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Abstract: As autonomous navigation is being implemented in several areas including the maritime
domain, the need for robust tracking is becoming more important for traffic situation awareness,
assessment and monitoring. We present an online repository comprising three designated marine
radar datasets from real-world measurement campaigns to be employed for target detection and
tracking research purposes. The datasets have their respective reference positions on the basis of
the Automatic Identification System (AIS). Together with the methods used for target detection and
clustering, a novel baseline algorithm for an extended centroid-based multiple target tracking is
introduced and explained. We compare the performance of our algorithm to its standard version on
the datasets using the AIS references. The results obtained and some initial dataset specific analysis
are presented. The datasets, under the German Aerospace Centre (DLR)’s terms and agreements, can
be procured from the company website’s URL provided in the article.

Keywords: marine radar datasets; multiple target tracking; radar image processing; centroid-based
tracking; data association

1. Introduction

The need for a safe, collision-free and ecologically clean maritime navigation keeps
getting more pronounced with increasing global trade demand [1–3]. Overseas trade is
accompanied by concerns for safety and financial risks that can be potentially reduced by
introducing vessel autonomy in maritime domains. This objective requires a continuous
monitoring of vessels within a region of interest, also called observation region, where
one desires to detect and track the vessels based on acquired sensor data. Automatic
Identification System (AIS) is the technology used for providing the position of vessels,
amongst other vessel and journey information, to the accuracy of a few metres, and it is
mandatory for vessels above 300 gross tonnages to be equipped with the transponder [4–6].
It can be used either standalone or often coupled with an onboard radar. However, vessels
equipped with AIS and related services such as the Global Navigation Satellite Systems
(GNSS) are susceptible to malfunction due to jamming or spoofing attacks [6,7]. Therefore,
the marine radar is still predominantly used as the standard navigation tool on boats and
vessels today, being less prone to such vulnerabilities.

The use of benchmark datasets has supported much development into various au-
tonomous navigation applications through the recent years. For instance, the KITTI [8] and
nuScenes [9] datasets are widely used datasets in the automotive fields so far. While the
maritime research community has significantly focused on applications related to maritime
surveillance, tracking and monitoring from real-world radar datasets [10–16], the datasets
were unpublished for the most part. To the best of our knowledge, there are no real-world
marine radar and AIS-based datasets that are accessible for research purposes so far. In this
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article, we hence present a repository containing a collection of real-world radar datasets
covering common situations encountered from maritime routes that have been recorded
from measurement campaigns carried out in the Baltic Sea by the German Aerospace
Centre (DLR) (see Figure 1).
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Figure 1. Observation regions during the measurement campaigns. The trajectories of each dataset are enclosed and
labelled, in the Baltic Sea region. Note that only the aids to navigation present within the respective dataset’s observation
region have been included in the plot.

In addition to the datasets, we demonstrate the application of a tailored multi-target
tracker on the same. Multiple target tracking (MTT) is the problem of jointly estimating the
individual states of targets alongside the targets’ cardinality at each observation step [17].
Two main commonly used approaches to solve MTT problems are random finite set
(RFS) [18,19] and traditional probabilistic data association (PDA). In the former, a finite
set of individual target states is propagated as a density. The latter involves calculating
state estimates based on probabilities of measurements being correctly assigned to a
target [17,20]. A further point that can be considered in case of radars would be the sensor
resolution, yielding the ability to track not only the kinematic properties of targets but as
well as their extents (shape) since multiple measurements are highly likely to arise from
the targets’ bodies. This problem is known as extended target tracking (ETT) [21]. In
our conference papers [22,23], some initial work has been done using two of the datasets,
where an ellipsoidal tracking method was proposed to estimate the orientation of dynamic
vessels while keeping the extent parameters fixed. In this article, we however restrict
the discussion to comparing our proposed extended centroid-based tracker with a basic
centroid-target one in order to provide a baseline algorithm. We also present an improved
automatic target detection approach that is faster, compared to the previous versions, and
that can be included in a continuous processing chain from its raw form (i.e., images) to
the targets state estimates.
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There are three steps involved in the processing chain implemented in this work and
are as summarised. In the first one, potential targets are extracted from radar images as
point clouds. These point clouds are then subject to the k-means clustering approach [24,25]
in the second step. Finally, the centroids thus obtained are fed to an adapted version of
the joint probabilistic data association (JPDA) [20,26] filter to get the final multi-target
estimates. The motivation behind adopting the last two steps is to process the set of point
clouds in a more efficient manner, much in contrast to the previous methods in [22,23],
where every point in the point cloud(s) had to be processed sequentially for the filter
update at each observation step. Moreover, by the current method henceforth referred to
as extended centroid-based JPDA (EC-JPDA), we are still able to somewhat retain each
point cloud’s information in the form of its dispersion matrix. This concept was first
brought by as a solution to the group tracking problem [26] and we propose applying it for
tracking individual targets in an MTT perspective. In our case, the dispersion matrix is not
only added to the innovation covariance at the gating stage, but it is also included in the
calculation of association probabilities to account for the varying measurement spreads at
different observation steps. The outcome of the tracker on each dataset is validated against
the AIS reference positions and their results are presented and discussed.

