2010, 2012) estimated an upper limit of convective
motions based on several simplifying assumptions, notably that
the signal-to-noise ratio (S/N) of the helioseismic measurements
is independent of the horizontal spatial scale and that the signal
in travel-time measurements is predominantly due to the flow in
one direction at or near a targeted depth.

We here therefore aim to assess the validity of the method
suggested by HDS2012 to infer an upper limit on convective
flow amplitudes in the solar interior. To do this, we generated a
number of realizations of synthetic travel-time maps using back-
ground flow fields from existing numerical magnetohydrody-
namic (MHD) simulations of quiet-Sun convection (Lord et al.
2014). As we know the input flow, we can assess the perfor-
mance of the resulting estimate and the underlying assumptions.
To generate the synthetic observations, we employed a forward
model of the signal and a noise model. In the forward model,
the signal in the travel-time maps is computed using the first
Born approximation (Böning et al. 2016), which takes single-
scattering perturbations to the wave field into account (Gizon &
Birch 2002). We obtain realizations of the stochastic noise from
a Gaussian noise model in Fourier space (Gizon & Birch 2004;
Fournier et al. 2014), which is based on the assumption of a large
number of random wave sources homogeneously distributed in
space and time. These are well-tested methods used in the com-
munity (e.g., Böning et al. 2017; Gizon et al. 2020).

2. Methods

We consider the problem of estimating subsurface convective
flow amplitudes from simulations in Cartesian geometry. We
assume that the statistical properties of the flow do not depend
on location within a horizontal layer.

Clearly, the use of Cartesian geometry is a simplification,
especially when the interest is on larger horizontal scales. The
main effects of this simplification are that (i) the resolution in
Fourier space is reduced compared to covering the entire sphere,
and (ii) effects of the spherical geometry such as rotation and
curvature on the flow are not modeled. These are important
shortcomings that should be addressed in future studies. How-
ever, given the order-of-magnitude difference between HDS2012
and Greer et al. (2015), our main interest in this work is to verify
whether one of the proposed methods (HDS2012) is working at
all, and potentially, to give clues on the cause of the differences.

In addition, the essential problem that convective flow ampli-
tudes are larger in simulations than in observations is also
present for Cartesian simulations of convective flows (Lord et al.
2014, see the comparison to surface observations in Fig. 5).
In Cartesian geometry, more realistic simulations of convection
are available than in spherical geometry because radiative trans-
fer can be better included and smaller turbulent scales can be
resolved (Kupka & Muthsam 2017).

In this section, we first summarize the methods that we
used to model the method of HDS2012 and to create synthetic
data. We then summarize the assumptions that were made by
HDS2012 to obtain an upper limit on the spectrum of convec-
tion to be able to study the validity of these assumptions in the
following sections.

2.1. Convective flow fields from MURaM

As input for generating synthetic observations, we used 66 con-
secutive snapshots of MHD simulations of solar convection.

These simulations were obtained by Lord (2014) using the
MURaM code (Vögler et al. 2005) with the vertical magnetic
flux fixed to zero. The details for these simulations are given in
Lord (2014, see the case “zero net flux” in Tables 2.1 and 5.1,
as well as Sects. 2 and 5)1. Results for the purely hydrodynamic
case of this simulation setup were reported in Lord et al. (2014).
After the hydrodynamic simulations had reached a statistically
steady state, Lord (2014) initialized the magnetic field with a
root mean square magnetic field strength of 0.5 G while keep-
ing the horizontally averaged vertical magnetic flux at zero. The
dynamo-related magnetic field amplification resulted in a photo-
spheric root mean square magnetic field strength of 140 G and a
photospheric mean unsigned vertical magnetic flux of 37.2 G.

Lord (2014) showed snapshots of the vertical velocity uz
of the hydrodynamic case in Figs. 2.2 and 2.3 and horizon-
tally averaged density, temperature, and pressure profiles in
Fig. 2.5, which are close to a standard solar model (Christensen-
Dalsgaard et al. 1996). Snapshots and horizontal averages of
background quantities are very similar for the magnetic case (see
Lord 2014). We show a snapshot of the horizontal velocity ux in
Fig. C.1.

We used 66 consecutive snapshots that were archived by
Lord (2014). They were extracted at a cadence of 3.8 h of
solar time, and rebinned to 512 × 512 × 384 grid points with
a resolution of 384 × 384 × 128 km3 in a Cartesian box sized
196 × 196 × 50 Mm3 in the (x, y, z) directions, where z points
upward and L = 196 Mm is the horizontal extent of the box. The
original spatial resolution had twice as many grid points in all
directions. The reduction in resolution only changes the smaller
scales in the simulation, while in this study, we are interested
in the very largest scales, which are relatively unaffected by the
reduction in resolution. The simulation extended to a depth of
z = −48.5 Mm (r = 0.93 R�, or about 16 cumulative pressure
scale heights from the surface). This study is targeted at flows
around r = 0.96 R�, which is about 2.2 local pressure scale
heights from the bottom boundary.

The helioseismic data in HDS2012 were averaged over time
periods of one day. The data are thus sensitive to temporal aver-
ages of convective motions. We here mimicked this temporal
averaging by subdividing the simulated cubes into 11 chunks
of 6 × 3.8 h = 22.8 h and by averaging the flow field over
the six snapshots for each chunk. This is further discussed in
Sects. 2.4.3 and 4.

2.2. Forward model in Cartesian geometry

As the simulated flow fields are given in Cartesian geometry and
are horizontally periodic, we adopt a Cartesian geometry for the
rest of this paper. The Cartesian box was centered at the equa-
tor. In order to convert from Cartesian coordinates (x, y, z) into
spherical coordinates (r, θ, φ) and vice versa, where r is the dis-
tance from solar center, θ is the colatitude and φ is the longitude,
we used the relations x = φR�, y = (π/2 − θ)R�, z = r − R�. To
facilitate comparison with HDS2012, we continue to refer to the
z coordinate by the corresponding value for r.

In Cartesian geometry, the convolution theorem can be used,
see Appendix A, to write the relation between travel times τ
and flows u = (ux, uy, uz), which is mediated by the sensitivity

1 The Ph.D. Thesis of Lord (2014) “Deep Convection, Magnetism
and Solar Supergranulation” may be downloaded from https://ui.
adsabs.harvard.edu/abs/2014PhDT.......241L/abstract.
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function K = (Kx,Ky,Kz) in the Fourier domain,

τ(x) =
∑

z

hz

(
h2

x

∑
x′

u(x′, z) · K(x − x′, z)
)

+ ε(x), (1)

τ(k) =
∑

z

hz

(
(2π)2u(k, z) · K(k, z)

)
+ ε(k), (2)

where we mark the horizontal Fourier transform only by the
use of the horizontal Fourier variable or wave vector, k, see
Appendix A, and we used ` = kR� to convert from horizontal
wave number k = |k| into harmonic degree. In Eq. (1), we have
summed over all vertical grid points z and horizontal grid points
x′, we multiplied by the uniform vertical grid spacing hz and hor-
izontal grid spacing hx = hy, and we used x− x′ = (x− x′, y− y′)
to define a horizontal convolution. In our computations, we used
the discretization in Eq. (1), but for brevity in notation, we write
in the remainder of this paper for the vertical integral∑

z

hz ↔

∫
dz. (3)

