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Abstract: Sperm plasma membrane lipids are essential for the function and integrity of mammalian
spermatozoa. Various lipid types are involved in each key step within the fertilization process in their
own yet coordinated way. The balance between lipid metabolism is tightly regulated to ensure physi-
ological cellular processes, especially referring to crucial steps such as sperm motility, capacitation,
acrosome reaction or fusion. At the same time, it has been shown that male reproductive function
depends on the homeostasis of sperm lipids. Here, we review the effects of phospholipid, neutral
lipid and glycolipid homeostasis on sperm fertilization function and male fertility in mammals.
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1. Introduction

Spermatozoa are characterized as specified haploid cell types that lack most organelles
and DNA transcription, resulting in the arrest of protein synthesis and vesicle transport [1].
Spermatozoa possess glycolytic and respiratory capacities, which are predominantly related
to the need to maintain cell motility [2]. Additionally, as research progressed, spermatozoa
were found to feature lipid synthesis, such as de novo synthesis of phosphatidylcholine [2,3].
The organization of eukaryotic cells depends to a large extent on the structure and function
of membranes, based upon the intrinsic properties of membrane lipid components [4].
Spermatozoa lack typical membrane-structured organelles such as the endoplasmic retic-
ulum and Golgi apparatus. The main membrane structures are used to separate cellular
regions, such as plasma membrane, outer and inner acrosomal membrane and nuclear
envelope (reviewed in [1]). The lipid distribution of spermatozoa can be described with
a number of features, including (1) the lipid compositions of the sperm head and tail are
different [5]; (2) the plasma membrane of the spermatozoa head shows lateral heterogeneity
of surface molecular topology [6,7]; and (3) lipids are also characterized by asymmetric
distribution in the membrane bilayer structure [1].

Alterations of lipid components in membranes are usually related to their physiolog-
ical requirements. For example, the release, modification and adsorption of lipids occur
during the transfer of sperm cells through the epididymis [1,8]. Extracellular vesicles (EV),
a type of lipid vesicle, are present in the epididymis and seminal fluid. They transport some
of the proteins and small RNA secreted by the epididymis or prostate to the sperm, which
is critical for fertilization [9,10]. The lipid composition of EV differs in different epididymal
regions [11,12]. When sperm enter the female reproductive tract, the lipid composition
changes again. In vitro studies revealed that cervical mucus may select different sperm
subpopulations based on lipid levels or directly affect the lipid composition of sperm when
migrating through the female reproductive tract [13]. Phosphatidylcholine (PC) levels
increased when sperm were exposed to female reproductive tract secretions in vivo [14].
As the sperm pass through the utero-tubal junction, they attach and aggregate along the ep-
ithelium of the isthmus until ovulation. Spermatozoa are then released from the epithelium
and continue to migrate towards the oocyte [15]. Lipids are involved in the interaction of
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sperm with the oviduct, e.g., anandamide inhibits sperm binding and induces the release
of sperm from the oviductal epithelium [16]. At the appropriate time and place sperm cells
undergo capacitation and trigger the acrosome reaction (AR), eventually penetrating the
zona pellucida (ZP) to fuse with the egg cell [15,17]. During these processes, the plasma
membrane lipids undergo another series of alterations [18–20]. These, for instance, include
the disruption of lipid composition and transmembrane phospholipid asymmetry, lateral
diffusion of phospholipids, loss of cholesterol and reorganization of detergent-resistant
structural domains observed during the capacitation process [18,21,22]. Subsequent to
AR and ZP penetration, the equatorial region of the sperm cell head plasma membrane is
involved in the fusion process with the oolemma, the oocyte plasma membrane (reviewed
in [1]).

The functions of lipids in male fertility have received increasing attention, with many
excellent studies focusing on this subject. In this review, we highlight the important
role of lipid classes in sperm during fertilization. In addition, the relationship between
plasma membrane lipids and male fertility is discussed, and potential lipid markers of
male subfertility and infertility are emphasized. Lipids in sperm are primarily discussed,
but minor contents of lipids in seminal plasma and testis are also included.

2. Lipid Composition of the Sperm Cell

The lipid composition of the sperm plasma membrane has been elucidated for several
mammalian species such as sheep [23,24], cattle [25–27], pig [2,14,28], mouse [29,30], rab-
bit [31], rat [32], horse [33], human [28], ruminantia (cattle, roe deer and Klipspringer) and
feloideae species (domestic cat, Siberian tiger and fosa) [34]. Although there is considerable
diversity among different mammalian species, in general, the plasma membrane contains
about 70% phospholipids, 25% neutral lipids and 5% glycolipids (on molar base) [35]. In
contrast to other cell types, the lipid composition of spermatozoa shows some specific
characteristics. Spermatozoa have a higher proportion of neutral lipids, especially large
amounts of diacylglycerol (DAG) [26,33]. Phospholipids are characterized by a large pro-
portion of alkenyl phospholipids (plasmalogens) in choline- and ethanolamine-containing
glycerol phosphates, and high proportions of highly unsaturated fatty acids such as arachi-
donic (20:4), docosapentaenoic (22:5) and docosahexaenoic acid (22:6) [2,36,37]. Recently,
the lipid component (O-acyl)-u-hydroxy-fatty acids (OAHFA) has been identified for the
first time in spermatozoa, with a carbon chain length up to 52. It was localized to the head
of sperm instead of the tail region [33].