Our two-fold contribution is therefore as follows:

(1) We first introduce the DLR radar repository comprising three individual datasets
along with the participating vessels’ reference positions as recorded from the
AIS data.

(2) We then adapt the standard JPDA filter as a baseline algorithm for tracking centroids
on the datasets in the repository to highlight the overall blockchain performance, com-
pare the adapted version to the standard one and discuss the associated challenges.

The article is thusly organized: In Section 2, information about the datasets and data
processing involved are described in detail. In the next one, we cover the target detection
method, clustering and our filtering approach. The results are presented in Section 4, and
we finally summarize the contents in Section 5.

2. Repository Description

The DLR radar repository, under the own company’s export control principles, can
be acquired as a zipped file (dataset-wise) from the following DOI: https://doi.org/10
.26090/rwmr. It is to be noted that the datasets are open for requests from the EU and
NATO member states; requests from other countries are subject to individual assessment
by the approval board. The aim of using these selected trajectories from some measure-
ment campaigns was to capture real-world situations as closely as possible on common
navigation routes. Some basic details of each dataset, that is, the number of targets and
frames captured, the dataset duration and the sensors involved, are summarised in Table 1.
The dataset-specific trajectories (AIS and detected radar measurements) are illustrated in
appropriate plots in Figure 2.

Table 1. Summary of the datasets.

Dataset # Targets # Frames Duration [s] Onboard Radar Sensor(s)

DAAN 4 780 780 Dynamic (own)

DARC 2 527 540 Dynamic (own)

MANV 6
976 1000 Static (observer)

1000 1000 Dynamic (own)

https://doi.org/10.26090/rwmr
https://doi.org/10.26090/rwmr
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an unknown target has also been detected. 
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Figure 2. Depiction of the datasets’ trajectories. The left column shows the AIS-based reference
trajectories of vessels for each dataset, all labelled. The arrows indicate the course of the vessels. The
right column shows the radar point clouds measurements. Notice the trails of radar reflections in
DAAN (Data Association with Aids to Navigation), the radar beacon (RACON)-originated measure-
ments in DARC (Data Association with RACON) and the aids to navigation. In MANV (Manoeuvres),
an unknown target has also been detected.
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2.1. Campaign Setup

In each campaign, either an own vessel or a participating vessel (as for MANV) was
on course. Frame grabbers were used to capture the radar (X-band) screen visuals at a
frequency of 1 Hz, during which some random data loss occurred as seen in Table 1. These
images were further processed to automatically extract potential targets as point clouds by
the method defined in Section 3.

Selected AIS information that were recorded have been included, such as the posi-
tion, dimensions, course over ground, speed over ground and true heading of the vessels
equipped with transponders. Due to security and privacy related reasons, information
divulging the identity of the vessels (from the unique maritime mobile service identifi-
cation referred to as the MMSI), and the date and time of campaigns have been omitted.
Furthermore, we note that the regions of interest have been more or less constrained to a
coverage of their own vessels’ radar ranges, and that different (own) vessels were part of
the specific campaigns. The dimensions of AIS-equipped targets involved are summarised
in Table 2.

