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Abstract. We study simplicity and pure infiniteness criteria for C˚-
algebras associated to inverse semigroup actions by Hilbert bimodules
and to Fell bundles over étale not necessarily Hausdorff groupoids. In-
spired by recent work of Exel and Pitts, we introduce essential crossed
products for which there are such criteria. In our approach the major
role is played by a generalised expectation with values in the local
multiplier algebra. We give a long list of equivalent conditions char-
acterising when the essential and reduced C˚-algebras coincide. Our
most general simplicity and pure infiniteness criteria apply to aperi-
odic C˚-inclusions equipped with supportive generalised expectations.
We thoroughly discuss the relationship between aperiodicity, detection
of ideals, purely outer inverse semigroup actions, and non-triviality
conditions for dual groupoids.
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1 Introduction

Much is known about the ideal structure of reduced crossed products for
group actions and of reduced groupoid C˚-algebras of étale, Hausdorff, locally
compact groupoids. More precisely, for an action α of a discrete group G on
a separable C˚-algebra A, there is a long list of equivalent conditions due to
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Kishimoto and Olesen–Pedersen, which imply that the coefficient algebra A

detects ideals in the reduced crossed product A ¸α,r G in the sense that
J X A “ 0 for an ideal J in A ¸α,r G implies J “ 0. This theory has recently
been generalised in [43] to actions by Hilbert bimodules or, equivalently, Fell
bundles over groups. The goal of this article is to generalise the results in [43]
to Fell bundles over groupoids and inverse semigroups. It turns out that
many of these results extend, without major problems, to actions of inverse
semigroups by Hilbert bimodules provided that the crossed product carries
a conditional expectation. Such crossed products model, as a special case,
section C˚-algebras associated to Fell bundles over Hausdorff, étale, locally
compact groupoids. The existence of a canonical conditional expectation
is closely related to the Hausdorffness of the underlying groupoid. This is
already quite satisfactory, as it unifies the existing results for crossed products
for group actions and for (twisted) groupoid C˚-algebras of Hausdorff étale
groupoids and improves the criteria for detection of ideals for groupoid crossed
products by Renault [55]. Another intriguing source of potential applications
come from regular inclusions and the noncommutative Cartan inclusions
introduced by Exel [20]. Namely, Exel [20] has found sufficient conditions for a
regular inclusion with a conditional expectation to be of the form A Ď A ¸r S

for some inverse semigroup action by Hilbert bimodules. However, a real
challenge and an important problem that has been open for decades now, is
how to deal with non-Hausdorff groupoids. Eventually, the main point of this
article has become how to attack this problem and get results about detection
of ideals without a (genuine) conditional expectation.

Difficulties for non-Hausdorff groupoids were already noticed in [55], which
includes an unexpected example by Skandalis of a minimal foliation with a non-
simple C˚-algebra. Reduced crossed products for non-Hausdorff groupoids
were studied further in [33, 34], but without progress on their ideal struc-
ture. Until recently, all general results about the ideal structure of groupoid
C˚-algebras were limited to the Hausdorff case. There are several constructions
of étale groupoids from other data for which Hausdorffness is unclear and not a
natural assumption to make. Important classes of such groupoids are foliation
C˚-algebras – restricted to complete transversals to make them étale – and the
C˚-algebras of self-similar graphs defined by Exel and Pardo [24]. Very recently,
there has been progress in the non-Hausdorff case in two directions. First,
the simplicity of C˚

r pHq for minimal, topologically principal, second countable
groupoids H has been studied in [13]. Secondly, Exel and Pitts [25] have
defined “essential” (twisted) groupoid C˚-algebras for topologically principal
groupoids in which C0pXq detects ideals. The construction in [25] appears to be
rather ad hoc, however. It only works well for topologically principal groupoids.