2.1. Phospholipids

Of the lipid types present in spermatozoa, phospholipids account for the largest
proportion. Phospholipids can be classified as phosphoglycerolipid (also known as glyc-
erophospholipids (GPLs)) and sphingomyelin (SM), depending on whether the backbone
is glycerol or sphingosine (Figure 1). Phosphoglycerolipid can be further categorized
into different subclasses depending on the different molecules attached to the glycerol
backbone. The sn-1 or sn-2 position of the glycerol backbone is connected to the aliphatic
acyl-, alkyl- or alkane/alkenyl- chain; the sn-3 position is combined with phosphoric acid
and its derivatives [1,38]. The common types of phosphoglycerolipids in most mammals
are phosphatidylcholine, phosphatidylethanolamine (PE), phosphatidylinositol (PI) and
phosphatidylserine (PS), depending on the attached polar molecule [14,33,39]. Fatty acids
(FAs) esterified on phospholipids can be divided into two categories based on the presence
or absence of double bonds in the chain structure: (1) saturated fatty acids without double
bonds (SFAs), or (2) monounsaturated fatty acids (MUFAs) with a single double bond and
polyunsaturated fatty acids (PUFAs) with two or more double bonds [40].

Ether phospholipids are a subclass of GPLs with alkyl or alkenyl chains attached to
the glycerol backbone at sn-1 by ether bonds, rather than by ester bonds (Figure 1). The
sn-2 position of ether phospholipids generally has an ester-linked acyl chain, same as in
diacyl phospholipids [41,42]. Ether phospholipids classify as plasmanyl (1-alkyl-2-acyl)
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and plasmenyl (1-alkenyl-2-acyl), the latter also being known as plasmalogen [42]. It is
noteworthy that plasmalogens represent a high percentage of choline- and ethanolamine-
containing phosphoglycerides in sperm, accounting for 50% of the total mass in some
species such as human, pig, rat, ruminantia and feloideae [5,28,34].

The GPL-derived signaling molecules consist of lysophosphatidylcholine (LPC), phos-
phatidic acid (PA), lysophosphatidic acid (LPA) and diacylglycerol (DAG) [43]. Lysophos-
pholipids (LPL) are basically obtained by the selective loss of a fatty acyl residue from phos-
pholipids induced by enzymes and/or reactive oxygen species (ROS). The main enzyme
that induces LPL formation is phospholipase A2 (PLA2). In addition, phospholipase C
(PLC) and phospholipase D (PLD) catabolize phospholipids into DAG and PA, respectively
(reviewed in [44]) (Figure 1). The SM-derived compounds are sphingosylphosphoryl-
choline (SPC), ceramide-1-phosphate (C1P), sphingosine (Sph), sphingosine-1-phosphate
(S1P) and ceramide (Cer), which also are important signaling molecules [38,43]. LPC, LPA,
SPC, Sph and S1P readily leave the membrane and signal through the relevant membrane
receptors as they carry only one fatty acid chain [45]. In contrast, PA, DAG, C1P and Cer
stay in the membrane and recruit cytosolic factors with signaling functions [46].
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Figure 1. Chemical structure of lipids. The pink shading in phosphatidylcholine (PC) shows the glycerol backbone. The
pink shading in sphingomyelin (SM) shows the sphingoid backbone. The blue line boxes show the main parts of PC,
the hydrophobic tail and the polar head, respectively. The distinction of PC and plasmalogen is whether the linkage at
sn-1 is through an ether bond or ester bond. PC can be hydrolyzed by phospholipase A2 (PLA2) to LPC and fatty acid.
Phospholipase C (PLC) and phospholipase D (PLD) act on the phosphate group and headgroup of phospholipids to break
down phospholipids into DAG and PA, respectively. Phospholipases are shown in green and blue straight arrows indicate
positions of catalysis.

2.2. Neutral Lipids

Cholesterol and diacylglycerol are the main neutral lipids in the sperm plasma mem-
brane. Neutral lipid composition varies between species, individual males and between
ejaculates [35]. Cholesterol concentrations in the seminal plasma of many species, such as
rams, boars, stallions, human and domestic cats, have been investigated [37,47–49]. The
synthesis and metabolism pathways of DAG in cells are summarized in [50].

2.3. Glycolipids

Glycolipids are an important class of lipids present in sperm membranes, accounting
for about 5-8% of total polar lipids in mammalian species [37]. Glycosphingolipids are
formed by the addition of glycosidic head groups to ceramides. A more specific one is
the glycolipid seminolipid, which contains sulfogalactosylglycerol in its molecular struc-
ture. Sulfogalactosylglycerolipid (SGG), also known as seminolipid, is the major anionic
glycolipid found exclusively in the plasma membrane of mammalian spermatozoa [51].
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3. The Role of Lipids in Fertilization and Their Indicative Function in Reduced or
Defective Male Fertility