Table 2. Dimensions of vessels for the different datasets.

Dataset Participating Targets Length [m] Width [m]

DAAN
Target 2 129 23

Target 3 12 4

DARC Target 2 180 28

MANV
Target 2 29 7

Target 3 23 6

2.2. Additional Processing

The initial AIS messages received were decoded and filtered based on the vessels’
MMSIs to eliminate unwanted data and outliers. The filtered information initially contained
vessel positions in geodetic coordinates, that is, in latitude and longitude (where altitude
was assumed negligible). In case more than one message were received at a specific time,
the most recent message was considered. The positions were then converted to some local
East North Up (ENU) coordinate system using an appropriate reference point location
pivoting a tangent plane approximating the Earth’s surface. In general, AIS information that
is transmitted is dependent on the speed of the vessel: higher speeds result in more frequent
updates. The concerned AIS positional measurements were linearly interpolated to match
the standard radar-grabber frequency of 1 Hz. For the datasets, a linear interpolator was
enough to obtain the missing points. The AIS data can be found in referenceMeas.mat.

As for the radar images, they have been processed by cropping out the user-interface
functions so that only the region of interest is visible together with the sensor range values.
This step was vital to remove real-world identifiable data such as the date and time of the
experiment. The processed images are stored in the folder called radarImages.

The detected point clouds (obtained from the approach in the next section) are stored
in the polarMeas.json and cartesianMeas.json files, both in the polar and Cartesian coordinates
format. A sample code (demo_visualise.py) for visualizing the detections is also incorporated.

3. Target Detection and Tracking

In this section, we describe the methods used on the datasets from detecting to tracking
the targets. Our overall processing chain at observation step t is shown in Figure 3, and the
following subsections cover the methods and the appropriate data flow.
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3.1. Automatic Target Detection

The captured radar images were each processed sequentially in chronological order
and the positions of the potential targets stored in appropriate files were then fed to the
baseline tracker. Steps followed for the image processing are as described:

(a) Each image is masked, hence eliminating further interface information (more specif-
ically, the centre point, bearing line and the compass frame itself) and converted
to grayscale.

(b) Using specific thresholds for intensity values, much of the weaker blobs have been
filtered out. This reduces clutter from within the observation region.

(c) The blob detection algorithm, Determinant of Hessians (DoH) from Python’s skimage
library (Blob Detection. Available online: https://scikit-image.org/docs/dev/auto_
examples/features_detection/plot_blob.html (accessed on 2 July 2021)), is applied
next for automatically detecting potential targets based on their distributions.

(d) The cloud of points (or measurements) that fall under the detected blob’s radius are
extracted and stored in range (metres) and bearing (radians).

This method has been improved upon from the manual target versions in the previous
works [22,23]. The DoH method provides an efficient scale- and rotation-invariant blob
detection technique. A descriptor is represented by the determinant of convolved second-
order Gaussian derivative (Hessian) elements that intuitively models the distribution of
intensity within a region of interest [27].

On the basis of the AIS-retrieved own vessel’s positions, the point clouds’ coordinates
have also been converted to a Cartesian ENU coordinate representation for both processing
and visualisation simplicity [28]. At this point, the set of measurement Z t contains all the
detected points of cardinality m. Note, for MANV, a pixel represented a finer resolution of
6 m while for the other two datasets, a pixel represented a coarser 11 m resolution.