Here we take the idea of Exel and Pitts much further. We define essential
crossed products for all inverse semigroup actions on C˚-algebras by Hilbert
bimodules. Our definition is conceptual and analogous to the definition of
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reduced crossed products in [10]. Secondly, we derive a very powerful abstract
criterion for a C˚-subalgebra A in a C˚-algebra B to detect ideals. Even more,
our theory may show that A supports B in the sense that any non-zero positive
element in B dominates some non-zero positive element in A with respect to
the Cuntz preorder. This allows to prove that B is purely infinite and simple
under suitable assumptions. Previous criteria for pure infiniteness of crossed
products were restricted to groupoid C˚-algebras of Hausdorff groupoids (see
also [27, 30, 37, 41, 43, 46, 50, 57] for more work on pure infiniteness of crossed
products).

The reduced crossed product A ¸r S for an inverse semigroup action on A is
defined in [10] using a weak conditional expectation E : A¸S Ñ A2, where A2

is the bidual of A. We call the action closed if this expectation takes values
in A Ď A2. This happens for inverse semigroup actions that are derived from
actions of Hausdorff étale groupoids. In general, however, we must enlarge A to
accommodate a conditional expectation. Let MlocpAq be the local multiplier
algebra of A, that is, the inductive limit of the multiplier algebras of the
essential ideals in A (see [3]). If A “ C0pXq, then MlocpAq is the inductive
limit of CbpUq for dense open subsets U Ď X . So it is spanned by functions
that are “densely defined” on X . Our main idea is to replace E : A¸S Ñ A2 by
a generalised conditional expectation EL : A¸ S Ñ MlocpAq, which we briefly
call an Mloc-expectation. Then we define the essential crossed product as the
quotient of A ¸ S by the largest two-sided ideal on which EL vanishes. The
main troublemakers in C˚

r pHq for a non-Hausdorff groupoid H are elements
x P C˚

r pHq for which Epxq is supported on a nowhere dense subset of X . The
expectation EL kills such elements. Hence they get killed in the essential
crossed product.

The main achievement in this article is a conceptual understanding of the
techniques used to prove that crossed products of various kinds are simple
or purely infinite. We take this occasion to honour Emmy Noether, who
pioneered the conceptual approach to mathematics despite strong resistance,
and whose Habilitation in Göttingen was finally granted only in 1919. The ba-
sic concepts that make this paper work are aperiodicity and Mloc-expectations.

The concept of aperiodicity goes back to Kishimoto’s proof that reduced
crossed products for outer group actions on simple C˚-algebras are again sim-
ple (see [38]). The crucial condition in Kishimoto’s proof was rewritten in [43]
in terms of normed A-bimodules in order to treat actions by Hilbert bimodules
instead of by automorphisms. The right generality to study aperiodicity is a
C˚-inclusion A Ď B. We call the inclusion aperiodic if B{A equipped with
the quotient norm and the induced A-bimodule structure satisfies Kishimoto’s
condition. Given an aperiodic inclusion, we prove that there is a maximal
ideal N in B which is aperiodic as an A-bimodule and that B{N is the unique
quotient of B for which the map A Ñ B{N is injective and detects ideals.
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For inverse semigroup actions by Hilbert bimodules, the aperiodicity of pA ¸
Sq{A is equivalent to the aperiodicity of certain Hilbert bimodules. Using the
results of [43] we show the following. Let A be separable or of Type I. The

inclusion A Ď A ¸ S is aperiodic if and only if the dual groupoid pA ¸ S is
topologically free (see Theorem 6.13). Here pA is the space of isomorphism
classes of irreducible representations of A, and the action of S on A by Hilbert
bimodules induces an action on pA by the Rieffel correspondence. We carefully
discuss the concept of a “topologically free” étale groupoid in Section 2 because
several slightly different definitions are used in the literature, and the dual
groupoid pA¸ S is rather badly non-Hausdorff.
Aperiodicity becomes powerful when combined with a conditional expectation.
The following theorem is a special case of Theorem 5.28.

Theorem 1. Let A Ď B be an aperiodic C˚-inclusion with a conditional ex-

pectation E : B Ñ A. Let NE be the largest two-sided ideal contained in kerE.