We here considered the deep-focus travel-time geometry
used by HDS2012 for the target depth of r = 0.96 R� and
computed travel-time sensitivity kernels K for this measurement
using the Born approximation and the method of Böning et al.
(2016), see Fig. 1. This method assumes that the flow is constant
in time. Sensitivity functions obtained using the Born approxi-
mation compare well in different approaches (e.g., Birch et al.
2007; Burston et al. 2015; Böning et al. 2016; Mandal et al.
2017). To compute the sensitivity functions, we used a spatial
grid that was four times as wide as the MURaM grid to capture
the entire sensitivity function. It was then Fourier-projected on
the MURaM grid using the periodicity of the flow field. Further-
more, we used only half the spatial resolution for computing ker-
nels. This is sufficient because the smallest seismic wavelength
is still more then ten times larger than the spatial resolution.
Appendix B gives further details on the deep-focus travel-time
geometry, which was modeled using the kernels. The travel-time
geometry was designed by HDS2012 to be predominantly sen-
sitive to ux flows (the east-west component of the flow) close
to a target depth of 0.96 R�. Figure 1 shows that the travel-time
measurements are sensitive to flows in all spatial directions and
especially to near-surface flows, although there is some degree
of focussing for Kx.

Using these kernels and the flow fields from MURaM, we
obtained forward-modeled travel-time maps using Eq. (2). These
travel times are free of seismic noise (ε = 0) and are thus referred
to as noiseless travel times. The bottom left panel in Fig. 2 shows
an example of these maps for one realization of the flow field.
The top panels of Fig. 2 show that ux indeed contributes most
to the travel times, as intended by HDS2012. However, the uy
and uz flow components also contribute significantly, and a large
fraction of the ux contribution comes from near-surface flows
(bottom middle panel in Fig. 2), which was unintended. On the
other hand, the bottom right panel in the figure shows that the
signal from the flows in the deeper layers is somewhat correlated
with the total signal, which shows that the deep flows might be
detected using these data.

2.3. Noise model and covariance of travel times

In Cartesian geometry and in the quiet Sun, it is reasonable to
assume that the correlation in the noise of two travel-time mea-
surements only depends on their separation (e.g., Gizon & Birch
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Fig. 1. Sensitivity of deep-focus travel times (target depth 0.96 R�) to
flows. The observational setup is taken from HDS2012 and is described
in detail in Appendix B. We computed the sensitivity functions using
the first Born approximation (Böning et al. 2016).
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Fig. 2. Example noiseless travel times τNR (bottom left panel) corre-
sponding to the right panel in Fig. 3 and contributions from the dif-
ferent flow components (top panels) as well as different depth ranges
(remaining panels) obtained using Eq. (2) with ε = 0.

2004),

〈ε(x) ε(x′)〉 = Λ(x − x′), (4)

so that, see Appendix A,

〈ε(k) ε(k′)〉 = δk,k′
Λ(k)

h2
k

, (5)

where Λ is the noise covariance matrix and hk is the resolu-
tion in Fourier space. Here, we assumed that averages 〈q〉 =
〈q(t)〉t for any quantity q are taken over many independent real-
izations q(t), which are observed for different nonoverlapping
periods indexed by t. We assumed that enough data were aver-
aged so that the temporal averages approximate their expectation
values.
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Fig. 3. Example realizations of the noise ε(x) from our noise model on the kernel (left) and MURaM grids (middle), and synthetic noisy travel
times τ(x) (right). The noise has a standard deviation of 10.3 s and the travel-time signal in the right panel of 1.9 s, which compares well with the
data (Hanasoge et al. 2012). Left panel: can be compared to Fig. 5 in the supplementary material of Hanasoge et al. (2012). Figure 2 shows the
contribution of the travel-time signal to the right panel in more detail.

As a consequence of the horizontal translation invariance, the
problem decouples in k space, that is,

〈τ∗(k) τ(k′)〉 = δk,k′

(
1
h2

k

Λ(k) + (2π)4
∑

d,d′=r,θ,φ

"
dzdz′

× K∗d(k, z) Kd′ (k, z′)〈u∗d(k, z) ud′ (k, z′)〉
)
. (6)

We compute the noise covariance matrix for the deep-focus
measurement using the method of Gizon & Birch (2004) and
Fournier et al. (2014) and draw realizations of the noise as
described in Appendix A.

Figure 3 shows an example realization of the synthetic noise.
It is qualitatively very similar to the actual data while being a
different stochastic realization. This can be seen by comparing
the left panel in Fig. 3 to Fig. 5 in the supplementary material
of HDS2012. Our synthetic noise has a standard deviation of
10.3 s and the contribution of the travel-time signal to the right
panel of Fig. 3 has a standard deviation of 1.9 s. Both compare
reasonably well with the data (HDS2012), where the noise has a
standard deviation of 11.8±0.3 s and the data 2.5±0.02 s (Birch
et al., in prep.). We note that this noise model has been tested
successfully against data (e.g., Figs. 5, 6, 8, 10, and 11 in Gizon
& Birch 2004; Fig. 5 in Fournier et al. 2014).

However, we also note that it is not clear why Fig. 3
in HDS2012 shows a very similar travel-time map, but with
features aligned in north-south direction, as opposed to the
features aligned in east-west direction in Fig. 5 in the supple-
mentary information of HDS2012 and in our Fig. 3. Except for
the difference in the orientation, the three figures are qualita-
tively very similar. Because the measurements were averaged
(see also Fig. 1), it is expected that travel-times are more corre-
lated in east-west direction, as is shown in our noise maps and in
Fig. 5 in the supplementary material of HDS2012. On the other
hand, the orientation of the noise does not affect the results in
our study or in HDS2012. Therefore we do not address this issue
further.

2.4. Assumptions for estimating an upper limit

In this subsection, we summarize the essential assumptions
leading to the estimate obtained by HDS2012 and introduce

their method. We also briefly outline the motivation for these
assumptions. After summarizing the assumptions that lead to
this estimate, we assess their validity in the following section.
We therefore do not discuss their validity in this section. We
here explicitly mark the most important assumptions made by
HDS2012 to obtain an upper limit.

However, we stress already here that rather than an inequality
sign, an approximate equality sign is a more adequate assump-
tion in many cases. In the following, we therefore include alter-
native formulations of the assumptions as approximations for
future reference in parentheses.

2.4.1. Noise correction

A major step is the so-called noise reduction, which aims at esti-
mating the noiseless (or noise-reduced) travel times τNR = τ− ε,
which is the signal of interest. In order to estimate the ampli-
tude of the signal from the noisy travel-time measurements,
HDS2012 used a relation from Gizon & Birch (2004, Sect. 6).
Correcting an obvious error in Gizon & Birch (2004), Hanasoge
et al. (2012) used the correct version

σ2(T ) =
N2

0

T
+ S 2, (7)

where σ2 is the variance of the data, T is the observation time,
N2

0/T = N2 is the variance of the noise for an observation time
T , and S 2 is the contribution of the signal to the total variance.
This equation is valid in the case of time-independent flows and
omits a small 1/T 2 contribution to the noise (see Eqs. (14) and
(B.6) in Fournier et al. 2014). From Eq. (7), it follows that

S 2

σ2 ≤
S 2

N2 , (8)

and by assuming that the S/N is independent of the spatial scale,
HDS2012 obtained

τfft
NR(`)

(A1)
≤

√
S 2

N2 + S 2 τ
fft(`) ≤

S
N
τfft(`). (9)

Here, qfft(`) indicates an azimuthally averaged spectrum that was
obtained from a horizontal Fourier transform of the quantity q
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(e.g., q = τ or q = ux) to be compared with the spherical nota-
tion of HDS2012. The quantity qfft(`) is defined as a mode ampli-
tude per spherical harmonic degree (same unit as q). As usual,
an appropriate summation of qfft(`)2 can be used to estimate the
variance in real space, see Appendix A for the exact normaliza-
tion. Starting from Eq. (9), we use a notation like “(A1)” to mark
inequalities or equalities that correspond to the most important
assumptions from HDS2012 that we assess in this study. These
assumptions are summarized in Sect. 2.4.3.