3.2. Clustering

To calculate the centroids from the potential targets that have been extracted as
point clouds, we perform k-means partitional clustering. While there are more advanced
algorithms available for the data clustering [29,30], this method was chosen for its direct
and simple approach.

k-means is an iterative method that partitions data into k distinct subgroups (clus-
ters) such that the Euclidean distance between a point and its assigned cluster’s centroid
is at a minimum [24,25]. As the k value is normally predefined, we choose to instead
autonomously find an optimal value for k by executing a cluster evaluation prior to the
clustering. Figure 4 shows the results of three different evaluation and measure indicators
for clustering [29,30] on an exemplar set of point clouds from MANV. In the case of our
datasets, the Calinkski-Harabasz indicator was employed since it gave a more realistic
clustering output.

https://scikit-image.org/docs/dev/auto_examples/features_detection/plot_blob.html
https://scikit-image.org/docs/dev/auto_examples/features_detection/plot_blob.html
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criterion results denoting the optimal number of clusters k that were evaluated by the different indicators. The remaining
plots are clustering results using the respective indicators. Calinski-Harabasz (upper right) was able to discern between
point clouds from two targets while the remaining methods in the lower row, namely Davies Bouldin (left) and Silhouette
(right), failed to. The indicator values for Calinski-Harabasz have been normalized for the sake of uniform comparison in
the plot.

Given that a cluster consists of ` number of points, its centroid is calculated as

z = 1
`

`
∑

i=1
zi. Thus, the set Z t consists of the clusters’ centroids of cardinality k � m

that are then passed on as measurements to the filter described in the next parts.

3.3. EC-JPDA Tracker

At observation step t, there is a multi-target state X t =
{

xi
t
}n

i=1, that represents a
set of n individual target states, is to be estimated from the centroid measurement set

Z t =
{

zj
t

}k

j=1
.
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The JPDA method, which associates validated measurements to targets based on their
specific probabilistic weights, is employed. An extended Kalman filter (EKF) [31] is then
used for the state and state covariance estimations.

3.3.1. Dynamic and Measurement Models

A single target state xt =
[
pẽ,t, pñ,t, ϕt, ϑt

]T contains the kinematic parameters of
interest such as the vessel position (pẽ, pñ) in local ENU coordinates, its respective course
ϕ and speed ϑ over ground, where T is the transpose operator. Target motion is modelled
by a non-linear function described as:

xt = g(xt−1, ut)

=


pẽ,t−1 + sin(ϕt)·dt·ϑt
pñ,t−1 + cos(ϕt)·dt·ϑt

ϕt
ϑt

+ ut
(1)

where ut ∼ N (0, Q) is a zero-mean process noise with covariance Q and dt is the time
interval in-between observation steps. The measurement equation relating a measurement
to some target origin is:

zt = Hxt + vt (2)

with an additive zero-mean measurement noise vt ∼ N
(

0, Rj
t

)
and measurement matrix

H =

[
1 0 0 0
0 1 0 0

]
. Rj

t is the measurement noise covariance and is calculated based on

the conversion formulae presented in [28].

3.3.2. Gating

For an efficient measurement processing, multiple stages of gating were carried out
to eliminate measurements away from predicted target position: a rectangular one for
Z t and an ellipsoidal gating [20,26]. The rectangular gating is applied to the centroid
measurements in Z t at first. The ellipsoidal gating is then applied again to the centroid(s)
selected from the rectangular gate, including the measurements in Z t that belong to the
validated centroid’s cluster points. The region enclosed as a consequence of ellipsoidal
gating, also known as validation region G i

t , is denoted by:

G i
t =

{
z :
(

z− ẑi
t|t−1

)T(
Si

t

)−1(
z− ẑi

t|t−1

)
< γ

}
(3)

where ẑi
t|t−1 is the predicted position measurement of target i, and γ is the gate threshold

determined by some given gating probability. Si
t is the innovation covariance calculated

as follows:
Si

t = HPi
tH

T + Rj
t + Ŝi

D, t−1 (4)

Pi
t is the covariance matrix of target state xi

t. We define Ŝi
D, t−1 as an adaptive dis-

persion matrix that takes into consideration the spread of the measurements from the
immediate previous step, assumed to have originated from the target’s body and that fall
within the validation region. This can be visualised as shown in Figure 5 and is given by:

Ŝi
D =

[
σ2

ẽ σ2
ẽñ

σ2
ẽñ σ2

ñ

]
(5)

with σ2
ẽ and σ2

ñ being the variances of the validated measurements in the East and North
directions and σ2

ẽñ represents the cross-covariance in the East and North directions.
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Measurements that fall within validation regions of the two respective targets are used to calculate
the dispersion matrix for the next observation step. Unvalidated ones are neglected while common
ones are shared.