The composition and structure of the sperm plasma membrane are essential in the
process of spermatogenesis and sperm maturation [52,53]. During sperm maturation in the
epididymis, cholesterol sulfate may act as a membrane stabilizer and enzyme inhibitor [54].
In semen, the stability of sperm membranes relies on the binding of choline phospholipids
to seminal plasma proteins, which prevent the movement of phospholipids [55–57]. During
the migration through the female reproductive tract, sperm undergo a series of biochemical
and ultrastructural changes, including changes in the lipid composition of the plasma
membrane (reviewed in [58]). For instance, loss of asymmetric transbilayer distribution
and the substantial loss of cholesterol and phospholipid occur during capacitation and
acrosome reaction (AR) [59–61]. The effluxed cholesterol can be bound by albumin and
high-density lipoprotein in the uterine and follicular fluid [59,62]. The decrease in phos-
pholipids is mainly due to the breakage of their hydrophobic tails and thus degradation
to lysophospholipids and free FAs (22:4 n-9, 22:5 n-6) [19]. Lysophospholipids as signal-
ing phospholipids affect male fertility [38]. Free fatty acids can increase sperm motility,
viability and promote AR [63]. During capacitation and AR, sphingosine is hydrolyzed
to ceramides, with the main changes occurring in species with very-long-chain polyolefin
fatty acids [19]. Loss of cholesterol and phospholipids during capacitation is thought to
be associated with phosphorylation of proteins occurring in the tail region of sperm cells,
while lipid metabolites produced in AR accumulate in the sperm head and are thought to
be involved in later fertilization processes [19,64]. The lipid markers associated with sperm
function and fertility are summarized in Table 1.

Table 1. Lipid markers associated with sperm function and fertility.

Lipid Class and Ratio * Impact or Relevance on Sperm and Fertility Species Reference

PC 38:4 (18:0/20:4), PC 36:1 (18:0/18:1),
PE 34:4 (14:0/20:4) and
glycerophosphatidic acid 36:4 (16:0/20:4)

Presented high frequency in the plasma membrane
of motile sperm dog [65]

PC content of seminal plasma Decreased in obstructive azoospermia patients and
vasectomy patients human [66,67]

PE:PC ratio of seminal plasma
Significant differences between patients with
spermatogenic failure and obstructive
azoospermia

human [66]

PC Decreased in idiopathic infertility human [68]
Plasmanyl-PC 40:4 and plasmenyl-PC
40:5

Presented high frequency in the plasma membrane
of motile sperm dog [65]

Phospholipid, PS, PE and
phosphatidylglycerol Decreased in the frozen spermatozoa ovine [69]

Diphosphatidylglycerol and the ratio of
cholesterol to phospholipid Increased in the frozen spermatozoa ovine [69]

Ratio of LPC 16:0 to PC 16:0/22:6 and
ratio of LPC 22:6 to PC 16:0/22:6

Increased in sperm with damaged membrane
structure human [70]

LPC 22:6 and formyl-LPC 22:6 Increased in sperm with oxidative damage caused
by sperm storage cattle and roe deer [71]

DAG Decreased in idiopathic infertility cattle [72]

Total lipids, cholesterol, phospholipids,
PUFA, DHA and n-3 PUFA

Positively correlated with sperm viability, survival,
normal morphology and normal plasma
membrane

boar [73]

SFA and ratios of n-6 to n-3 PUFA Negatively correlated with normal sperm
parameters boar [73]

AA Higher in infertile group than control group boar [73]
Omega-3 FAs Lower in infertile group than control group human [74]

SGG Higher in the group of sperm with higher
fertilization capacity mouse [75]

PC: phosphatidylcholine; PE: phosphatidylethanolamine; PS: phosphatidylserine; LPC: lysophosphatidylcholine; DAG: diacylglycerol;
SFA: saturated fatty acid; PUFA: polyunsaturated fatty acid; DHA: docosahexaenoic acid; AA: arachidonic acid; FA: fatty acid; SGG:
sulfogalactosylglycerolipid. * Refers to the lipid content of the sperm, except for the additional description.
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3.1. Phospholipids
3.1.1. Diacyl Phospholipids

PC is the major class of GPL found in all mammalian cells and plays key roles in
membrane structure, cell signaling and cell death (reviewed in [50]). In sperm, PC was
reported to be associated with sperm motility [65], and to be involved in the acrosome
reaction [76]. PS and PE are metabolically relevant membrane aminophospholipids. Their
metabolism and function in mammalian cells were well summarized in [77]. PE in sperm
membranes can bind to lipocalin 2 in the female reproductive tract, and lipocalin 2 can
induce lipid raft reorganization and cholesterol efflux [78]. PS is essential for sperm-egg
fusion [79]. PS exposure is also associated with plasma membrane integrity and sperm
apoptosis [80,81]. PI and its derivatives are important signaling factors in cells [82,83].

Abnormal levels of PC and PE can be used as markers of the sperm fertilizing abil-
ity. Some specific lipid molecules have been suggested to be markers of sperm motility,
such as PC 38:4 (composed of stearic and arachidonic fatty acids), PC 36:1 (stearic and
oleic fatty acids), PE 34:4 (myristic and arachidonic fatty acids), glycerophosphatidic acid
36:4 (palmitic and arachidonic fatty acids), which showed a high frequency in the plasma
membrane of motile sperm [65]. Compared with the control group, the PC content of
seminal plasma in obstructive azoospermia human patients and vasectomy patients was
significantly lower [66,67]. In patients with idiopathic infertility, decreased sperm PC con-
tent has also been reported [68]. There was a significant difference in the seminal plasma
PE:PC ratio between patients with spermatogenic failure and obstructive azoospermia [66].
In addition, the ratio of PC to PE is considered to be a key regulator of cell membrane
integrity, with a decrease in this ratio leading to loss of membrane integrity [84]. PC is
often used as a “protective agent”, for example to prevent ultrastructural damage of sperm
caused by cold shock [85,86]. Compared to fresh semen, the plasma membrane of frozen
spermatozoa showed a significant decrease in phospholipid, PS, PE and phosphatidyl-
glycerol content, while the content of diphosphatidylglycerol and the ratio of cholesterol
to phospholipid increased significantly [69]. In addition, PC is involved in events asso-
ciated with progesterone-induced rise in intracellular free Ca2+ and enhances acrosome
responsiveness [76].

