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Only 2% of glioblastoma multiforme (GBM) patients respond to standard therapy and
survive beyond 36 months (long-term survivors, LTS), while the majority survive less
than 12 months (short-term survivors, STS). To understand the mechanism leading
to poor survival, we analyzed publicly available datasets of 113 STS and 58 LTS.
This analysis revealed 198 differentially expressed genes (DEGs) that characterize
aggressive tumor growth and may be responsible for the poor prognosis. These
genes belong largely to the Gene Ontology (GO) categories “epithelial-to-mesenchymal
transition” and “response to hypoxia.” In this article, we applied an upstream analysis
approach that involves state-of-the-art promoter analysis and network analysis of the
dysregulated genes potentially responsible for short survival in GBM. Binding sites
for transcription factors (TFs) associated with GBM pathology like NANOG, NF-κB,
REST, FRA-1, PPARG, and seven others were found enriched in the promoters of
the dysregulated genes. We reconstructed the gene regulatory network with several
positive feedback loops controlled by five master regulators [insulin-like growth factor
binding protein 2 (IGFBP2), vascular endothelial growth factor A (VEGFA), VEGF165,
platelet-derived growth factor A (PDGFA), adipocyte enhancer-binding protein (AEBP1),
and oncostatin M (OSMR)], which can be proposed as biomarkers and as therapeutic
targets for enhancing GBM prognosis. A critical analysis of this gene regulatory network
gives insights into the mechanism of gene regulation by IGFBP2 via several TFs
including the key molecule of GBM tumor invasiveness and progression, FRA-1. All the
observations were validated in independent cohorts, and their impact on overall survival
has been investigated.

Keywords: glioblastoma, master regulators, upstream analysis, IGFBP2, FRA-1, FOSL1, short term survivors,
transcription factors

INTRODUCTION

Glioblastoma multiforme (GBM) is the most common, highly malignant primary brain tumor
(Wen and Kesari, 2008). Despite huge developments in treatment strategies, GBM poses unique
treatment challenges due to tumor recurrence (34%) and drug resistance leading to poor survival
rates of less than 15 months even after advanced chemoradiotherapy (Krex et al., 2007). As few as
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2% of patients respond to standard therapy and survive beyond
36 months (Krex et al., 2007; Das et al., 2011), clinically called
long-term survivors (LTS). Another group termed short-term
survivors (STS) are those who survive less than 12 months
(Shinawi et al., 2013). The factors that determine the long survival
are not well understood.

Though several factors like age, gender, Karnofsky
Performance Score, the extent of tumor resection, radiotherapy,
and chemotherapy are associated with survival and treatment
response (Scott et al., 1999; Lee et al., 2008; Sonoda et al.,
2009; Zhang et al., 2012), it is evident from recent research that
certain molecular signatures can be connected with treatment
response and thereby survival. Promoter methylation of the
gene MGMT, mutations in the genes IDH1/2, and loss of
heterozygosity in chromosome 1p/19q have been confirmed
to be highly informative (Krex et al., 2007; Das et al., 2011;
Zhang et al., 2012; Han et al., 2014; Reifenberger et al., 2014;
Franceschi et al., 2015; Chen et al., 2016). Furthermore, CHI3L1,
FBLN4, EMP3, IGFBP2, IGFBP3, LGALS3, MAOB, PDPN,
SERPING1, and TIMP1 gene expression has repeatedly been
reported to be decreased in LTS patients (De Vega et al., 2009; Bi
and Beroukhim, 2014; Han et al., 2014; Franceschi et al., 2015).
A better characterization of these extreme survival groups at the
molecular level will likely shed important light on the biological
aspects that drive their malignancy and survival.

With the advent of gene expression profiling and remarkable
developments in high-throughput technologies, it is possible to
gain deeper molecular insights into disease biology. Databases
like Gene Expression Omnibus—GEO (Barrett et al., 2013),
Array Express (Athar et al., 2019), and The Cancer Genome
Atlas—TCGA (Grossman et al., 2016) serve as open platforms
for retrieval of high-quality multi-omics data to search for
new markers in cancer research. The analysis of differentially
expressed genes (DEGs) is already an important and established
in silico strategy to identify potential drivers of cellular state
transitions. For a more refined analysis, annotation of DEGs,
using a priori known biological categories from the Gene
Ontology (GO; Ashburner et al., 2000) and pathway databases,
e.g., TRANSPATH R©(Krull et al., 2003), KEGG (Kanehisa et al.,
2020), PANTHER (Thomas et al., 2003), and Reactome (Jassal
et al., 2020), has proven to be an effective hypothesis-
driven approach in cancer research. Moreover, with the advent
of state-of-the-art promoter analysis, it is now possible to
establish gene regulatory networks computationally that can
be used to understand the causes of gene dysregulation and
for identification of causal master regulators driving them. In
this regard, we applied the Genome Enhancer1, a multi-omics
analysis tool that makes use of the open-source programming
environment BioUML (Kolpakov et al., 2019) and incorporates
an automated pipeline for the previously published “upstream
analysis” (Koschmann et al., 2015; Boyarskikh et al., 2018)
and the “walking pathways” (Kel et al., 2019) approach. There
are two major steps that constitute this strategy: (1) analysis
of the promoters of DEGs to identify relevant transcription
factors (TFs): this is done with the help of the TRANSFAC R©