The main aspect of assumption (A1) that we assess in this
study is the assumed independence of k or ` of the signal-to-
noise ratio, which is implicit in Eq. (9). HDS2012 fit the S/N in
Eq. (7) to the data. We do not study the validity of this fitting
procedure here.

In order to estimate the signal from the noisy data, HDS2012
used assumption (A1), which says that the noise-reduced travel-
time mode amplitude τfft

NR(`) is bounded by (or can be approx-
imated by) the S/N times the observed noisy travel-time mode
amplitude τfft(`). Here, τfft

NR(`)2 is a spectral decomposition of
the signal variance, and similarly, τfft(`)2 is a decomposition of
the total variance σ2.

For synthetic data, we know( S
N

)true

(`) =
τfft

NR(`)
εfft(`),

(10)

and we can thus compare this value with the value of S/N used
by HDS2012.

2.4.2. Calibration curve

When the amplitude of the signal has been estimated from
the data or a noiseless travel-time spectrum is given for syn-
thetic data, the aim is to estimate the amplitude of the convec-
tive motions at the depth that generates the signal. HDS2012
proposed to do this using a so-called calibration curve. This
calibration curve simply converts the noise-reduced travel-time
spectrum into a velocity spectrum.

To introduce the derivation of the calibration curve pro-
posed by HDS2012, including the underlying assumptions, we
start from Eq. (6). Assuming that the statistical properties of the
data are translation invariant, we can only consider correlations
〈τ∗(k) τ(k′)〉 for k = k′. One then obtains

〈τNR(k)2〉 = (2π)4
∑
dd′

"
dzdz′

× K∗d(k, z) Kd′ (k, z′) 〈u∗d(k, z) ud′ (k, z′)〉 (11)
(A2)
≥ (2π)4

∑
d

"
dzdz′ K∗d(k, z) Kd(k, z′) 〈u∗d(k, z) ud(k, z′)〉

(12)
(A3)
≥ (2π)4

"
dzdz′ K∗x(k, z) Kx(k, z′) 〈u∗x(k, z) ux(k, z′)〉,

(13)

where, following HDS2012, we assumed that the spectrum of
the travel-time signal is bounded below by (or can be esti-
mated by) the spectrum of travel-times stemming only from the
x-component of the flow in assumption (A3), or in an intermedi-
ate step as a sum of spectra from the three components, ignoring
correlations of different flow components, in assumption (A2).

These assumptions are motivated by the idea that the measure-
ment geometry is designed to be mostly sensitive to the x direc-
tion. ux contributes most to the signal, see the top left and bottom
left panel in Fig. 2. However, the measurements are also sensi-
tive to the other flow components, see Fig. 1 and the top middle
and top right panels in Fig. 2. We evaluate and discuss the valid-
ity of the assumptions made by HDS2012 and the effect on the
inferred flow spectrum in detail in Sect. 3.

HDS2012 assumed that the flow near the target depth of the
travel-time measurement bounds the spectrum from below (con-
tributes dominantly to the spectrum of travel times). In addition,
they assumed that the correlation of the flow at different depths
〈u∗x(k, z) ux(k, z′)〉 may be bounded (or modeled) by a Gaussian,
more specifically that some Gaussian is centered at the target
depth zT = (0.96 − 1)R� (z = 0 is at r = R�) with a width of
σz′ = 16.77 Mm = 1.8HP, where 1.8 pressure scale heights HP
is the mixing length. It is required here that the Gaussian falls off
faster than the correlation function, such that

〈u∗x(k, z) ux(k, z′)〉 ≥ 〈|ux(k, zT)|2〉 exp
(
−

(z − zT)2

2σ′2z

)
× exp

(
−

(z′ − zT)2

2σ′2z

)
, (14)

and consequently, if K∗x(k, z) Kx(k, z′) > 0,

Eq. (13)
(A4)
≥ |K(k, σ′z)|

2 〈|ux(k, zT )|2〉, (15)

where

K(k, σ′z) = (2π)2
∫

dz Kx(k, z) exp
(
−

(z − zT)2

2σ′2z

)
. (16)

We did not confirm whether the assumption of a Gaussian shape
of the correlation function is an appropriate choice. This is left
to future studies.

The final assumption is

1
N`

∑
k∈I`

〈|ux(k, zT)|2〉 |K(k, σ′z)|
2 (A5)
≥

 1
N`

∑
k∈I`

〈|ux(k, zT)|2〉

 C′2` ,

(17)

where I` = {k such that |k| − hk/2 ≤ `/r < |k| + hk/2} selects all
horizontal wave vectors of similar length, N` is the number of
elements in I`,

C′2` =
1
N`

∑
k∈I`

|K(k, σ′z)|
2, (18)

and ` = ` j takes the values ` j = j hkr with integer j in order
to be compatible with the discrete Fourier grid. This introduces
the so-called calibration curve, C′`. By making assumption (A5)
in Eq. (17), we assume that the azimuthal dependence of the
flow and the kernel spectra are not anticorrelated, such that the
azimuthal average of the kernels and flow spectra can be taken
independently, without increasing the result. This was assumed
but not explicitly mentioned by Hanasoge et al. (2012).

By taking the azimuthal average of the travel-time power
spectrum in Eq. (11) and by using the above assumptions, one
obtains the final inequality on which the estimate of the upper
limit of the flow amplitude by HDS2012 is based. At the same
time, we convert from Cartesian into spherical geometry in the
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Fourier domain using ` = kr and h` = hkr. Here and in the defi-
nition of I` above, we used r ≈ const = R� for the entire domain,
which is equivalent to the assumption of Cartesian geometry.
In addition, we employed the convention for converting spec-
tra from Fourier space into spherical harmonic space outlined in
Appendix A, which is inspired by Birch et al. (in prep.),

τfft
NR(`)2 =

h3
k

(2` + 1)r

∑
k∈I`

|τNR(k)|2 (19)

Eqs. (13),(15),(17)
≥

h3
k

(2` + 1)r

∑
k∈I`

〈|ux(k, zT)|2〉 C′2` (20)

= ufft
x (`, zT)2 C′2` . (21)

In order to facilitate the numerical computation of Eq. (16),
HDS2012 instead chose a smaller width σz = σ′z/D, where
D = 9.64, see also Birch et al. (in prep.). As HDS2012 derivedK
or C′` from numerical simulations of wave propagation, shrink-
ing the correlation width by the factor D permitted them to
deduct a larger number of independent measurements from one
simulation, and thus to reduce the numerical cost. However, the
quantity D at the same time acts as an additional free parameter.
We show below that its introduction has important effects on the
estimated spectrum.