Phospholipid asymmetry, in which the lipid composition of the plasma membrane
differs between the two leaflets (Figure 2), is a common feature of cell membranes. It has
also been reported in several mammalian spermatozoa (ram [87,88], bull [89,90], goat [91],
boar [92]).
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Figure 2. Phospholipid asymmetry of sperm plasma membrane. Sphingomyelin (SM) and phosphatidylcholine (PC) are
mainly present in the outer leaflet, while phosphatidylethanolamine (PE) and especially phosphatidylserine (PS) are located
in the inner leaflet. Glycolipids are usually found in the outer leaflets of plasma membranes and are mainly used to maintain
membrane stability and facilitate intercellular communication. Cholesterol molecules are randomly distributed over the
phospholipid bilayer, binding the phospholipids together and limiting the fluidity of the membrane. During capacitation,
the sperm plasma membrane first undergoes a substantial loss of cholesterol, accompanied by a decrease in phospholipids
and loss of asymmetric distribution of phospholipids.
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In spermatozoa with intact membranes, SM and PC are mainly present in the outer
leaflet while PE and especially PS are located in the inner leaflet [92]. The reduction of
phospholipid asymmetry is thought to be related to sperm capacitation and sperm-egg
fusion in boars [93]. Aminophospholipid transporter (flippase) located in the acrosomal
region can maintain phospholipid asymmetry, and its activity depends upon bicarbonate
ions (reviewed in [94]). In previous studies in humans and boars, PS exposure from plasma
membrane was often considered a marker of dead or non-viable sperm [81,95–97]. When
PS is transferred from the inner to the outer leaflet because of disturbed membrane integrity,
it can be detected by annexin V. Annexin V is a PS-affinity protein that cannot pass through
the intact plasma membrane [98]. The integrity of sperm membrane is critical to sperm
fertility as it has been reported to be associated with sperm motility, capacitation and
penetration of oocytes [99]. For example, PS-negative sperm have been reported to have
higher fertilizing potential in hamster [100] and human [101]. However, PS has also been
demonstrated to be transiently exposed to live cells under certain conditions [102–104].
Rival et al. [79] have illustrated that PS on sperm and PS receptors (BAI1, CD36, Tim-4, and
Mer-TK) on eggs are essential for fertilization.

Currently, most studies of PI on sperm function have focused on phosphoinositides
(also known as phosphatidylinositol phosphates (PIPs)), the phosphorylated forms of PI,
and the corresponding kinases and phosphatases. Modification of positions 3, 4 and 5
of the inositol ring of PI can generate and interconvert into seven PIP types [105]. The
critical role of PIPs in the maintenance of germinal stem cells, proliferation and survival of
spermatogonia, spermatogenesis and maturation, and production of motile spermatozoa
has been summarized in [105]. Different involved enzymes in the PIP pathway also
have an effect on fertility. For example, phosphatidylinositol 3-kinases (PI3Ks), which
phosphorylate the 3-position hydroxyl group of the inositol ring of PI, have a negative
role in the development and maintenance of human sperm motility [106]. Similar results
were obtained in boar spermatozoa, where PI3-K may regulate the negative effects on
sperm motility by inhibiting the cAMP/PKA activation pathway [107]. However, a certain
level of PI3K expression is necessary to maintain sperm fertilization ability. PI3K can
be used as an additional molecular marker for the diagnosis of male infertility [108].
PI3K protects sperm from spontaneous AR, which can reduce fertilization rates [109].
In addition, phosphatidylinositols, as membrane recognition sites, play a key role in
membrane fusion [110,111]. Similarly, PIs are involved in the sperm-egg fusion. PIP2 is
involved in the pathway of intracellular Ca2+ oscillations and egg activation triggered by
sperm-specific phospholipase C-ζ [112].

A recent study in rat sperm detected a fully saturated species of cardiolipin (CL),
tetrapalmitoyl-CL (TPCL), which was assembled in lipid rafts in the acrosome [113]. Cardi-
olipin has long been considered a mitochondria-specific phospholipid that is abundant in
the sperm tail. The presence of TPCL in the acrosome implies that mitochondria-derived
membranes may be involved in the construction of the acrosome [113].

3.1.2. Ether Lipids

It is also known that animal spermatozoa contain very large amounts of plasmalo-
gens [114], which have been reported to accumulate in the sperm head [5]. During sperm
maturation, the distribution of plasmalogen fatty acid chains changed significantly, with a
decrease in C18:1 and C20:4 and an increase in C22:5 and C22:6 [32,115,116]. Plasmenyl and
plasmanyl linked GPLs have been reported to play important roles during the membrane
fusion, in membrane fluidity, in regulation of protein activity, and protection of membranes
from oxidative damage [117–121]. The functions of plasmalogens in sperm are thought to
be maintenance of motility [65] and antioxidation [122]. Ether lipids have been considered
to be involved in the formation of macro- and microdomains, which are required for the
compartmentalization of highly polarized sperm membrane [123]. In addition, since ether
linkages are not readily cleaved by lipase action, ether lipids may maintain stability of
sperm membrane [124,125].
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Recent studies in human have demonstrated the antioxidant function of plasmalogens
in sperm. The first protective characteristic is that plasmalogen contains a vinyl-ether
moiety at the sn-1 position that is sensitive to oxidation, thus conferring potentially strong
antioxidant properties to plasmalogen [126–128]. The interaction of singlet oxygen with
the plasmalogen is significantly faster than that of other lipids. Plasmalogens protect unsat-
urated membrane lipids from oxidation by singlet oxygen when the oxidation products
are not excessively cytotoxic [128]. Hypochlorous acid attacks the vinyl-ether bond of
plasmalogen can produce glycerophosphocholine and glycerophosphoethanolamine [127].
The second protective feature is that plasmalogens usually bound to high levels of highly
unsaturated acyl chains, especially docosahexaenoyl (22:6) and docosapentaenoyl residues
(22:5) [41,71]. Plasmanyl-PC 40:4 and plasmenyl-PC 40:5 have been detected to be lipid
markers of sperm motility [65]. In fact, reduced sperm motility is possibly a sensitive indi-
cator of lipid peroxidation [129–134]. Therefore, the detection of plasmalogens in motile
sperm may also be related to their antioxidant function. The quality of cryopreservation is
essential for sperm storage. Plasmalogens can be used as one of the indicators of freezing
quality, such as the percentage of C16 plasmalogen/total phospholipids and the percentage
of plasmalogens to total phospholipids, which are good indicators of bad freezers [135].