3.3.3. JPDA Filter

In this part, we briefly go over the main steps for calculating the joint association
probabilities of centroid measurements to targets. More elaborate explanations of the same
can be found in the basic works [8,14,19].

At first, a binary validation matrix Ω, of size k× (n + 1), is generated from G i
t such

that all feasible centroid-target pairings are represented as:

Ω =
[
ωji
]

(6)

such that:

ωji =

{
1 if centroid j is in G i

t
0 otherwise.

(7)

Under the 1-1 mapping constraint between a centroid and a target, the association
matrix Ω̂ comprising of joint events is generated. These are all the possible individual
events χ whereby a centroid j could be associated with a single target except for i = 0,
which signifies association with clutter instead:

Ω̂(χ) =
[
ω̂ji(χ)

]
(8)

ω̂ji = 1 if and only if the hypothesis χji that centroid j is associated either to a target i
(0 < i ≥ n) or to clutter otherwise. The joint association probabilities of event χ

(
Ω̂
)

are
calculated based on:

P{χ(Ω̂)|Z t} =
1
c ∏

j: ωji=1
λ−1P(zj

t|χji,Z t−1)P{χ(Ω̂)|k, Z t−1} (9)
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where c is a normalising constant summing the conditional probabilities P{χ(Ω̂)|Z t} over
all events χ(Ω̂) and λ the clutter density over the observation region. A validated centroid
measurement zj

t has a Gaussian density given by:

P
(

zj
t

∣∣∣χji,Z t−1

)
=

{
N
(

zj
t; ẑi

t|t−1, Si
t

)
if ωji = 1

V−1 otherwise.
(10)

V is the volume of the validation region while ẑi
t|t−1 is the predicted position and Si

t

is the innovation covariance as calculated from (4). The prior probability, that is, the last
factor in Equation (9) is:

P
(
χ
(
Ω̂
)∣∣k, Z t−1

)
= ∏

i
Pδi

D (1− PD)
1−δi (11)

where δi is the target association indicator such that δi =
k
∑

j=1
ω̂ji(χ).

The marginal association probability β ji the jth centroid measurement is associated
with target i. is now found by summing over all feasible events P

{
χ
(
Ω̂
)∣∣Z t

}
using:

β ji , ∑
χ(Ω̂)

P
{

χ
(
Ω̂
)∣∣Z t

}
ω̂ji (12)

These values are then used as weights for state estimation of each track from the
standard EKF equations [31].

3.4. Track Initiation and Estimate Evaluation

In this work, the tracks have been initialised from some initial guesses around the first
AIS reference positions of the tracks wherever available (qualified tracks) and otherwise
around the radar measurements (as it is in the case of the AIS transponder-unequipped
craft in MANV). The Euclidean distance-based positional errors are used to evaluate the
filter estimates against the reference.

4. Results

In this section, we demonstrate the tracking results and carry out some analysis on all
three datasets. Two versions of JPDA are considered. The first one is the standard JPDA
filter as conceived in [20], and the second one is our proposed approach, EC-JPDA, which
is an adapted version of the former.

While they both consider the centroids as measurements, the basic difference between
the two filters is in the gating and accounting the dispersion matrices of the centroids
considered for the adapted version, as explained in the previous section. Figure 6 shows
the output of our tracker. The estimates have been plotted on top of the radar measurements
and the observation steps are included to facilitate the discussion ahead. The error plots are
depicted in Figures 7–9 in a dataset-wise order for the qualified tracks. In the discussion,
the errors are explained more in details with respect to the trajectories before comparing
the performance of the EC-JPDA version to the standard JPDA version.
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4.1. Discussion

The estimated tracks for DAAN show continuous and properly associated measure-
ment to track, in particular around the point of closest approach of Target 2 to the aid
to navigation which is around t = 200. Due to a series of missed detections because of
occlusion between approximately t = 500 to t = 630 the estimated trajectories relied more
on the process model before getting back on track. The error values are higher for Target 3
at the beginning due to its poor and limited visibility via the radar sensor.