1https://genexplain.com/genome-enhancer/

database (Matys et al., 2006) and the binding site identification
algorithms, MATCHTM (Kel et al., 2003, 2006) and CMA
(Waleev et al., 2006); (2) reconstruction of signaling pathways
that activate these TFs and identification of master regulators
on the top of such pathways: for this, the signaling pathway
database TRANSPATH R© (Krull et al., 2003) has been employed
in conjunction with special graph search algorithms that identify
positive feedback loops (Kel et al., 2019).

In this study, we applied the upstream analysis to publicly
available datasets of GBM from the GEO database to understand
the gene-regulatory networks contributing to short survival in
GBM. This regulatory network revealed a set of 12 TFs binding
to the regulatory regions of the genes of interest and five master
regulators regulating them, namely, (a) vascular endothelial
growth factor A (VEGFA), a mediator of angiogenesis (Xu et al.,
2013) and a promoter of stem-like cells in GBM; (b) PDGF, a
highly amplified gene and key player of tumorigenesis (Martinho
and Reis, 2011); (c) oncostatin M (OSMR), which orchestrates
feed-forward signaling with EGFR and STAT3 to regulate tumor
growth (Jahani-As et al., 2016); (d) adipocyte enhancer-binding
protein (AEBP1), which plays a key role in pathogenesis through
NF-κB activation (Majdalawieh et al., 2020); and (e) IGFBP2.

Insulin-like growth factor binding protein 2, a well-established
molecule of interest in GBM (Yao et al., 2016), was found
to be more highly expressed in STS and to have an impact
on overall survival. IGFBP2 expression is said to be higher
in all four (classical, mesenchymal, proneural, and neural)
GBM subtypes (Lindström, 2019). It also drives gene programs
for immunosuppression in the mesenchymal subtype and is
suggested as an immunotherapeutic target (Liu et al., 2019). In
non-mesenchymal subtypes (classical, proneural, and neural), it
modulates cell proliferation (Phillips et al., 2016; Cai et al., 2018).
It has also been found to be a marker of tumor aggressiveness and
a prognostic marker for survival (Lindström, 2019). However,
the molecular mechanism by which IGFBP2 affects disease
progression and patient prognosis is not fully understood.

This work focuses on understanding gene regulatory networks
that drive short survival in GBM and their master regulators,
which we suggest as biomarkers and therapeutic targets.
Later, we critically discuss the role of IGFBP2 in the gene
regulatory network.

RESULTS

Identification of Differentially Expressed
Genes
Identifying DEGs gives us insight into the biological semantics
of a cellular state and helps to identify promising biomarkers of
various disease states. The differential gene expression analysis
between STS and LTS groups of GBM, from the batch-corrected
GSE dataset, was performed using linear models for microarray
data (LIMMA) (Ritchie et al., 2015) with FDR cutoff of 5%. The
analysis revealed 957 genes that are significantly differentially
expressed (DEGs) (adjusted p-value < 0.05). Furthermore, the
analysis revealed 115 significantly upregulated (log2FC > 0.5)
and 83 significantly downregulated [log2FC < (−0.5)] genes.
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The top five upregulated and downregulated genes and their
corresponding log2FC are shown in Table 1 and the full list is
given in Supplementary Table 1-A.

Functional Annotation of Differentially
Expressed Genes
Functional annotation was performed to investigate the
biological roles of these DEGs. As shown in Supplementary
Figure 1A, the top GO biological processes are extracellular
structure and matrix organization with 30 DEG hits.
Supplementary Figure 1B shows the results for GO cellular
component enrichment, which revealed dysregulation of
genes that encode proteins for the extracellular matrix and
synaptic membranes. The important enriched molecular
function GO terms are channel activity and transmembrane
transporter activity (Supplementary Figure 1C). The disruption
in extracellular matrix organization is one of the important
signatures in glioblastoma treatment response dealing with
invasiveness and malignancy (De Vega et al., 2009). Deeper
biological insights are required in this aspect. It is interesting
to see enrichment of genes known to be involved in glioma
(Figure 1A). Gene signature enrichment based on hallmark gene
sets of MSigDB clearly signifies the enrichment of epithelial-
to-mesenchymal transition depicted in Figure 1B. The process
of epithelial-to-mesenchymal transition plays a very important
role in GBM survival by driving tumor invasiveness and drug
resistance (Iwadate, 2016). Important pathways like Aurora
signaling, G2/M phase transition, and TGF-β pathway are found

TABLE 1 | The list of the top five significantly upregulated and downregulated
genes in STS identified in the GSE dataset.