3.1.3. Lysophospholipids

Many studies have demonstrated the physiological functions of lysophospholipids
(LPLs) in reproduction, from gametogenesis to embryonic development, as well as their
pathological roles [38,136]. More specifically, LPCs have been reported to participate in
the acrosomal exocytosis and may be associated with perturbation of the cell membrane
during fusion [64,137,138]. Destabilization of the acrosome can induce the release of secre-
tory PLA2 from human spermatozoa and the subsequent production of LPC around the
spermatozoa [139]. LPC, LPE and LPI have been reported to promote AR in sperm, but LPS
does not, and even inhibits LPC-, LPE- and LPI- mediated AR [61,137]. Lysophospholipids
are lipids with positive spontaneous curvature and can inhibit the fusion of protein-free
bilayers [140]. Lysophosphatidic acid is a small signaling phospholipid whose receptor-
mediated signaling has been shown to affect male fertility [141,142]. Lysophosphatidic acid
signaling is involved in germ cell apoptosis and proliferation [143]. In addition, LPA can
induce the AR and activation of sperm protein kinase C [144]. Platelet-activating factor
(PAF), also known as acetyl-glyceryl-ether-phosphorylcholine, is a signalling phospholipid.
PAF has been found to play an important role in reproduction [145]. For example, PAF
increases sperm motility and promotes sperm capacitation and acrosome reaction in both
human and stallions [146,147].

A certain level of LPL is necessary for physiological sperm function. However, LPL
production and reacylation need to be available in a tightly controlled equilibrium to avoid
premature sperm instability. Under pathological conditions, deviations from normal levels
may be observed, and an increase in sperm LPL could be a signal of reduced fertilization
potential. For example, deteriorated membranes of spermatozoa are associated with
increased LPC content. The ratio of LPC 16:0 to PC 16:0/22:6 and the ratio of LPC 22:6
to PC 16:0/22:6 were found to be enhanced in sperm cells with a damaged membrane
structure compared to normal sperm [70]. Since production of LPL can be induced by
ROS, LPL can be used as a marker of sperm oxidation under peroxidative conditions. It
has been detected that LPC 22:6 and formyl-LPC 22:6 are highly correlated with oxidative
damage caused by sperm storage [71]. Investigation of obese people revealed a significant
increase in LPC and SM content of sperm [148], while body mass index showed a significant
negative correlation with sperm quality [149,150].

3.1.4. Sphingomyelin and Derivatives

Sphingomyelin and ceramide have been reported to serve many functions of mem-
branes, such as formation of microdomains, membrane vesiculation and fusion, vesicle
efflux and vesicle trafficking [151–154]. The different SM/Cer mass ratios in the model
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system have a great impact on the membrane properties, such as detergent resistance and
mechanical properties [155–157]. The localization, synthesis and function of SM and Cer in
sperm cells of different developmental stages in the testis have been summarized [158,159].
In mammalian sperm, SM and Cer contain a high percentage of very-long-chain PUFA
(VLCPUFA) [158,159]. Cer is mostly concentrated in the tail part of the sperm. The SM
in the tail contains mainly saturated fatty acids, while SM in the head contains almost
exclusively VLCPUFA [5].

SM is heavily hydrolyzed into Cer during capacitation and the AR process [19]. These
metabolites are also critical for fertilization. Cer can induce AR in capacitated sperm and
potentiates the sperm response to progesterone [160]. Cer acts as an almost immediate
precursor of S1P, which has also been reported to trigger acrosomal exocytosis of sperm via
a mechanism involving G-protein-coupled receptors [161]. In addition, Cer plays a role
in the induction of germ cell death and can be partially inhibited by S1P [162]. A recent
study found that S1P can improve DNA repair in murine spermatozoa [163]. Addition of
S1P to epididymal preservation media helps maintain sperm viability in cold-transported
epididymides [164].

A recent article summarized how sphingolipids control the function of cilia and
microvilli in mammalian cells (including the flagella on sperm cells) [165]. The oscillatory
motion of the sperm head on the oocyte plasma membrane has been reported to be a critical
factor in fusion initiation during the adhesion phase, in which this oscillatory motion is
generated by a specific pattern of flagellar beating [166]. Level of SM containing VLCPUFA
(≥28 carbons; 4–6 double bonds) revealed a positive correlation with sperm count and total
motile sperm cell number [167].