After obtaining K(k, σz) and the alternative calibration
curve

C` =

√
1
N`

∑
k∈I`

|K(k, σz)|2, (22)

HDS2012 then approximated C′` by

C′`
(A6)
= D C`. (23)

The integration around the target depth with a Gaussian
weighting of width σ′z is equivalent to assuming that the flows
are vertically correlated with each other for about a scale height.
This is reasonable for the simulated data (Lord et al. 2014),
although a scale dependence of this width may be a more ade-
quate assumption. At the same time, the value of the vertical
correlation length of the flows is not known for the Sun.

2.4.3. Summary of assumptions

As a result of the above assumptions, we obtain, see
Eqs. (9), (21), and (23),

ufft
x (`, zT)

(A2)−(A6)
≤

τfft
NR(`)
D C`

(A1)
≤

S
N
τfft(`)
D C`

= ûfft
x (`, zT), (24)

where the equivalent of the right-hand side was used by
HDS2012 to estimate the flow near the target depth. We write
ûx for the estimate of ux. We now briefly summarize the most
important assumptions that were explicitly marked above and
that were proposed by HDS2012. We evaluate them in the fol-
lowing section.

(A1) The variance in the travel-time maps stemming from
the signal and due to the flow is bounded above by (or can
be estimated by) obtaining the S/N from a fit to the data (see
Hanasoge et al. 2012). The S/N is independent of spatial scale,
see Eq. (9).

(A2) The noise-reduced spectrum of travel times is bounded
from below by (or can be estimated by) taking only correlations
of a flow component with itself into account, see Eq. (12).

(A3) The spectrum of travel times is further bounded from
below by (or can be estimated by) taking only correlations of the
x-component of the flow with itself into account, see Eq. (13).
This assumption stems from the observation that the travel-time
geometry is chosen such that the major contribution is in fact
from this component.

(A4) The spectrum of travel times is further bounded from
below by (or can be estimated by) the contribution of the domi-
nant depth range, which is assumed to be a pressure scale height
around the target depth of the deep-focus measurement, see
Eq. (15).

(A5) The azimuthal dependence of ux and Kx is independent,
that is, it does not matter whether these quantities are first mul-
tiplied and are then averaged over the azimuth of k, or whether
the average is taken first and is then multiplied, see Eq. (17).

(A6) To obtain the calibration curve, similar results are
obtained regardless of whether the kernels are integrated over
about a pressure scale height, σ′z or over the smaller width
σz = σ′z/D and then the result is multiplied by D, that is,
C′` ≈ D C`, see Eq. (23).

Furthermore, a few more assumptions were (at least implic-
itly) made by HDS2012. We state these assumptions here for
completeness; these assumptions are not be studied here but
should be addressed in future work:

(B1) In fitting the S/N, HDS2012 followed the assumption
of Gizon & Birch (2004) that the noise decreases with 1/

√
T .

A potential 1/T term (see Eqs. (13) and (B.6) in Fournier et al.
2014) is thus neglected.

(B2) The effect of a time dependence of the convective flows,
either on the fit of the S/N through a time dependence of the sig-
nal, or on the travel times beyond a Born-approximation model
for constant flows (Gizon & Birch 2002), can be neglected.
Because convective flows are time-dependent, time-dependent
perturbation theory should be used in an ideal scenario.

(B3) The convolution theorem can be used. This is straight-
forward for Cartesian geometry, see Eq. (2), but might be inac-
curate for spherical geometry.

(B4) The vertical correlation of the flow components can be
approximated (or bounded) by a Gaussian, see Eq. (14). The pos-
sibility of an anticorrelation of divergent flow components (due
to mass conservation) is thus not taken into account, but should
be modeled in future work.

3. Results

3.1. Scale-dependent noise correction is important

For MURaM-type flows, we find that the S/N significantly
depends on the spatial scale and is not independent of scale, as
assumed by HDS2012, see the top panel in Fig. 4 and assump-
tion (A1). The true S/N for the Sun may be different to what we
report here if the subsurface flows in the Sun are substantially
different from MURaM flows. We strongly recommend that the
noise correction be made as a function of harmonic degree (or
wave number), possibly even as a function of azimuth (i.e., m or
kx/|k|).

The middle and bottom panels in Fig. 4 show the effect of
this scale-dependent noise correction on the spectrum of travel
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Fig. 4. Inverse of the S/N (top) and its effect on the noise reduction
(middle) as well as the estimate of the spectrum of horizontal flows
(bottom, as a velocity amplitude per mode) for different approaches. The
S/N is clearly scale dependent, in contradiction to assumption (A1). We
use ` = kR� to convert from wave number into harmonic degree. We
do not show results for ` = 0 because this corresponds to an arbitrary
change in reference frame.

times and the estimated flow amplitudes. For MURaM flows, a
constant S/N for all scales clearly leads to an underestimation of
the flow amplitudes at the largest scales.

3.2. Travel times are sensitive to near-surface flows and to all
flow directions

The deep-focus travel-time geometry of HDS2012 is designed
to be sensitive mostly to ux flows (the east-west component of
the flow) around the target depth of 0.96 R�. Figure 1 shows that
the travel times are in principle sensitive to all flow components
and to a broad range of depths, including flows near the surface.
However, there is some focus on the target depth for the sensi-
tivity to ux flows, see Fig. 1 (bottom left panel).

This is also reflected in the contribution of the different flow
components and depth layers to the travel-time signal, which we
show in Fig. 2. Although ux (top left) contributes most to the
signal (bottom left), uy and uz also contribute significantly (top
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Fig. 5. Calibration curve of Hanasoge et al. (2012, Fig. 2 in the sup-
plementary material) can be reproduced (blue solid curve). When a
more realistic width σz′ = 16.8 Mm = 1.8 HP of flow features is
used to compute the calibration curve, a change is seen (dashed orange
curve), which would lead to an increase in the estimated upper limit,
see assumption (A6). The crosses and pluses indicate the grid points in
harmonic degree, which were obtained by converting horizontal Fourier
modes from Cartesian to spherical geometry (see Appendix A.4). The
kernels and thus the calibration curves shown here were computed on a
spatial grid with a four times larger spatial extent than the MURaM grid,
therefore the resolution in Fourier space, hl = rhk = r 2π

L , is four times
finer than in other plots in this paper. See Fig. C.2 for a more detailed
comparison.

center and right). The contribution from the surface layers (bot-
tom center) is also large. However, the signal from the deeper
ux flows (bottom right) is visible in the signal, which means that
ux flows around the target depth might be detected using this
method.

3.3. Calibration curve can be reproduced, but depends on
assumed flow properties

Second, we find that the computation of the calibration curve,
which was done by HDS2012 using simulations of wave
propagation, can be reproduced, see the blue line in Fig. 5.
The agreement is quite good when compared to Fig. 2 of the
supplementary material of HDS2012, even when we computed
it on the coarser-grained wave number grid of the MURaM sim-
ulation, see the green dashed line in Fig. C.2.