Gene
symbol

Description Log2FC p-Value Adjusted
p-value

Upregulated
genes

CHI3L1 Chitinase-3-like 1 1.371 9.73E−05 0.013

PDPN Podoplanin 1.241 7.88E−07 0.002

MEOX2 Mesenchymal
homeobox 2

1.159 6.45E−04 0.028

IGFBP2 Insulin-like growth
factor binding
protein 2

1.149 4.87E−05 0.010

COL6A2 Collagen type VI
alpha 2 chain

1.0479 5.79E−05 0.011

Downregulated
genes

KLRC2 Killer cell lectin-like
receptor C2

−1.2187 3.63E−04 0.022

KLRC1 Killer cell lectin-like
receptor C1

−1.2187 3.63E−04 0.022

FUT9 Fucosyltransferase 9 −1.0709 1.15E−04 0.014

DPP10 Dipeptidyl
peptidase-like 10

−1.02781 2.97E−05 0.008

GABRB3 Gamma-
aminobutyric acid
type A receptor
subunit beta3

−0.96352 6.73E−05 0.011

to be enriched according to TRANSPATH R© (Table 2). The full list
of enrichment results can be found in Supplementary Table 1-B.

Identifying the Master Regulators of
Dysregulated Gene Networks
Reconstruction of the disease-specific regulatory networks can
help to identify potential master regulators that may serve as
mechanism-based biomarkers or as therapeutic targets to block
a specific pathological regulatory cascade. Using the promoter
analysis as a first step, we analyzed enrichment of TF binding sites
in promoters of upregulated genes of STS using DNA-binding
motifs from the TRANSFAC R© library. Two hundred seventy-four
TFs (Supplementary Table 1-C) enriched for CCKR signaling,
interleukin signaling, PDGF signaling, and WNT signaling were
found to have their binding sites enriched; full enrichment results
can be found in Supplementary Table 1-D.

Next, we applied the Composite Module Analyst (CMA)
and identified two modules involving 12 TF binding site
combinations that regulate the expression of the genes of interest.
CMA revealed the following modules comprising clustering
binding sites for the following TFs: module 1: HNF3B, NANOG,
NFKAPPAB, TAF1, TCF4, and FRA-1; module 2: PPARG, TAL1,
REST, POU6F1, FOSJUN, and PBX. The modules and their
significance are depicted in Supplementary Figure 2. Differential
expression statistics for the 12 TFs are given in Supplementary
Table 2. Among them, FRA-1 TF (also known as FOSL1) was
found to be p-value significant and upregulated in STS of
GBM (log2FC = 0.023, p-value = 0.008, adjusted p-value (0.093)
(Supplementary Table 2).

Figure 2 validates the predicted cluster of TF binding sites
from the composite modules identified in the promoter of
IGFBP2 gene. We can see that binding sites for the TFs –
c-Fos/c-Jun, Nanog, Tal-1, and HNF3/FoxA1 in this cluster
can be confirmed by publicly available ChIP-seq data of the
GTRD database (Kolmykov et al., 2021). In addition, binding
site of FRA-1 can be confirmed by a cluster of mapped reads
of independent publicly available ChIP-seq data (FRA1 track in
Figure 2) (full map is shown in the Supplementary Figure 4).

Finally, we reconstructed signaling network that activates
the TFs revealed by CMA analysis and thereby identifying
the top regulators in these networks using the TRANSPATH R©

database. With this approach, we identified five important master
regulators that are plausible drivers of short survival in GBM:
IGFBP2, VEGFA/VEGF165, platelet-derived growth factor A
(PDGFA), AEBP1, and OSMR. All the master regulators were
found to be significantly upregulated in STS. The genes that
encode the master regulator proteins are controlled by the
TFs revealed by CMA in their promoters, which maintains the
multiple positive feedback loops in the system. It should be
underlined here that, in such networks with positive feedback
loops, the identified key TFs, such as FRA-1, are both upstream
of their target genes, among them the IGFBP2, as well as
downstream from the master regulator proteins, one of them
the IGFBP2 protein. The regulatory network reconstructed with
six master regulators is shown in Figure 3, and the master
regulators and their log2FC in STS are listed in Table 3. Since
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FIGURE 1 | Functional enrichment analysis of differentially expressed genes (DEGs). (A) Enrichment for known disease gene networks in different diseases. Y-axis
represents enriched ontology categories and X-axis represents gene ratio. Gene ratio is count/set size. The “count” is the number of genes that belong to a given
gene set, while “set size” is the total number of genes in the gene set. Y-axis is sorted based on leading edge. Leading edge is a subset of genes that contributes
most to the enrichment score. The dots are sized based on gene ratio and are colored according to their adjusted p-value. (B) Enrichment for hallmark gene sets in
the molecular signature database similar to (A).

TABLE 2 | Pathway enrichment using the TRANSPATH R© pathway (2019.3) for differentially expressed genes.