3.2. Neutral Lipids
3.2.1. Cholesterol

The earliest study that revealed the role of cholesterol in sperm capacitation dates
back to 1978 [168]. After more than 40 years of research, a large number of studies on the
relationship between cholesterol and fertilization have been completed and a good series
of review articles have been published. For example, the role of sterols in spermatogenesis
and maturation [169]; cholesterol function in sperm capacitation [170]; the redistribution
and depletion of cholesterol across the sperm membrane as a key part of sperm preparation
for fertilization [171]; and the effect of cholesterol on male fertility [172]. Therefore, the
function of cholesterol will not be a main focus of this review.

3.2.2. Diacylglycerols

Goni and Alonso [173] have well summarized the structure and function of DAG in
cell membranes. DAGs are a minor component of cell membranes [173], but are highly
abundant and diverse in sperm [33], implying an important role for DAGs in sperm
function. Diacylglycerols, similar to FA and PE, are negative curvature lipids that promote
biological fusion (reviewed in [140]).

The most important function of DAG in sperm is its participation in the acrosome
reaction. Diacylglycerols have been reported to be engaged in membrane fusion during
acrosomal exocytosis [174–176], which is consistent with previous studies in other cell
types [177–179]. In particular, PC-derived DAG is thought to be related to AR exocytosis in
boars [176]. Another study revealed that DAGs promoted intraacrosomal calcium efflux
and triggered exocytosis of permeabilized human sperm [180]. Intracellular calcium acti-
vates adenylyl cyclase to produce cAMP and activates PLC to hydrolyze phospholipids
into inositol trisphosphate (IP3) and DAG. A more detailed mechanism of action is sum-
marized in literature [181,182]. DAGs maintain high levels of IP3 to promote exocytosis
of the acrosome. DAGs also can activate Rab3A, thus playing a central role in regulating
exocytosis and secretion. DAGs further promote the assembly of the SNARE complex and
membrane fusion [180]. Intracellular calcium, cAMP and DAG levels were found signifi-
cantly increased in cryopreserved sperm [183]. This may explain the higher percentage of
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capacitated sperm in cryopreserved cells [184]. When taurine or trehalose was added to the
freezing medium, the levels of intracellular calcium, cAMP and DAG were significantly re-
duced and the motility, viability and membrane integrity of spermatozoa were significantly
improved after thawing [183]. DAG can be catalyzed by diacylglycerol lipase (DAGL) to
2-arachidonoylglycerol (2-AG), an inhibitor of the sperm calcium channel CatSper, which
inhibits sperm activation [185]. In our previous study, a reduction in DAG in sperm was
associated with bull idiopathic infertility [72]. Disturbances in the metabolism of lipid
including DAG may be a causal factor in infertility.

3.2.3. Fatty Acids

FAs are extensively involved in sperm development, maturation and fertilization
events [40]. Many studies have examined the relationship between dietary fatty acids
and fertility [186,187]. In immature germ cells, the percentage of saturated and essential
fatty acids was higher, while long-chain PUFA was significantly lower when compared to
mature spermatozoa [188]. Lenzi et al. [114] summarized and compared the unsaturated
fatty acid content of normal spermatozoa and red blood cells and found that spermatozoa
possessed a higher proportion of the most representative PUFA (C22:6 n-3). This suggests
that spermatozoa have active fatty acid metabolism and are desaturated during spermato-
genesis or during maturation. Changes in lipid distribution may be a prerequisite for
the ability of spermatozoa to acquire fertilization in the epididymis. The most common
functions of FAs in sperm include control of membrane fluidity and antioxidant functions.

Polyunsaturated fatty acids are known to facilitate membrane fluidity and flexibility,
which are prerequisites for normal sperm function [114]. For example, in the outer leaflet
of the sperm plasma membrane, the PC contains a large number of highly unsaturated
acyl chains. This results in a reduction in the effective chain length of these moieties and
increases the overall cross-sectional area of the phospholipid. The unsaturated acyl chains
affect the interactions with cholesterol and reduce the rigidity effect of the membrane. The
high degree of unsaturation, the weaker interaction with cholesterol, and the larger cross-
sectional area are indicative for the high mobility of the outer leaflet of membrane [124].

High PUFA levels cause spermatozoa sensitivity to reactive oxygen species. ROS
attack PUFA in the cell membrane, leading to a cascade of chemical reactions called
lipid peroxidation. Associations between oxidative stress and male infertility were well
described by a series of excellent publications [160,189–196], and therefore will not be
discussed in detail in this review.

Docosahexaenoic is a very critical component of PUFA, and the metabolism and func-
tions of DHA-containing GPLs in testes have been summarized by Hishikawa et al. [197].
DHA is a requirement for spermatogenesis and sperm maturation (see Section 3.4). There
is a positive correlation between DHA content and sperm fertilization ability [75]. Arachi-
donic acid and DHA acid have concentration-dependent inhibitory effects on human sperm
motility [198].