However, HDS2012 computed the calibration curve assum-
ing a width of convective features of σz = 1.74 Mm and later
rescaled the result by a factor of D = 9.64 to mimic an effec-
tive width of σ′z = Dσz, which is similar to the mixing length or
1.8 pressure scale heights at 0.96R� (see Sect. 2.4.2 and Birch
et al., in prep.). We compare this to directly assuming a larger
width of convective features of σ′z = Dσz, see C′` in Fig. 5. This
alternative calibration curve is lower. Using C′` thus results in a
correspondingly higher estimated upper limit, see Eq. (24).

In other words, the use of the width σz = σ′z/D and rescaling
the calibration curve by using DC` as done by HDS2012 effec-
tively results in a lower estimate for the upper limit. This dif-
ference arises because the kernel is not constant in the area σ′2z
around the target depth, see Fig. C.4. This increases the value
of DC` compared to C′`. Consequently, assumption (A6) is thus
not met and the resulting inequality is in the wrong sense. As the
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Fig. 6. Test of the validity of the assumptions that enter the derivation of the calibration curve, shown as a noise-reduced signal in travel times
(left panel) and flow amplitude (center and right panels) as a function of scale. If all assumptions (A2)–(A5) were satisfied, the different curves in
each panel would not cross each other, but be ordered from higher to lower values in the same sense as they are ordered from top to bottom in the
legends (e.g., τfft

NR ≥ Eq. (12) ≥ Eq. (13) ≥ Eq. (15) ≥ Eq. (17) for the left panel).

value of σz is an assumption on the vertical correlation length of
the flow, an unknown property of the Sun enters the method here.
In addition, the vertical correlation function is approximated by
a Gaussian, although its shape is not known, see the discussion
in Sect. 3.7.

The introduction of the rescaling with D acts similar to a
free parameter. The overall effect of this is further discussed in
Sect. 3.6.

3.4. Concept of a calibration curve is generally valid

Furthermore, we confirmed the assumptions (A2)–(A6) that
were made to derive the calibration curve, see Fig. 6. While
some of the inequalities were met, some were violated, although
not substantially. We conclude from this that the concept of a
calibration curve is generally valid when the resulting estimate
is rather understood as a rough estimate of the amplitude of
the flow and not a strict upper limit. We recall that the calibra-
tion curve depends on the assumed vertical correlation function,
which is not known for the Sun, see the discussion in Sect. 3.7.

3.4.1. Azimuthal averages have to be treated more carefully

We find that when the effect of off-diagonal flow-correlation
is neglected, assumption (A2) is not justified because the off-
diagonal elements make a significant negative contribution, see
Fig. C.6. The reason for this is as follows. When the depen-
dence of K∗x Ky and 〈u∗xuy〉 on the direction of k is considered,
we observe that the two quantities are anticorrelated, see the left
panel in Fig. C.5. This is the case for almost all k and results in a
negative total effect of the off-diagonal terms on the travel-time
spectrum. It might be possible to remove this anticorrelation in
future studies by using a pure point-to-point travel-time geome-
try, where cross correlations are not averaged over arcs as done
by HDS2012, or by considering a decomposition in divergent
and vortical flows, rather than x and y components, see also the
discussion in Sect. 4.

We find that the diagonal elements have a positive contribu-
tion (everywhere but for a small region for d = z, see Fig. C.6).
As a consequence, neglecting d = d′ = y and d = d′ = z, as in
assumption (A3), is justified to obtain an upper limit. However,
we find that all flow components contribute significantly to the
travel-time spectrum, see Fig. 6 (compare the blue, orange, and
green curves in the left panel). This is consistent with all flow
components contributing to the travel-time signal (see Sect. 3.2).
To obtain an accurate estimate of the flow spectrum, the effect of
all flow components thus has to be taken into account.

Similar to the off-diagonal case, neglecting the dependence
of K∗x Kx and 〈u∗xux〉 on the direction of k introduces an error, see
the right panel in Fig. C.5. The magnitude of the error depends
on k and r/R�, but it is generally about 20% (as the effect on
the spectrum, not on the mode amplitude). The resulting effect
on the travel-time spectrum is of the wrong sign and artificially
increases it, see Fig. 6. Strictly speaking, assumption (A5) is thus
not justified.

3.4.2. Major contribution from near-surface flows, small
contribution from target depth

We find that the major contribution to the travel-time spectrum
comes from near the surface. Only about 10–30%, rarely up to
40%, of the travel-time spectrum is produced below 0.99 R� or in
a Gaussian envelope with width σ′z around the target depth, see
Fig. C.3. Assumption (A4) is thus well satisfied as an inequality,
but is far from being a good approximation. This result is consis-
tent with the sensitivity kernels peaking near the surface (Fig. 1)
and with the travel-time signal having a dominant contribution
from the surface (Sect. 3.2).

3.5. Rather a rough estimate than a strict upper limit

Finally, we compared the resulting estimates of the flow ampli-
tude with the actual estimates in Fig. 7. Taking all previous
results into account, we find that it is more adequate to consider
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Fig. 7. Comparison of estimates of the spectrum of convective flows
obtained from the synthetic data based on flows from a MURaM simu-
lation. The method of HDS2012 applied to this synthetic data (solid blue
line) can be improved by using a scale-dependent signal-to-noise cor-
rection (dashed orange line, this work). Both estimates give the correct
order of magnitude of the flow (green line), although the estimate from
the method of HDS2012 is not a strict upper limit. When the underlying
assumptions are improved (solid orange line), our best estimate results
in a larger upper limit.

the estimates to be rough estimates of the magnitude of the flow
than a strict upper limit. Equivalently, we find it to be more accu-
rate to write an approximate equality sign instead of an inequal-
ity in most cases for assumptions (A1)–(A6).

Figure 7 compares the estimates

ûfft,HDS2012
x (`, zT) =

( S
N

)HDS2012 τfft(`)
D C`

, (25)

ûfft
x (`, zT) =

( S
N

)true τfft(`)
D C`

, (26)

with the amplitude of the time-averaged flow, ufft
x (`, zT), which

was averaged over six snapshots that were taken within the
period of one day (see Sect. 2.1). We averaged all estimates and
actual flow amplitudes over the 11 available realizations. These
averages were taken over the corresponding spectra before the
square root was taken to obtain the flow amplitude.

3.6. Why the method gives the correct order of magnitude as
a result

Considering the results shown in Fig. 7, we conclude that for
MURaM-like flows, the method of HDS2012 just as applied in
that paper (blue curve) gives the correct order of magnitude of
the flow within a factor of about two for the larger scales with
` . 90. For scales with ` < 60, the estimate is not an upper limit
because it underestimates the true flow by a factor of about two.
For the smaller scales with ` > 100, the estimate is too large by
nearly an order of magnitude, although it is a true upper limit.

When the noise correction is applied correctly and the free
parameter D is eliminated (solid orange curve), the agreement is
better. In nearly the entire range (` < 110), the improved esti-
mate constitutes an upper limit and is consistent with the actual
flow spectrum within a factor of two.

Given that for both cases some of the inequalities are not
met, see Fig. 6 and Sect. 3.4.1, the question remains why the

method works, at least for estimating the order of magnitude. To
understand this, we first note that considering only the effect of
d = x flow correlations roughly gives the right amplitude of the
travel-time spectrum. This is because the cumulative effects of
the other flow components are partly positive and partly nega-
tive, and roughly cancel out, see Fig. 6 (blue versus green curve
in left panel) and Fig. C.6 (cumulative effect of assumptions A2
and A3).