In the case of DARC, despite having the RACON-originated measurements often
interfering with those of the true target, the track was well estimated as seen in Figure 6. The
error peaks up to t = 400 correspond to the RACON’s and aids to navigation interferences
throughout the trajectory. This is due to the clustering process being affected that naturally
make centroid values quite inaccurate. From t = 400 onwards, there are two combined
reasons to explain the increase. First is the presence of another aid to navigation and
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second, the own sensor’s perspective over the vessel changing—which causes the AIS
measurements to have a lead over the radar measurements.

A note here is to also consider the dimensions (129 × 23 m and 180 × 28 m) of the
large targets being tracked in DAAN and DARC, and the fact that the AIS antenna might
not ideally indicate the centre of the vessel. Detections that come from over the target’s
surface can cause significant jumps in the centroids that end up affecting the estimations
as well.

As for MANV, the tracks were also clear in addition to an unreported AIS track
(moving from left to right denoted in pink), that was most likely from a leisure craft not
equipped with any AIS transponder. The dataset has a relatively finer resolution and
smaller vessels, hence the overall error in comparison to the other two datasets is lower.
There are however more fluctuations here because of the targets’ manoeuvres and brisk
speed and course changes throughout the whole duration. The peak between t = 400 to
t = 500 occurs at the targets’ intersection region, where the measurements associations
were affected. The high error at the beginning for Target 3 corresponds mainly to its poor
visibility. Around the end, it was partially occluded by Target 2.

4.2. Comparison to Standard JPDA

While the errors of the two filter versions for the targets in MANV and Target 2 in
DAAN were almost overlapping, the errors in DARC and Target 3 in DAAN were disparate.
There is a higher improvement particularly in DARC throughout the entire trajectory, the
most challenging dataset considered. For Target 3 in DAAN, the improvement occurs
during the first half where the visibility is rather poor, with occasional moments of occlusion.
As soon as visibility enhances, the errors overlap. The dispersion matrix in EC-JPDA takes
the measurements distribution into account thereby making the filter more robust than
its counterpart in the noisier surroundings by retaining information related to the target’s
underlying body. This also implies that there is also a relevant correlation of the range of
the own vessel with respect to the target to the estimate’s accuracy: closer and undisturbed
measurements from close ranges offer similar results for both versions, in contrast to the
distant and highly noisy measurements obtained from farther ranges. In the latter case, the
EC-JPDA filter could provide more accurate results.

4.3. Limitations

The onboard marine radars have limited sensor resolution, which when considered
together with the typical radar imperfections (smearing and reflections for instance) make
solving applications such as ETT more challenging. In general, the precision is decreased
for both the kinematics and the perceived size of the vessel, which somehow distorts the
values of the dispersion matrix and leads to inaccuracies during tracking.

Furthermore, the tracking results are heavily dependent on the clustering results and
tend to vary between runs. As k-means was used, the drawbacks of the method are also
applicable in our case—it does not suit different densities but instead shows an affinity
towards spherical clusters. The elongated point clouds, for instance, could be detected as
at least two clusters instead of one.

5. Conclusions

In this article, we have presented the DLR image-based marine radar datasets—that
are available to the community for research purposes. The datasets aim at advancing the
state of the arts methods in particularly maritime research, as they capture very maritime
route-specific challenges such as aids to navigations and RACONs.

Altogether, we also present a blockchain to explain our target detection, measurement
clustering and MTT approaches respectively. As some first step, a new adaptation for MTT
that basically uses a centroid-based JPDA, called EC-JPDA, was proposed as a baseline
algorithm. The results of EC-JPDA tracker and a standard JPDA tracker run on the dataset
was shown and the results were discussed.
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Overall, it was deduced that EC-JPDA outperformed the standard one on a very noisy
and challenging dataset. The performance was similar to the standard one under some
more ideal conditions (less noise, close-range).
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