PUFAs can be used as markers of sperm fertility and pathology. Safarinejad et al. [73]
compared the composition of sperm FAs in fertile and infertile men and found higher
omega-3 FAs in the fertile group but higher levels and percentages of arachidonic acid
in the infertile group. Am-In et al. [199] investigated the lipid profiles of normal and
low-motility sperm from boars. Docosahexaenoic acid and n-3 PUFA were found to be
positively correlated with sperm viability, survival, normal morphology and normal plasma
membrane. In contrast, the ratios of saturated fatty acids and n-6/n-3 PUFA were negatively
correlated with normal sperm parameters [199]. The differences in sperm motility can be
explained by varying antioxidant capacity resulting from the different n-3 PUFA content in
the plasma membrane.
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3.3. Glycolipids

Sulfogalactosylglycerolipid (SGG) is the major sulfoglycolipid of mammalian male
germ cells. Knock-out mouse models revealed important roles of SGG sperm function and
male fertility, as summarized by Tanphaichitr et al. [200]. Sperm SGG has been reported
to be involved in spermatogenesis [200] and the binding of sperm and zona pellucida
(ZP) [201,202]. Redistribution of glycolipids has been detected during the binding to ZP.
Sulfogalactolipids are localized in the apical ridge subdomain of freshly ejaculated sperm
cells, and migrate to the equatorial subdomains after sperm binding to ZP [203,204]. It
has been proposed that sugar residues exposed on the sperm surface during capacitation
are important for subsequent binding to ZP [205]. In inactivated spermatozoa, mem-
brane cholesterol induces a tilt in the glycosphingolipid receptor, rendering it unusable.
Cholesterol efflux during capacitation causes a change in glycosphingolipids conformation,
exposing sugar residues that can be recognized by lectins in the egg zona pellucida [206].
Sulfogalactosylglycerolipid is considered to be an important biomarker for sperm fertilizing
ability [75].

3.4. Lipid Metabolism-Related Knockout Mice Model

Lipid-metabolizing enzyme-related knockout mice are good models for studying the
role of lipids in spermatogenesis and maturation. Knockout models can also be used
to study the effects of lipids on fertility. In this section, some reports of metabolic en-
zyme knockout mice associated with phosphatidylinositol phosphates, ether lipid, sph-
ingolipids, fatty acids and lysophospholipids are summarized. Mice with deletions of
lipid-metabolizing enzymes typically exhibit abnormal spermatogenesis and male infer-
tility. Examples for knockout mouse models related to lipid metabolism are listed in
Table 2.

Phosphatidylinositol phosphates (e.g., PI4P, PIP2, PIP3) are membrane lipids that
play well-defined roles in different stages of sperm development. More specifically, PIPs
are involved in the maintenance of germinal stem cells, proliferation and survival of
spermatogonia, cytokinesis of spermatocytes, polarization of sperm, formation of sperm
tail, nuclear shaping and production of motile spermatozoa [105]. The relevant gene editing
mouse models for the PIP pathway are well summarized in [105]. A recent study found
that most of the embryos in a mouse model of PI3K catalytic isoform p110β inactivation
were lethal, and homozygous mice that survived to adulthood were male infertile [207].
Inositol polyphosphate 4-phosphatase II (INPP4B) is an enzyme in the phosphatidylinositol
signaling pathway. Inpp4b−/− male mice have smaller testes and fewer mature sperm
cells than wild-type mice [208].

Mouse models with defects in enzymes involved in ether lipid synthesis show ab-
normal plasmalogen levels, often manifesting as male infertility [123,209]. For example,
dihydroxyacetonephosphate acyltransferase (DAPAT) knockout mice exhibited severe phe-
notypic alterations, including cessation of spermatogenesis and infertility, illustrating the
important role of plasmalogen in spermatogenesis [123,210,211]. Peroxin 7 (Pex7) knockout
mice displayed severely depleted plasmalogens, while adult mutant mice were infertile and
exhibited testicular atrophy [212]. Male Tysnd1−/− mice are sterile and have incomplete
acrosomes of epididymal sperm, which may be caused by altered components of choline
and ethanolamine plasmalogens [213].

Sphingomyelin biogenesis-deficient mouse models revealed the role of SM in sper-
matogenesis. Sphingolipid synthase 1 (SMS1) catalyzes the de novo synthesis of SM and
DAG from Cer and PC [214]. Spermatogenesis defects in Sms1−/− mice manifested by
shedding of spermatocytes and spermatids, leading to progressive sterility in homozygote
mutant males. They exhibited reduced long-chain unsaturated PCs, LPCs and sphin-
golipids [215]. Similarly, abnormalities in acid sphingomyelinase (ASM), which catabo-
lizes SM, can also affect SM homeostasis. Abnormalities in sperm morphology, motility
and capacitation were observed in ASM knockout mice. Incubation of mutant murine
spermatozoa with mild detergent resulted in recovery of morphological abnormalities,
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suggesting that the sperm bending defect is a direct consequence of membrane lipid
accumulation [216].

The structure of fatty acids is usually determined by a combination of two enzymes:
membrane-bound fatty acid desaturase 1 and 2 (FADS1 and FADS2) and fatty acid elon-
gases (ELOVL2 and ELOVL4) [217]. In male FADS2 knockout mice, acrosome formation
fails during the spermiogenesis of round sperm into elongated sperm, and therefore causes
infertility. One reason could be the deficiency of highly unsaturated fatty acids. However,
this defect can be reversed by docosahexaenoic acid (DHA) in the diet [218–221]. Male
Elovl2−/− mice, as expected, also displayed arrested spermatogenesis and infertility, which
supports the idea that PUFAs with 24–30 carbons of theω-6 family are required for normal
sperm formation and male fertility. Although both FADS2 and ELOVL2 are involved in the
formation of FAs, male sterility in Elovl2−/− mice could not be restored by diet, in contrast
to Fads2−/− mice [222,223].