ID (TRANSPATH) Title Group size Expected hits Nominal p-value ES Rank at max NES FDR Number of hits

CH000001004 Aurora-A cell cycle regulation 68 67.262 0 0.422 8,347 4.138 0 68

CH000000919 Cyclosome regulatory network 77 76.164 0 0.349 7,336 3.728 0 77

CH000000694 G2/M phase (cyclin B: Cdk1) 66 65.284 0 0.375 6,641 3.587 0 66

CH000000879 Caspase network 83 82.099 0 0.333 8,414 3.523 0 83

CH000000711 TGFbeta pathway 153 151.340 0 0.232 8,431 3.346 0 151

VEGF165 is a splice variant of VEGFA, only the latter will be
considered further on.

Validating the Expression of Master
Regulators in Other Cohorts
The expression patterns of the master regulators identified above
have been validated in two different cohorts: (A) TCGA-GBM
microarray data (Grossman et al., 2016) and (B) GSE16011
(Gravendeel et al., 2009). The expression patterns were similar,
and there is a significant upregulation of all master regulators

except for VEGFA (GSE16011: adjusted p-value = 0.069
and TCGA-GBM: adjusted p-value = 0.075) (Supplementary
Tables 1-E, 1-F). The differential expression values are given in
Table 4.

Validating the Master Regulators in the
TCGA-GBM Cohort
The TCGA-GBM microarray data containing 271 STS and 49
LTS is used to validate the above-identified drivers of short
survival. The data is preprocessed and adjusted for batch effects
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FIGURE 2 | Map of the cluster of transcription factor (TF) binding sites of the composite model identified within the promoter of IGFBP2 gene [–1000 to + 100 bp
relative to TSS]. The position of the TSS (the beginning of the first exon on IGFBP2 gene) is shown by the vertical dotted line. “Yes track” represents the cluster of
identified TF binding sites of the composite model within the promoter. The direction of the arrows gives the orientation of the PWMs. The names of TFs binding to
these sites are shown above the arrows. The track “FRA1” represents the mapped reads of the FRA1 (also called FOSL1) ChIP-seq data of GEO, GSM803382. The
reads were mapped on the hg38 human genome using Subread aligner (Liao et al., 2013) with default parameters. The track “all meta clusters” shows all known
meta-clusters in this region from the GTRD database that represent the overlapping fragments of peaks for one particular TF from several ChIP-seq experiments.
The name of TF is shown above each meta-cluster. Several predicted TF binding sites in the composite model are confirmed in independent ChIP-seq experiments:
several overlapping reads of FRA1 ChIP-seq data in the “FRA1” track and FOSL2 meta-cluster in the GTRD confirm the predicted site for Fra-1; FOS and JUN
meta-clusters in the GTRD confirm the predicted c-Fos/c-Jun binding sites; NANOG meta-cluster confirms the predicted Nanog binding site; TAL1 meta-cluster
confirms the predicted Tal-1 binding site; FOXA2 and FOXA1 meta-clusters of the GTRD confirm the HNF3beta binding site.

(Supplementary Figure 3), and a differential gene expression
analysis is performed. Same cutoffs for log2FC and adjusted
p-value are used. We identified 171 genes upregulated in STS
of GBM (log2FC > 0.5 and adjusted p-value < 0.05) (full
list in Supplementary Table 1-E). Forty-nine of them were
in common between the GSE dataset and TCGA-GBM; the
full differential gene expression analysis results are given in
Supplementary Table 1-G. Composite models selected by the
CMA algorithm across the two datasets were expected to
vary. We identified a model that includes a set of 16 TFs
(Supplementary Table 3) and 12 master regulators upstream of
them (Supplementary Table 4) regulating the signal transduction
and gene regulatory network in STS.

As a result, the TCGA-GBM dataset validates IGFBP2,
AEBP1 (ACLP), and PDGFA as master regulators driving the
dysregulated gene network in STS. We also found that binding
sites for FRA-1 TF are statistically significantly enriched at the
regulatory regions of the dysregulated genes including IGFBP2 in
the TCGA-GBM cohort (Supplementary Table 5).

Impact of Master Regulators on Survival
in GBM
Univariate survival analysis was used to study the impact of these
master regulators and the TFs they regulate on the overall survival
in GBM based on TCGA-RNA-seq data. Patients are split into
non-overlapping 50% upper and lower quantiles. Additionally,
cox regression for the univariate survival analysis is performed,
and hazard ratio (HR) and corresponding p-values are shown in

Figure 4. Univariate survival Cox regression analysis on other
microarray datasets is given in Supplementary Table 1-I. All
master regulators were found to have a significant impact upon
survival except VEGFA. FRA-1 (FOSL1) was found to have a
significant HR.

Master Regulator Expression Patterns
Across GBM Subtypes
Based on the regulatory landscape of GBM, there are four
subtypes—classical, mesenchymal, proneural, and neural
(Verhaak et al., 2010). There is a significant level of intertumoral
as well as intra-tumoral heterogeneity within each of them
(Verhaak et al., 2010; Bradshaw et al., 2016). Molecular subtypes
of GBM in the GSE dataset is given in Supplementary Table 6.
DEGs between STS and LTS within each subtype are given in
Supplementary Table 7. The expression patterns of master
regulators across subtypes and across survival groups are
depicted as boxplot in Supplementary Figure 5. None of the
master regulators were found to be significantly differentially
expressed between survivor groups in any subtypes.