Let A` :“ ta P A : a ě 0u and let À denote the Cuntz preorder on B`. Then

(1) for every b P B` with b R NE , there is a P A`zt0u with a À b;

(2) A supports B{NE;

(3) A detects ideals in B{NE, and B{NE is the only quotient of B with this

property;

(4) B is simple if and only if NE “ 0 and BIB “ B for all 0 ‰ I P IpAq;

(5) if B is simple, then B is purely infinite if and only if every element in

A`zt0u is infinite in B.

The first statement (1) is the key step here. It easily implies all the others.
In order to treat general inverse semigroup crossed products or C˚-algebras
of non-Hausdorff étale groupoids, it is necessary to replace the conditional
expectation in Theorem 1 by something weaker. At first, we tried a weak
conditional expectation E : B Ñ A2 as in the definition of the reduced crossed
product for inverse semigroup actions in [10]. An inspection of the proof of
Theorem 1 led to the concept of a supportive weak conditional expectation,
which suffices to make the proof of the theorem work. Besides looking at weak
conditional expectations, we also looked at pseudo-expectations, which take
values in the injective hull of A. Here we were motivated by the theorem
of Zarikian that a crossed product for a group action has a unique pseudo-
expectation if and only if the action is aperiodic (see [61, Theorem 3.5]). The
injective hull of a commutative C˚-algebra is equal to its local multiplier algebra
(see [26]). And it turns out that a generalised conditional expectation with
values in MlocpAq is always supportive. Thus Theorem 1 still holds with a
generalised conditional expectation E that takes values in MlocpAq. And this
then suggests our definition of the essential crossed product.
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As another test of our definition of the essential crossed product, we carry
over the main results of Archbold–Spielberg [4] and Kawamura–Tomiyama [31].
Namely, if S is an inverse semigroup acting on a C˚-algebra A by Hilbert
bimodules and pA ¸ S is topologically free, then A detects ideals in A ¸ess S

(Theorem 6.14). And for an étale locally compact groupoid H , C0pXq detects
ideals in C˚

esspHq if and only if H is topologically free (Theorem 7.29). Another
very promising observation is that all derivations onA become inner in MlocpAq
(see [3]). The corresponding result for A2 instead of MlocpAq plays a key role in
the work of Olesen–Pedersen. The local multiplier algebra always embeds into
Hamana’s injective hull (see [26]). Hence every Mloc-expectation is a pseudo-
expectation as well. These have been studied, for instance, in [52, 53, 61].
It is, however, often necessary to work with the reduced crossed product. One
reason is that the essential crossed product is not functorial. Thus we want to
know when the essential and the reduced crossed products are equal, meaning
that they are both quotients of A¸S by the same ideal. We use that EpA¸Sq
embeds into the product

ś
πP pA BpHπq, consisting of uniformly bounded families

of operators on the Hilbert spaces on which the irreducible representations
of A act. The local multiplier algebra MlocpAq embeds into the quotient ofś

πP pA BpHπq that is defined by the essential supremum of the pointwise norms
– we disregard subsets that are meagre. As a result, the following are equivalent
(see Corollary 4.17):

• A¸r S “ A ¸ess S;

• if x P pA¸Sq` and Epxq ‰ 0, then the set of π P pA with ‖π2pEpxqq‖ ‰ 0
is not meagre;

• if ε ą 0 and x P pA ¸ Sq` satisfies Epxq ‰ 0, then the set of π P pA with
‖π2pEpxqq‖ ą ε has non-empty interior.