In addition, lysophosphatidic acid acyltransferases (LPAATs) can use lysophospha-
tidic acid as an acyl receptor to regulate the FA composition of GPLs. Recent studies have
shown that male LPAATs knockout mice are completely sterile, characterized by abnor-
mal spermatogenesis due to defects in eliminating excess cytoplasmic components [224].
The marked reduction in DHA-containing GPLs in LPAATs knockout mice may affect
membrane flexibility, which is necessary for endocytosis in the final step of spermatoge-
nesis [197]. DHA also plays roles in the maturation of spermatozoa in the epididymis.
During sperm transfer in the epididymis, the acyl groups of PC on the membrane changes
from oleic, linoleic and arachidonic acid (AA), to docosapentaenoic (DPA) and DHA [11].
Phospholipase A2 group III (Pla2g3) is expressed in epididymal epithelial cells. Pla2g3−/−

mouse sperm exhibited decreased motility and fertility due to impaired acyl remodeling
of oleic, linoleic and AA to DPA and DHA in epididymis [225]. Delta-6 desaturase-null
mice exhibited an arrest at the late stage of spermatogenesis and infertility due to defective
synthesis of AA, DHA and n6-DPA [74].

Table 2. Effects of lipid metabolism-related knockout in mice on reproduction.

Lipid Metabolism
Knockout Mouse
Model

Lipid Alterations Effect on Fertility Reference

p110β inactivation - Male infertility [207]
Inpp4b−/− - Impaired male germ cell differentiation [208]

DAPAT−/− Absence of ether lipid
Spermatogenesis is arrested during the late
pachyteneand of the spermatid stage; male
infertility

[123,210,211]

Pex7−/− Depleted plasmalogen levels Testicular atrophy; male infertility [212]

Tysnd1−/− Altered components of choline and
ethanolamine plasmalogens

Incomplete acrosomes of epididymal sperm;
male sterile [213]

Sms1−/− Reduction in long-chain unsaturated PCs,
LPCs and sphingolipids

Shedding of spermatocytes and spermatids
during spermatogenesis; progressive male
sterility

[215]

ASM−/− Increased levels of sphingomyelin and
cholesterol

Abnormalities of sperm morphology,
motility and capacitation [216]

FADS2−/− Deficiency of highly unsaturated fatty acids
Failure of acrosome formation during the
spermiogenesis of round sperm into
elongated sperm; male infertility

[218–221]

Elovl2−/− Reduction in PUFAs with 24–30 carbons of
theω-6 family Arrested spermatogenesis; male infertility [222,223]

LPAATs−/− Reduction in DHA-containing GPLs
Abnormal spermatogenesis due to defects in
eliminating excess cytoplasmic components;
male sterility

[224]
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Table 2. Cont.

Lipid Metabolism
Knockout Mouse
Model

Lipid Alterations Effect on Fertility Reference

Pla2g3−/−

Impairment of acyl remodeling of oleic,
linoleic and arachidonic acids to
docosapentaenoic and docosahexaenoic
acids

Decreased sperm motility and fertility [225]

D6D−/− Defective synthesis of arachidonic acid
(AA), DHA and n6-DPA

Arrest at late stage of spermatogenesis; male
infertility [74]

p110β: PI3K catalytic isoform; INPP4B: inositol polyphosphate 4-phosphatase II; DAPAT: dihydroxyacetonephosphate acyltransferase;
Pex7: peroxin 7; Tysnd1: trypsin domain-containing 1; Sms1: sphingomyelin synthase 1; ASM: acid sphingomyelinase; FADS2: fatty acid
desaturase 2 (alias names: D6D); Elovl2: elongation of very-long-chain fatty acid 2; LPAAT: lysophosphatidic acid acyltransferase; Pla2g3:
phospholipase A2 group III; D6D: delta-6 desaturase.

4. Conclusions

Sperm–egg union is one of the most important events in sexually reproducing organ-
isms. Lipids, as major components of the membrane, maintain sperm integrity, control
membrane fluidity, provide functional cell membrane microstructural domains and provide
signaling molecules. Lipids are extensively involved in a wide range of processes, from
spermatogenesis and maturation, to meeting and binding to the egg cell. In this review,
we summarized the effects of different lipid types described so far on the events during
fertilization. We also list the effects of lipid deficiency on spermatogenesis, maturation and
fertilization ability in a lipid metabolism-related knockout mouse model.

Each lipid class does not act in a separate manner; they rather participate together in
concerted complex pathways through synthesis, metabolism or interconversion. Sperm
morphology, motility and oxidative stress damage were frequently investigated in numer-
ous studies on male fertility. Corresponding highly relevant lipids such as unsaturated fatty
acids, plasmalogens and lysophospholipids were studied with high frequency. Unsaturated
fatty acids and plasmalogens perform major antioxidant functions, while lysophospho-
lipids are markers of sperm oxidation under peroxidative conditions. Phosphatidylcholine
and phosphatidylethanolamine are the most important components of the sperm plasma
membrane, and therefore their levels and ratios are the most readily detectable indicators of
sperm fertilization ability. Diacylglycerols and sulfogalactosylglycerolipids are of interest
because of their abnormally high content in sperm or their specific occurrence in germ
cells. Phosphatidylinositols, sphingomyelin and its derivatives and lysophospholipids are
frequently involved in fertilization as signaling molecules, which are essential for fertility.

Many challenges remain to be solved in the elucidation of lipid functions in fertiliza-
tion. Some trace amounts of lipids or lipids that play a transient role during fertilization are
difficult to detect accurately. In vitro experiments do not always exactly replicate the state
of the membrane in the in vivo setting. The development of novel techniques and methods
may provide more clues to lipid-regulated fertilization processes and the potential effects
of deregulated lipid levels on male mammalian fertility.
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