DISCUSSION

Gene regulatory networks represent the causal regulatory
relationships between TFs and their gene targets, which enables
us to discover dysregulated genes in certain biological states
(Marbach et al., 2012). Comparative studies of STS and LTS of
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FIGURE 3 | Signal transduction and gene regulatory network of six master regulators (red nodes) regulating two transcription factor modules (purple nodes) enriched
in promoters of highly upregulated genes of short-term survivors (STS). The dotted lines from genes to such signaling proteins represent the transcription and
translation processes (positive feedback loops). The outside box filling is based on log2FC < (−0.2) and is filled red when upregulated (log2FC > 0.2 and
p-value < 0.05) and filled blue when downregulated (log2FC < 0.2 and p-value < 0.05) in the current study.

GBM showed that gene expression programs executed across
survival groups vary significantly. In the light of these findings,
we sought to apply an upstream analysis approach to gain an
insight about gene regulatory networks driving the short survival.

In the promoter analysis, we identified a set of 12 TFs
in composite clusters that are enriched in the promoter
regions of dysregulated genes in STS (upregulated in STS).
For several of these TFs, a connection to GBM has previously
been established. The TFs NANOG and REST are critical
for self-renewal and maintenance of oncogenic signatures in
glioblastoma stem-like cells (Kamal et al., 2012; Bradshaw
et al., 2016); PPARG has emerged as a promising therapeutic
target as its agonists increased median survival in GBM
patients (Ellis and Kurian, 2014); NF-κB is implicated in several
processes like invasion, epithelial–mesenchymal transition
(Yamini, 2018), resistance to radiotherapy (Avci et al., 2020),
and maintenance of cancer stem-like cells (da Hora et al.,
2019); and FRA-1/FOSL1 has been reported to be important
in maintenance/progression of malignant glioma (Debinski
and Gibo, 2005). FRA-1 along with JUN-B modulates a
malignant feature of GBM by regulating the expression of
the metalloproteinases like MMP-2 and MMP-9 (Kesari and
Bota, 2011). Among these 12 TFs, we found that FRA-1 has a
significant impact upon survival and has a higher expression
in STS. Debinski and Gibo (2005) hypothesized that any
AP1-stimulating signals like epidermal growth factor (EGF),
leukemia inhibitory factor, OSMR, or FGF-2 can positively

regulate FRA-1. VEGF-D is regulated by FRA-1 (supporting the
feedback loop found in our work) and is a known prognostic
factor in other aggressive cancers (Debinski et al., 2001;
Azar et al., 2014).

A graph analysis of the signal transduction network upstream
of these TFs identified five potential master regulators that

TABLE 3 | Table of the master regulators identified, their description, log2FC in
STS, and number of transcription factors regulated.

Molecule
name

Gene description HGNC
gene
symbol

Log2FC in
STS

Number of
TFs

regulated

IGFBP2 Insulin-like growth
factor binding
protein 2

IGFBP2 1.149 9

ACLP AE-binding
protein 1

AEBP1 0.782 9

VEGFA Vascular endothelial
growth factor A

VEGFA 0.778 9

VEGF165 Vascular endothelial
growth factor A

VEGFA 0.778 9

OSMRbeta Oncostatin M
receptor

OSMR 0.634 8

PDGFA Platelet-derived
growth factor
subunit A

PDGFA 0.529 9
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TABLE 4 | Expression of the master regulators identified across survival groups (STS and LTS, respectively) and across three datasets (GSE,GSE16011 and TCGA-GBM
microarray).

Master regulator GSE GSE16011 TCGA

Log2FC (STS vs LTS) Adjusted p-value Log2FC (STS vs LTS) Adjusted p-value Log2FC (STS vs LTS) Adjusted p-value

IGFBP2 1.149 4.87E−05 2.030 4.598E−04 1.098 5.00E−06

AEBP1 0.782 7.75E−05 1.723 0.001 0.971 3.96E−06

PDGFA 0.529 4.55E−04 1.680 4.709E−09 0.825 2.07E−05

VEGFA 0.778 5.20E−04 0.884 0.069 0.500 0.0752

OSMR 0.634 8.65E−04 1.957 4.24E−05 0.486 0.0318

FIGURE 4 | Survival analysis using RNA-seq data of The Cancer Genome Atlas glioblastoma (TCGA-GBM) cohort. (A) AEBP1, (B) OSMR, (C) IGFBP2, (D) PDGFA,
(E) VEGFA, and (F) FRA-1 (FOSL1). Out of the five master regulators, all but VEGFA (AEBP1, OSMR, PDGFA, and IGFBP2) had a statistically significant impact on
survival. Hazard ratio (HR) and statistical significance [p (HR)] according to Cox survival estimates are mentioned.