We carry the theory above over to section C˚-algebras C˚pH,Aq for Fell bun-
dles A over a locally compact, étale groupoid H with Hausdorff unit space X .
This includes twisted groupoid C˚-algebras as a special case. We define an
essential section C˚-algebra C˚

esspH,Aq for all Fell bundles A. For a Fell line
bundle A, it coincides with the essental twisted groupoid C˚-algebra defined
by Pitts and Exel [25] if and only if H is topologically principal. We give many
equivalent characterisations for C˚

r pH,Aq “ C˚
esspH,Aq. One of them is related

to singular elements as defined in [13] for groupoid C˚-algebras. We also dis-
cuss simplicity and pure infiniteness criteria for C˚

esspH,Aq that generalise and
improve various results of this sort.
Our more recent article [45] contains two important advances. First, all
topologically free inverse semigroup actions are aperiodic. Secondly, pseudo-
expectations are always supportive. This generalises Theorem 1 to all aperiodic
inclusions A Ď B.
Steinberg and Szakács in [59] prove a criterion when the Steinberg algebra of
an étale groupoid with totally disconnected object space is simple. Our results
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imply an analogous criterion for reduced groupoid C˚-algebras.

The paper is organised as follows. Section 2 introduces inverse semigroup ac-
tions on topological spaces and C˚-algebras and the dual groupoid for an action
on a C˚-algebra, and it compares several concepts of topological freeness for
such actions and for non-Hausdorff étale groupoids. Section 3 discusses ba-
sic notation about generalised conditional expectations and full and reduced
crossed products for inverse semigroup actions. We show that the canonical
weak conditional expectation on the reduced crossed product is faithful. Sec-
tion 4 introduces the essential crossed product and the Mloc-expectation that
defines it. We prove that this generalised expectation is faithful, and we char-
acterise when the reduced and essential crossed products coincide.

Section 5 contains our general results on aperiodic C˚-inclusions A Ď B. We
show that for any such inclusion there is a unique quotient of B in which A

detects ideals. Then we say that A Ď B has the generalised intersection prop-
erty and call the unique ideal N such that A detects ideals in B{N the hidden
ideal. We define supportive generalised expectations and prove the generalisa-
tions of Theorem 1 discussed above. In Section 6, we specialise aperiodicity to
inverse semigroup actions. We show that the inclusion A Ď B into an exotic
crossed product is aperiodic if and only if the underlying action is aperiodic
in a suitable sense, and we reformulate aperiodicity in several equivalent ways.
We use these equivalent characterisations of aperiodicity to rewrite our main
results with different assumptions. In Section 7, we describe section algebras of
Fell bundles over étale, locally compact groupoids through crossed products for
inverse semigroup actions. Using this we define essential section algebras for
Fell bundles over étale groupoids. We prove results about their ideal structure
and when they are simple and purely infinite. And we compare the essential
and reduced section algebras.
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2 Preliminaries on inverse semigroup actions and étale groupoids

First we define inverse semigroup actions on topological spaces and compare
them to étale groupoids. We allow arbitrary topological spaces, requiring nei-
ther Hausdorffness nor local compactness. We define actions of inverse semi-
groups on C˚-algebras by Hilbert bimodules and relate them to regular inclu-
sions and gradings by inverse semigroups. We define the dual groupoid pA¸S of
such an action. Then we discuss several variants of the concept of topological
freeness.
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2.1 Inverse semigroup actions on spaces and étale groupoids

An inverse semigroup is a semigroup S with the property that for each t P S
there is a unique element t˚ P S such that tt˚t “ t and t˚tt˚ “ t˚. Let

EpSq :“ te P S : e2 “ eu.

If e, f P EpSq, then e “ e˚ and ef “ fe. If t P S, then t˚t, tt˚ P EpSq. We call
EpSq the idempotent semilattice of S. A partial order on S is defined by t ď u

for t, u P S if and only if t “ ut˚t, if and only if there is e P EpSq with t “ ue.
By definition, EpSq “ te P S : e ď 1u.
Let X be an arbitrary topological space. A partial homeomorphism of X is
a homeomorphism between two open subsets of X . Partial homeomorphisms
with the composition of partial maps form a unital inverse semigroup, which we
denote by ΠpXq. Let S be a unital inverse semigroup. An action of S on X by