When we only take the flow near the target depth into
account, the travel-time spectrum is greatly reduced, see
Fig. C.3. The flows around the target depth only contribute about
10–40% to the squared signal. See also the (A4) curve in Fig. 6
and the corresponding estimate in the right panel in Fig. 6. This
effect is almost completely compensated for by the amplifica-
tion from the change from the calibration curve C′` to DC`, see
middle panel in Fig. 6. By this change, a free parameter D is
effectively introduced by HDS2012, which compensates for the
inaccuracies that occurred previously. We can only speculate
about the reason why the compensation using D is apparently
of the correct magnitude to yield a tight upper limit, as can be
seen in the middle panel of Fig. 6 and for the dashed line in
Fig. 7. It may be due to chance or arise because Hanasoge et al.
(2010) and HDS2012 calibrated the inferred spectrum of convec-
tion with the flows from simulations, and hence intuitively chose
a value for D that gives the correct magnitude of the estimated
spectrum for the flow field used in their study.

For smaller scales (` > 110), the estimates become worse,
as can be seen toward the right end of Figs. 7 and 6. This is
because for increasingly smaller horizontal scales, the sensitivity
of the travel times to flows near the target depth decreases and
the sensitivity to near-surface flows increases.

3.7. Importance of the vertical correlation structure and the
surface contribution

Because the signal receives a major contribution from near-
surface flows (Sects. 3.2 and 3.4.2, Fig. C.3), a correct conver-
sion of a travel-time spectrum to a flow spectrum always has
to take the relation of the surface flows to the deep flows into
account, see especially Fig. C.6. It would be possible to measure
this correlation function for MURaM flows, but the true vertical
correlation function for the Sun is not known. We therefore find
as a major conclusion that the vertical correlation structure of the
flow is needed as a prior knowledge for this method to be usable,
or equivalently, that its result crucially depends on the assumed
correlation structure.

This point concerns not only the correlation of the surface
with the deeper regions, but also the relative amplitude of the
deep flows compared to those closer to the surface. In other
words, without knowing the effect of the near-surface layers to
the travel-time spectrum, it is impossible to infer the spectrum at
greater depths. Inferences of the spectrum at depth from observa-
tions can thus only be trustworthy when the spectrum is inferred
at several depths at once, for example, using information from
different target depths and an inversion procedure. Using differ-
ent target depths would in principle also include information on
the vertical correlation structure.

Alternatively, it may be possible to improve the observa-
tional setup so that the sensitivity kernel is better focused at the
target depth (see the bottom left panel in Fig. 1 for the current
lack of focus and Sect. 3.2). If the measurement were only sen-
sitive to flows close to the target depth, the problem discussed
above would be avoided. Reducing the sensitivity to near-surface
flows would be a first step toward such an improvement.
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4. Conclusions
We have performed an independent evaluation of the method
suggested by HDS2012 to estimate an upper limit of solar con-
vective flow velocities from helioseismic measurements at a
target depth of r = 0.96 R�. We did this using synthetic helioseis-
mic data for which the true flow is given by the output of a larger
scale MURaM MHD convection simulation of the quiet Sun
(Lord 2014) similar to Lord et al. (2014). Furthermore, we used
consistent normalizations of the relevant spherical harmonic and
Fourier transforms as proposed by Birch et al. (in prep.).

For the case of MURaM flows, we find that the estimates
obtained using this method give the correct order of magnitude
of the actual flow amplitudes within a factor of two. However,
at the largest scales, the actual flow amplitude is underestimated
and the upper limit is too low by a factor of about two. This is due
to the scale dependence of the S/N, which was not considered in
the original study (HDS2012).

Because several simplifying assumptions enter the method
we studied, the question arises why it roughly works. One way to
look at this is by considering individual effects of every assump-
tion made. When the correction for the S/N is made, we find
that when only the x component of the flow is considered, this
is a reasonable approximate model for the travel-time spectrum,
although the other components contribute significantly as well.
Even though the flows around the target depth then only con-
tribute 10–40% to the travel-time spectrum, the effect of this on
the estimated upper limit is nearly compensated for by a rescal-
ing of the calibration curve introduced by HDS2012. As a result,
the estimated upper limit is just above the actual flow spectrum.
If the rescaling of the calibration curve were not done, the upper
limit would be higher by a factor of about 1.5. The dilemma is
that the answer to how the calibration curve is correctly com-
puted depends on the vertical correlation length of the actual
flows in the Sun, the shape of the vertical correlation function,
and the ratio of the amplitudes at depth to the surface, none of
which are known. Another way to look at this is as follows. For
MURaM flows, even though some inequalities that each corre-
sponds to an assumption are not met, others are met with sub-
stantial leeway, so that the final estimate still is an upper bound,
except at large scales because of the scale dependence of the
signal-to-noise correction.

Several lessons can be learned from our study that should be
taken into account in future inferences of the flow spectrum at
depth. The first is the mentioned scale dependence of the signal-
to-noise ratio.

Second, the uncertainty of how the calibration curve is to
be computed is substantial. This is because the correct calibra-
tion curve depends on the properties of the actual flows in the
Sun, especially the vertical correlation function of the horizontal
flows, which is not known. In addition, the travel-time measure-
ments are more sensitive to near-surface flows than to flows near
the target depth. As the ratio between the near-surface spectrum
and the spectrum at depth is not known, the effect of the near-
surface flows on the measured travel-time spectrum is hard to
infer from observations of only one target depth. Possible solu-
tions to this may be performing inversions using several target
depths to infer the vertical correlation structure to improve the
goodness of the focus at depth (e.g., using helioseismic holog-
raphy, Lindsey & Braun 2000), or to fit several different models
for power spectra and vertical correlation lengths to the data.

Third, the dependence of the kernel and the flow on the
azimuthal angle in the Fourier domain has to be taken into
account. As a result of this dependence, correlations of ux with uy
have non-negligible effects on the travel-time spectrum. A solu-

tion may be decomposing the flow into divergent and vortical
components, rather than x and y, or using point-to-point or point-
to-annulus geometry rather than an arc-to-arc travel-time geom-
etry. Alternatively, because the problem decouples in k space, an
inversion may solve for every k individually.

This study may be extended in future work. First, the effect
of the time dependence of the flow has not been studied, nei-
ther on the S/N due to the decrease of the signal with time,
nor by forward-modeling the effect of time-dependent flows
on the travel times. Second, the potential relevance of a 1/T 2

term in the noise model, which may arise in addition to the
usual 1/T dependence of the variance (see Eqs. (13) and (B.6)
in Fournier et al. 2014), may be studied analytically. Third,
this study should be extended to spherical geometry and to
include different types of flow fields, including simulations with
different spectral shapes for the flow field (e.g., Cossette &
Rast 2016; Featherstone & Hindman 2016) and different flow
topologies (e.g., Spruit 1997; Brandenburg 2016; Bekki et al.
2017; Hotta et al. 2019; Anders et al. 2019).

On the one hand, the results presented here give evidence that
the method of HDS2012 correctly estimates the order of mag-
nitude of the flow under the assumption that solar flows were
similar to MURaM (if consistent normalizations of spherical
harmonics are used, see also Birch et al., in prep.). However, the
observed spectrum then leads to the conclusion that the convec-
tive conundrum persists at depth. If the vertical correlation func-
tion of flow components in the Sun is very different to MURaM,
for example, with a very different correlation length, this conclu-
sion may well be different. Determining the correlation function
of solar convection may be simpler if a parameterized version of
this function were available, for example, obtained by comparing
different simulations.