might explain gene dysregulation in STS, namely, insulin-like
growth factor binding protein 2 (IGFBP2), VEGFA, its isoform
VEGF165, PDGFA, OSMR, and AEBP1. All the identified master
regulators were upregulated in STS, and their expression patterns
were validated computationally in two other independent
cohorts. We found that the expression of all master regulators,
with the exception of VEGFA, was correlated with overall
survival in the GBM patients. IGFBP2, AEBP1, and PDGFA
master regulators driving short survival were validated as master
regulators of short survival in the TCGA-GBM microarray
cohort. Out of them, IGFBP2 had higher expression in STS. The
IGFBP2 is said to be one of most potential glioma oncogenes
and functions as a hub of oncogenic signaling pathways by
regulating pro-tumorigenic signals of tumor initiation and
progression. Earlier studies have suggested IGFBP2 to drive
EMT and as a potential therapeutic target in mesenchymal GBM
(Yamini, 2018; Liu et al., 2019). It is established that exogenous
IGFBP2 promotes proliferation, invasion, and chemoresistance
to temozolomide in glioma cells via integrin β1 by promoting
ERK phosphorylation and nuclear translocation (Schütt et al.,

2004; Yau et al., 2015). IGFBP2 is considered as one of the
strongest biomarkers of aggressive behavior in GBM (Holmes,
2012; Phillips et al., 2016) and also a prognostic marker for
survival (McDonald et al., 2007; Phillips et al., 2016).

Here, we propose that IGFBP2 can be a potential regulator of
FRA-1 TF. IGFBP2-induced RAF/MAPK signaling can activate
FRA-1 (Figure 3). It has been shown earlier that IGFBP2 and
FRA-1 regulate transcription of VEGF (Debinski et al., 2001; Azar
et al., 2011, 2014), which is the second most dysregulated master
regulator in our network. Enhanced ERK signaling, triggered
by these master regulators, may lead to mitogen-induced FRA-1
transcription (Adiseshaiah et al., 2005) as well as its protection
from proteasomal degradation (Vial and Marshall, 2003). The
gene regulatory network deduced here suggests that FRA-1
mediates a positive feedback loop where it activates transcription
of master regulator genes in cooperation with other TFs, which
in turn cause an increase in FRA-1 activity. Promoters of the
genes of all five master regulators reported in the study contain
potential binding sites for FRA-1. Experimental evidences that
IGFBP2 can drive GBM invasion by enhancing MMP2 expression
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FIGURE 5 | A diagram combining prior knowledge about the role of IGFBP2 in GBM and the gene regulatory network developed in the study. The hexagons are
master regulators identified in our analysis. All the intermediates of the gene regulatory network are colored red if upregulated in STS and black if not present in the
network. Dotted black line indicates the knowledge is through literature and continuous black line if known through gene regulatory network. Blue dotted lines
represent gene regulatory connections between master regulators and their corresponding genes transcribed by target transcription factors. VEGFA, PDGFA, IGFs,
and IL-31 activate RAF/MEK/ERK signaling, which mediate cell survival through PI3K-AKT pathway (Yao et al., 2016; Simpson et al., 2017). MEK2/RAF1/ERK5 and
AKT-1 are found to be upregulated in STS, suggestive of activated ERK signaling, which can contribute to drug resistance (Abrams et al., 2010; Salaroglio et al.,
2019). IGFBP2 activates IGFR either by increasing bioavailability of IGFs or by direct interaction with its functional domain. Integrin acts as receptor for IGFBP2
extracellular signals (Schütt et al., 2004; Yau et al., 2015) and modulates NF-κB signaling. IGFBP2 by nuclear translocation (Azar et al., 2011) is involved in
transcriptional regulation of the VEGF gene and modulates angiogenesis (Azar et al., 2011). STAT3 and NF-κB are said to be the two major downstream transcription
factors of IGFBP2 that direct tumorigenic intracellular signaling (Phillips et al., 2016) via EGFR signaling. Oncostatin M, a receptor for cytokine IL31, is a regulator of
EGFR signaling (Jahani-As et al., 2016). FRA-1 is required for AKT activation in cancers to promote AKT-dependent cell growth (Zhang et al., 2016). NF-κB can
regulate AP1 (FOS and JUN) thereby VEGF expression in pancreatic tumor cell lines (Fujioka et al., 2004). All the five master regulators have binding sites for FRA-1.
In the figure, we depicted the possible positive feedback loop between FRA-1 and the master regulators to orchestrate a complex tumorigenic program of
invasiveness, migration, drug resistance, and angiogenesis.

(Wang etal., 2003) support our computational prediction of
IGFBP2 as a therapeutic target. Hence, the gene regulatory
networks proposed by our computational analysis suggest a
novel molecular mechanism associated with GBM survival in
which FRA-1 acts as a transcription regulator of IGFBP2. The
study of Kesari and Bota (2011) confirmed our hypothesis that
IGFBP2 can enhance GBM invasion via TF AP1 (FOS-JUN).
Metalloproteinases like MMP-2/MMP-9 have been reported
earlier to be regulated by FRA-1 in several cancers including GBM
(Debinski and Gibo, 2005; Adiseshaiah et al., 2008; Kimura et al.,
2011; Prywes and Henckels, 2013). Taking these findings together,
our work proposes that the regulation of IGFBP2 gene expression
via AP1 (FOS-JUN) can be an important mechanism of GBM
invasion. An overview of the gene regulatory network developed

in this work and supporting literature evidence is illustrated
in Figure 5.