partial homeomorphisms is a unital semigroup homomorphism h : S Ñ ΠpXq.
So it consists of open subsets Xt of X and homeomorphisms ht : Xt Ñ Xt˚

for all t P S, such that ht ˝ hu “ htu for all t, u P S and h1 “ IdX ; then
ht˚ “ h˚

t “ h´1
t for all t P S. We denote the domain of ht by Xt, rather

than by Xt˚ (which is a convention adopted in most of sources). We do this
to lighten the notation, as we will talk mostly about domains of ht’s.
An inverse semigroup action h on X as above yields an étale topological
groupoid with object space X , namely, the transformation groupoid X¸S (see
[51, p. 140] or [19, Section 4]). We avoid the name “groupoid of germs” used by
Exel because some authors use that name for another groupoid with a different
germ relation. The arrows of X ¸ S are equivalence classes of pairs pt, xq for
x P Xt Ď X ; two pairs pt, xq and pt1, x1q are equivalent if x “ x1 and there is
v P S with v ď t, t1 and x P Xv. The range and source maps r, s : X ¸ S Ñ X

and the multiplication are defined by rprt, xsq :“ htpxq, sprt, xsq :“ x, and
rt, hupxqs ¨ ru, xs “ rt ¨ u, xs. We give X ¸ S the unique topology for which
rt, xs ÞÑ x is a homeomorphism from an open subset of X ¸S onto Xt for each
t P S. Then the range and source maps are local homeomorphisms X¸S Ñ X .
The multiplication is continuous. So X ¸ S is an étale topological groupoid.
The subsets Ut :“ trt, xs :x P Xtu are bisections of X¸S, and they cover X¸S.
Now let H be an étale groupoid with object space X . We are going to write H
as a transformation groupoid. A bisection of H is an open subset U Ď H such
that r|U and s|U are injective. If U, V Ď H are bisections, then so are

U´1 :“ tγ´1 : γ P Uu, U ¨ V :“ tγ ¨ η : γ P U, η P V u.

The bisections of H with these operations form a unital inverse semigroup,
which we denote by BispHq. The unit bisection is the subset of all identity
arrows in H . The inverse semigroup BispHq acts canonically on X by hU :“
r ˝ ps|U q´1 for U P BispHq.

Definition 2.1. An inverse subsemigroup S Ď BispHq is called wide if
Ť
S “

H and U X V is a union of bisections in S for all U, V P S.
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Proposition 2.2. For any unital inverse subsemigroup S Ď BispHq, the map

Φ: X ¸ S Ñ H, rU, xs ÞÑ ps|U q´1pxq,

is a well defined, continuous, open groupoid homomorphism. It is an isomor-

phism if and only if S Ď BispHq is wide.

Proof. This is mostly proven in [19, Propositions 5.3 and 5.4]. Direct compu-
tations show that Φ is a well defined groupoid homomorphism. If U P S, then
U 1 :“ trU, xs :x P spUqu is a bisection of X ¸ S with ΦpU 1q “ U . Since both
H and X ¸ S are étale and Φ is the identity map on objects, it follows that Φ
restricts to a homeomorphism from U 1 onto U . The bisections U 1 for U P S

cover X ¸ S. Therefore, the map Φ is both continuous and open.
Clearly, the map Φ is surjective if and only if

Ť
S “ H . And Φ is not injective

if and only if there are U, V P S and γ P U X V with rU, spγqs ‰ rV, spγqs in
X ¸ S. By the definition of X ¸ S, the latter holds if and only if γ R W for
all W P S with W Ď U X V . Hence there is such a γ P U X V if and only ifŤ

W PS,W ĎUXV W ‰ U X V . So Φ is bijective if and only if S is wide.

Proposition 2.2 allows to translate properties of groupoids into the language of
inverse semigroup actions, and vice versa.