On the other hand, we cannot resolve the inconsistency of
these results with those obtained by Greer et al. (2015) using ring-
diagram analysis at this stage. A deeper analysis of that method
is required to resolve this issue, see also Nagashima et al. (2020).
We are confident that by a careful and detailed evaluation of all
aspects of both methods this discrepancy can be understood and
resolved. In addition, global helioseismic methods might soon be
used to infer the spectrum of solar convection at depth (e.g., Roth
& Stix 2003; Woodard 2016; Mani & Hanasoge 2020). Helioseis-
mology of convection is thus becoming a promising topic to be
studied in the near future.
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Appendix A: Detailed formulas and derivations

A.1. Fourier transform convention

For the forward and inverse discrete Fourier transforms of 2D
spatial variables, we used the convention (see also Gizon &
Birch 2004)

X̂(k) = X(k) =
h2

x

(2π)2

∑
x

X(x) e−ik·x, (A.1)

X(x) = h2
k

∑
k

X(k) eik·x, (A.2)

where k = (kx, ky) is the Fourier variable (wave vector), x =
(x, y) is the horizontal spatial variable, hx = L/Nx is the sampling
distance in x, hk = 2π/L is the resolution in Fourier space, L the
spatial extent of the data in one direction, and Nx is the number
of points in dimension. We used the same symbol for a quantity
and its Fourier transform and indicate the Fourier transform by
the use of the Fourier variable.

Then, the Fourier transform of the convolution

(X ∗ Y)(x) = h2
x

∑
x′

X(x′)Y(x − x′) (A.3)

is

̂(X ∗ Y)(k) = (2π)2X(k)Y(k). (A.4)

Parseval’s theorem becomes, with Y(x) = X(−x)

X(x)2 =
1
N

∑
x

X(x)2 = h4
k

∑
k

|X(k)|2. (A.5)

A.2. Travel times

For the noiseless forward-modeled travel times, this means

τNR(x) =
∑

z

hz

(
h2

x

∑
x′

u(x′, zm) · K(x − x′, z)
)
, (A.6)

τNR(k) =
∑

z

hz

(
(2π)2u(k, z) · K(k, zm)

)
. (A.7)

A.3. Covariance and noise

The noise covariance matrix is defined as

Λ(x − x′) = 〈ε(x) ε(x′)〉. (A.8)

In order to generate realizations of the noise, we set

ε(x) = h2
k

∑
k

(
N(k)

√
Λ(k) C

)
eik·x, (A.9)

or equivalently,

ε(k) = N(k)
√

Λ(k) C (A.10)

with

C =
1
hk

=
L
2π
, (A.11)

where N(k) are complex Gaussians with independent real and
imaginary parts and unit variance that are independent for differ-
ent kk, except for the condition N(−k) = N(k)∗.

Then, we can easily verify that Eq. (A.8) is verified,

〈ε(x) ε(x′)〉 = h2
k

∑
k

( √
Λ(k) C

)
eik·x

× h2
k

∑
k′

( √
Λ(k′) C

)
eik′·x′ 〈N(k)N(k′)〉︸           ︷︷           ︸

δk,−k′

(A.12)

= h4
kC2

∑
k

Λ(k) eik·(x−x′) = h2
kC2Λ(x − x′) (A.13)

= Λ(x − x′). (A.14)

We use σ2 = 〈ε(x)2〉 = Λ(x − x′ = 0).

A.3.1. Relation to Eq. (33) in Gizon & Birch (2004)

As a consequence of the above definitions, we have

〈|ε(k)|2〉 =
h4

x

(2π)4

∑
x,x′
〈ε(x)ε(x′)〉︸       ︷︷       ︸

=Λ(x−x′)=Λ(−y)

eik·x−ikx′︸   ︷︷   ︸
=e−iky

(A.15)

=
h2

x

(2π)2

∑
x

Λ(k) =
L2

(2π)2 Λ(k) (A.16)

=
1
h2

k

Λ(k) (A.17)

⇒ Λ(k) = h2
k〈|ε(k)|2〉 (A.18)

⇒ Λ(x − x′) = h2
k

∑
k

(
h2

k〈|ε(k)|2〉
)

eik·(x−x′), (A.19)

which differs by a factor of h2
k from Eq. (33) in Gizon & Birch

(2004).

A.3.2. Continuous setting

In a continuous setting (Gizon & Birch 2002),

〈ε j(k) ε j′ (k′)〉 = δD(k − k′)Λ j j′ (k). (A.20)

To transform back to a discrete setting, we can substitute

δD(k − k′)↔
1
h2

k

δk,k′ (A.21)

and we also obtain C = 1/hk.

A.4. Power spectra and equivalent mode amplitudes in
spherical harmonics

Following Birch et al. (in prep.), we converted the power spec-
trum of any quantity from Fourier space into an equivalent power
spectrum in spherical harmonic space with the same variance at
a single location or per area. As our Fourier transform definition
is differently normalized than in Birch et al. (in prep.), we here
summarize all formulas appropriate for the convention chosen
here.

For any quantity q (e.g., q = τ or q = ux), we write

q(x)2 =
1
N

∑
x

q(x)2 = h4
k

∑
k

|q(k)|2 = hkr
∑
k∈I

Pfft
q (k)

hkr
, (A.22)

Pfft
q (k) =

∑
k∈Ikr

h4
k |q(k)|2, (A.23)
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where hkr is the equivalent resolution in harmonic degree, I =
{ j hk | j = 0, . . . ,Nx − 1}, the sets I` are defined in Sect. 2.4.2, and
we use ` = kr to convert wave number into spherical harmonic
degree. We then define the amplitude per mode by

qfft(`) =

√
Pfft

q (`/r)
(2` + 1)hkr

(A.24)

=

√∑
k∈I` h3

k |q(k)|2

(2` + 1)r,
(A.25)

so that

q(x)2 = hkr
∑
k∈I

(2kr + 1) qfft(kr)2 (A.26)

≈

`max∑
`=0

(2` + 1) q(`)2, (A.27)

where q(`)2 is an interpolated power per spherical harmonic
mode,

q(`)2 =
Pq(`)
2` + 1

, (A.28)

Pq(`) =
Pfft

q,i(`/r)

hkr
, (A.29)

where Pfft
q,i is an interpolated version of Pfft

q . As we work in Carte-
sian geometry, this is equivalent to assuming that the radial coor-
dinate r is approximately constant throughout the domain. We
thus assume r = const = R�. For ux at r = 0.96 R�, the differ-
ence due to that compared to assuming r = const = 0.96 R� is
only 2% ≈ 1 −

√
0.96.

The corresponding energy spectrum Eq as defined by Birch
et al. (in prep.) satisfies
r
2

q(x)2 = hkr
∑
k∈I

r
2

(2kr + 1) qfft(kr)2 (A.30)

= hkr
∑
k∈I

Eq(kr) ≈
`max∑
`=0

Eq(`), (A.31)

Efft
q (`) =

r
2

(2` + 1) qfft(`)2, (A.32)

Eq(`) =
r
2

(2` + 1) q(`)2. (A.33)

In summary, the quantity Eq is directly comparable to Eφ

from Birch et al. (in prep.) when we here choose q = ux.