In summary, our work proposes a gene regulatory network
associated with STS in GBM, which is regulated by five master
regulators, namely, IGFBP2, VEGFA, PDGFA, OSMR, and
AEBP1. Furthermore, these five master regulators may present
biomarkers of GBM prognosis and/or as therapeutic targets for
enhancing survival in GBM. This work also proposes a novel
mechanism of gene dysregulation by IGFBP2 by modulating
a key molecule of tumor invasiveness and progression—FRA-
1 TF. All the genes encoding these five master regulators have
binding sites for FRA-1 in their promoters. FRA-1 and the master
regulators cooperate in a positive feedback loop to orchestrate a
complex tumorigenic program leading to poor survival in GBM.
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TABLE 5 | Statistics of datasets under study.

Platform Short-
term

survivors

Long-term
survivors

GSE53733
(Reifenberger et al.,
2014)

HU133 plus 2.0
arrays

16 23

GSE108474
(Gusev et al., 2018)

HU133 plus 2.0
arrays

97 35

The datasets with labels GSE’ were collected from the GEO database.

MATERIALS AND METHODS

Data Collection
The genome-wide expression profiles based on Human Genome
U133 plus 2.0 array and clinical information of patients
with GBM were collected from the public repository of GEO
database—GSE108474 (Gusev et al., 2018)2 and GSE53733
(Reifenberger et al., 2014)3. The two datasets were pooled
together leading to 113 and 58 samples corresponding to STS
(survival <12 months) and LTS (survival >36 months) with
GBM, respectively (Table 5). Duplicates were not removed.
Sample information and cleaned datasets are given in GitHub.

Affymetrix Microarray Data
Pre-processing
The raw data files (.CEL format) for GSE108474 and GSE53733
were collected from the GEO database—from here on called
as GSE dataset. RMA algorithm is used in R (affy package)
for background correction, quality check, and normalization to
obtain log2-transformed expression values (Gautier et al., 2004).
Batch correction of the pooled expression data was performed
using empirical Bayes framework (Leek et al., 2012). This batch-
corrected file is used for further analysis. Multiple Affymetrix
IDs were summarized to gene IDs by choosing the maximum
out of the probe intensities of multiple probes belonging to a
single gene. The final expression matrix comprised 21,526 probes
and 171 samples.

Differential Gene Expression Analysis
The LIMMA method was applied to identify DEGs (Ritchie
et al., 2015). It is an efficient tool that is stable even for
experiments with small samples. A differential gene expression
analysis of 171 samples of the GSE dataset was performed
with Benjamini–Hochberg adjusted p-value. Nine hundred
fifty-seven genes were significantly (adjusted p-value < 0.05)
differentially expressed (DEGs). One hundred fifteen of them
were significantly upregulated (adjusted p-value < 0.05 and
log2FC > 0.5) and 83 were significantly downregulated [adjusted
p-value < 0.05 and log2FC < (−0.5)].

2https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108474
3https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53733

Databases Used in the Study
Transcription factor binding sites in promoters and enhancers
of DEGs were analyzed using known DNA-binding motifs
described in the TRANSFAC R© library, release 2019.3 (geneXplain
GmbH, Wolfenbüttel, Germany)4 (Wingender et al., 1996). The
master regulator search uses the TRANSPATH R© database, release
2019.3 (geneXplain GmbH, Wolfenbüttel, Germany)5 (Krull
et al., 2003). A comprehensive signal transduction network of
human cells is built by the Genome Enhancer software based
on reactions annotated in TRANSPATH R©. The information
about drugs corresponding to identified drug targets and
clinical trials references were extracted from the HumanPSDTM

database (Wingender et al., 2007), release 2020.26. The Ensembl
database build 99.387 (Aken et al., 2016) was used for gene ID
representation and GO8 (Ashburner et al., 2000) was used for
functional classification of the studied gene set.

Functional Annotation
To explore the biological importance of gene signatures, a
gene set enrichment analysis is performed. All the adjusted p-
value significant genes were used. GSEA is an efficient method
to determine whether the genes of interest show statistically
significant enrichment between different biological states. GO
enrichments for cellular component, biological process, and
molecular functions were performed. To investigate the top
enriched ontology terms, 1,000 random permutations were done
and an adjusted p-value cutoff of 0.05 is used. The dysregulated
gene network enrichment also gives a useful insight about known
disease signatures (Subramanian et al., 2005). The hallmark gene
set of MSigDB (Liberzon et al., 2011) defines specific biological
states or processes. Enrichment analysis is performed in R using
DOSE package (Yu et al., 2015). PANTHER pathway enrichment
of the identified TFs was performed using the EnrichR tool
(Chen et al., 2013). TRANSPATH R© (Krull et al., 2003) pathway
enrichment was performed using the geneXplain platform.