Appendix B: Details on travel-time geometry

To compute the kernels, we used the data analysis filters
and the geometrical setup of HDS2012, which are summarized
as follows. The data were filtered using a high-pass filter that
includes a raised cosine,

f1(ν) =


0 for ν < 1.1 mHz,
cos

(
π(|ν|−1.5 mHz)

0.4 mHz

)
for 1.1 mHz ≤ ν ≤ 1.5 mHz,

1 for 1.5 mHz < ν ≤ 5.0 mHz,
0 for ν > 5.0 mHz,

(B.1)

and a wide phase-speed filter that targets r = 0.96 R�,

f2(ν, `) =


0 for ` = 0,
exp

(
log(0.5) (|ν/`|−ν0)2

HWHM2

)
for 0 < ` ≤ `max,

0 for ` > `max,

(B.2)

Table B.1. Details of the deep-focus travel-time geometry.

# i1 i2 ∆1 ∆2 ∆ tinner touter
[deg] [deg] [deg] [min] [min]

0 8 8 3.28 3.28 6.56 39.75 58.50
1 9 7 3.75 2.81 6.56 39.75 58.50
2 10 6 4.22 2.34 6.56 39.75 58.50
3 11 6 4.69 2.34 7.03 41.25 60.00
4 12 6 5.16 2.34 7.50 42.00 60.75
5 13 5 5.62 1.88 7.50 42.00 60.75
6 14 5 6.09 1.88 7.97 43.50 62.25
7 15 5 6.56 1.88 8.44 44.25 63.00
8 16 5 7.03 1.88 8.91 45.75 64.50
9 17 5 7.50 1.88 9.38 46.50 65.25
10 18 4 7.97 1.41 9.38 46.50 65.25
11 19 4 8.44 1.41 9.84 48.00 66.75
12 20 4 8.91 1.41 10.31 48.75 67.50
13 21 4 9.38 1.41 10.78 49.50 68.25

Notes. The total travel distance is ∆ = ∆1 + ∆2. The exact distances of
the arcs to the central point were computed by ∆ j = (i j − 1) ∆x, where
∆x = 0.46875◦ is the spatial resolution of the data. The quantities tinner
and touter define the window that we used to model the travel-time fit
(Gizon & Birch 2004).

where ν0 = 20 µHz, HWHM = 6.7µHz, `max = 383, and
the filter is applied by multiplying the power spectrum by f1 f2,
or equivalently, by multiplying the Fourier-transformed data by√

f1 f2.
From the filtered data, HDS2012 measured travel-time dif-

ferences in an arc-to-arc way. This was done by obtaining cross-
correlation functions for point-to-point measurements, and then
averaging the cross-correlation functions over arcs before fitting
the travel time. Here, they used only opposite points on the arcs.
Afterward, HDS2012 averaged the travel times with a simple
arithmetic mean over the different arcs. The arcs are on concen-
tric circles, have a width of 90 degrees, and are in the east and
west quadrants. Table B.1 gives the distances of the arcs to the
central point. In the case of ∆1 = ∆2, the setup is symmetric
about the central point and only one pair of arcs exists. Other-
wise, both pairs of arcs, one with ∆1 to the east and ∆2 to the
west of the central point, and the other vice versa, were used, see
Figure 2 in HDS2012.

HDS2012 projected the data using Postel’s projection, cen-
tered on the central point between the arcs. To keep the
computational burden for the kernels and the noise covari-
ance manageable, we did not use Postel’s projection, but
approximated the number of points on each arc by Narc =
floor( π2 sin(max(∆1,∆2)) (∆x)−1) + 1, where we used the floor
function. The spatial resolution of the input data is ∆x =
0.46875◦× π/180◦, which corresponds to 5.69 Mm at disc center.

Appendix C: More details for the validity of the
assumptions

In this appendix, we give more detailed background information
for our results. Figure C.1 shows an example snapshot for ux
taken at the middle of the time period relevant for Fig. 2.

Figure C.2 shows a more detailed comparison of the calibra-
tion curves Cl and C′l/D, computed for the kernel grid and after
interpolating the kernels on the MURaM grid. Figure C.3 shows
the contribution of the region below 0.99 R� to the travel-time
spectrum.
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Fig. C.1. Example realization of the horizontal flow component ux at
the surface (z = 0). The displayed snapshot is taken in the middle of the
time period relevant for the travel times shown in Fig. 2 and is saturated
at 33% of its maximum absolute value. Example realizations for uy are
statistically similar but transposed, and examples for uz can be found in
Lord (2014, Figs. 2.2 and 2.3).

Finally, we show a few more detailed plots to verify the
assumptions for selected spatial scales kR� and depths z. Plots
for other spatial scales and depths are qualitatively similar. As a
shorthand for Figs. C.4–C.6, we write for any quantity Q(k)

meank Q(k) = mean|k|=k Q(k) =
1

Nkr

∑
k∈Ikr

Q(k), (C.1)

K∗d Kd′〈u∗dud′〉 = mean|k|=k K∗d(k, z)Kd′ (k, z′)〈u∗d(k, z)ud′ (k, z′)〉,
(C.2)

K∗d Kd′ = mean|k|=k K∗d(k, z)Kd′ (k, z′), (C.3)

and we use R[] and I[] for the real and imaginary parts of a
complex number.
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Fig. C.2. Comparison of calibration curves in a more detailed way than
in Fig. 5. When the kernels are interpolated onto the MURaM grid, the
results do not substantially change (dotted curves), except at ` ≈ 20. The
crosses and plusses indicate the grid points in harmonic degree, which
were obtained by converting horizontal Fourier modes from Cartesian
into spherical geometry (see Appendix A.4). The kernels were com-
puted on a spatial grid with a four times larger spatial extent than the
MURaM grid, therefore the resolution in Fourier space, hl = rhk = r 2π

L ,
is four times finer.
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Fig. C.3. Contribution to the noiseless travel-time spectrum (τfft
NR)2 from

below 0.99R� (solid blue line) and from a Gaussian-weighted region
around the target depth 0.96R� (dashed blue) and their forward models
based on the actual flow and two versions of the calibration curve (solid
orange and dash-dotted green).
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Fig. C.4. Azimuthal averages K∗d Kd as defined in Eqs. (C.1) and (C.3) saturated at 10% of the maximum value of the left panel. The units are
s4 cm−4 (i.e., cgs units). The quantities K∗d Kd′ are zero for d , d′, see also Fig. C.5.
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Fig. C.5. Exemplary dependence of kernels and flow correlations on the direction of the horizontal Fourier vector. k Left panel: 〈u∗xuy〉, right
panel: 〈u∗xux〉. For the plot, each quantity was divided by its maximum value in the given range. Error bars of Cu were obtained from the standard
deviation of the 11 available simulation snapshots and are similar for CKCu. At other depths and similar wave numbers, the plots are qualitatively
similar. Right panel: we also show that taking the mean before or after multiplying CK

xy and Cu
xy changes the result (thick solid black line).
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Fig. C.6. Azimuthal averages K∗d Kd′ 〈u∗dud′ 〉 as defined in Eqs. (C.1) and (C.2) saturated at 10% of the maximum value of the top left panel. The
units are s2 cm2 (i.e., cgs units).
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