Genome Enhancer Pipeline
The approaches mentioned above help us in understanding
the impact of the DEGs in GBM biology. To understand the
reason behind this dysregulation, the genome enhancer pipeline
of geneXplain is used. The genome enhancer is a multi-omics
analysis service (see text footnote 1) that is built using an
open-source programming environment BioUML (Kolpakov
et al., 2019)9 and incorporates an automated pipeline for the
previously published “upstream analysis” (Koschmann et al.,
2015; Boyarskikh et al., 2018) and the advanced approach
“walking pathways” (Kel et al., 2019). Significantly upregulated
genes in STS were used in this workflow.

The workflow works in 2 steps.

4https://genexplain.com/transfac
5https://genexplain.com/transpath
6https://genexplain.com/humanpsd
7http://www.ensembl.org
8http://geneontology.org
9www.biouml.org
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A. Analysis of enriched transcription factor binding sites and
composite modules

Binding of TFs to the specific sites in promoters and
enhancers is the key to the transcriptional regulation of genes.
Identifying clusters of binding sites for TFs (composite modules)
in the upstream regulatory regions [−1,000 bp upstream of
transcription start site (TSS)] of the genes of interest is a
determining step to understand the gene regulatory mechanism
(composite regulatory modules) (Kel-Margoulis et al., 2002).

We use the CMA (Waleev et al., 2006) to detect such potential
enhancers, as targets of multiple TFs bound to the regulatory
regions of the genes of interest. The TFs are ranked based
on (a) the yes/no ratio: given a set of promoter sequences of
dysregulated genes, denoted as a yes set, and promoter sequences
of unchanged genes under the same experimental condition,
denoted as a no set, motifs are considered important if they have
a high yes/no ratio, the ratio of motif occurrences per promoter
in yes and no sets, and a statistically significant enrichment of
occurrences in yes sequences assessed by the binomial p-value. (b)
A regulatory score, which is a measure of involvement of a TF in
controlling the expression of genes that encode master regulators.
CMA identifies the TFs that, through their cooperation, provide
a synergistic effect and thus have a great influence on the gene
regulation process.

B. Finding master regulators in networks

The second step involves the signal transduction database
TRANSPATH R© and special graph search algorithms to identify
common regulators of the revealed TFs. These master regulators
appear to be the key candidates for therapeutic targets as they
have a master effect on the regulation of intracellular pathways
that activate the pathological process of our study. Master
regulators regulating the TFs revealed in step A are ranked based
on (a) logFC, (b) CMA score, which signifies how strong is the
potential for this gene to be regulated by TFs of interest, and (c)
master regulator score, which signifies how strong is the potential
of this gene product to regulate the activity of those TFs. Selected
master regulators can also be visualized and with the possibility
to map the logFC and p-value on the created regulatory network.

Validation of Observed Gene Signatures
The raw microarray data of 560 TCGA-GBM samples were
downloaded from TCGA legacy. The GSE16011 raw.CEL data

TABLE 6 | Statistics of the two validation datasets.

Datasets Platform Short-
term

survivors

Long-term
survivors

GSE16011
(Gravendeel et al.,
2009)

HU133 plus 2.0
arrays

93 16

TCGA-GBM
microarray
(Grossman et al.,
2016)

HU133 271 49

was downloaded from the GEO repository. Both raw datasets
were processed and analyzed independently following same steps
as mentioned earlier. These two datasets are used to observe and
validate the expression pattern of master regulators across the
two survival groups (see Table 6). GSE16011 comprises of data
generated at a single center and is used in several studies (Prasad
et al., 2020), unlike TCGA. TCGA-GBM microarray data PCA
plots are given Supplementary Figure 3, and no significant batch
effects in the context of survival groups were found.

Validation of Master Regulators
The TCGA-GBM microarray data downloaded from TCGA
legacy archive is processed in the same fashion as GSE. Similar
cutoffs (log2FC and p-value) and parameters are used to identify
enriched TFs and network analysis in order to understand drivers
of gene regulatory networks in short survival.

Impact on Survival
Master regulators and their target TFs affect the whole regulatory
network and therefore can have an independent impact on
survival in GBM patients. Level 3 RNA-seq data and clinical
data for 152 TCGA-GBM cohort is downloaded using the
TCGAbiolinks package in R. Survival and survminer libraries
in R were used to perform a univariate survival analysis.
A univariate survival analysis was used to understand the impact
of individual master regulator on survival in GBM with non-
overlapping 50% upper and lower quantiles. Additionally, a
univariate Cox regression for survival analysis was performed
using the coxph function of the survival package to calculate the
HR with p-value cutoff of 0.05 for significance.

CONCLUSION

In the work presented, we have identified candidate master
regulators responsible for gene dysregulation in STS. These
candidates have sufficient experimental evidence toward their
role in GBM. Out of reported five master regulators, IGFBP2
is established as the most promising master regulator. Through
the gene regulatory network analysis, we propose that IGFBP2
and FRA-1 are in a positive feedback loop that may lead
to a pathological self-enhancing process responsible for poor
survival in GBM.
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