Definition 2.3. A subset Y Ď X is h-invariant for an action h : S Ñ ΠpXq if
htpY XXtq Ď Y for all t P S. If Y is invariant, then there is a restricted action
h|Y : S Ñ ΠpY q, which is defined by ph|Y qt :“ ht|Y : Y XXt Ñ Y XXt˚ for all
t P S. A subset Y Ď X is H-invariant for a groupoid H with object space X if
and only if s´1pY q “ r´1pY q as subsets of H .

Remark 2.4. A subset Y Ď X is X¸hS-invariant if and only if it is h-invariant
(see [23, Proposition 5.4]).

Definition 2.5. Let X be a topological space and h : S Ñ ΠpXq an inverse
semigroup action. For t P S, define

X1,t :“
ď

eďt,ePEpSq

Xe.

The action is called closed if X1,t is relatively closed in Xt for all t P S.

Lemma 2.6. The action h is closed if and only if the space of units X is closed

in X ¸ S.

Proof. This follows because the subset X1,t is equal to the intersection of Xt

with the unit bisection in X ¸ S and pXtqtPS is an open cover of X .

Remark 2.7. Closed inverse semigroup actions are important because a topo-
logical groupoid is Hausdorff if and only if the object space is Hausdorff and
the units form a closed subset of the arrows (see [10, Lemma 5.2]).
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2.2 Inverse semigroup actions on C˚-algebras

Definition 2.8 ([11]). An action of a unital inverse semigroup S on a
C˚-algebra A (by Hilbert bimodules) consists of Hilbert A-bimodules Et for
t P S and Hilbert bimodule isomorphisms µt,u : Et bA Eu

„ÝÑ Etu for t, u P S,
such that

(A1) for all t, u, v P S, the following diagram commutes (associativity):

pEt bA Euq bA Ev

Et bA pEu bA Evq

Etu bA Ev

Et bA Euv

Etuvass

µt,u bA IdEv

IdEt
bA µu,v

µt,uv

µtu,v

(A2) E1 is the identity Hilbert A,A-bimodule A;

(A3) µt,1 : Et bAA
„ÝÑ Et and µ1,t : AbA Et

„ÝÑ Et for t P S are the maps defined
by µ1,tpa b ξq “ a ¨ ξ and µt,1pξ b aq “ ξ ¨ a for a P A, ξ P Et.

We shall not use actions by partial automorphisms in this article. So all actions

of inverse semigroups on C˚-algebras are understood to be by Hilbert bimodules.

Any S-action by Hilbert bimodules comes with canonical involutions E˚
t Ñ Et˚ ,

x ÞÑ x˚, and inclusion maps ju,t : Et Ñ Eu for t ď u that satisfy the conditions
required for a saturated Fell bundle in [20] (see [11, Theorem 4.8]). Thus
S-actions by Hilbert bimodules are equivalent to saturated Fell bundles over S.

Definition 2.9 ([44, Definition 6.15]). An S-graded C˚-algebra is a
C˚-algebra B with closed subspaces Bt Ď B for t P S such that

ř
tPS Bt

is dense in B, BtBu Ď Btu and B˚
t “ Bt˚ for all t, u P S, and Bt Ď Bu if

t ď u in S. The grading is saturated if Bt ¨ Bu “ Btu for all t, u P S. We call
A :“ B1 Ď B the unit fibre of the grading.

Remark 2.10. For group gradings, it is customary to require the fibres to be
linearly independent. We have no use for such a condition. We will, however,
restrict to “topological gradings” for several important results. In the group
case, our notion of a topological grading specialises to the usual one, and that
implies immediately that the fibres are linearly independent.

A (saturated) S-grading pBtqtPS on B defines a (saturated) Fell bundle over S
using the operations in B. Conversely, the crossed product construction al-
lows to realise any (saturated) Fell bundle through a grading on a suitable
C˚-algebra.
One important source of inverse semigroup actions are Fell bundles over étale
groupoids (see Section 7.1). Another important source are regular inclusions:

Definition 2.11. Let A Ď B be a C˚-subalgebra. We call the elements of

NpA,Bq :“ tb P B : bAb˚ Ď A, b˚Ab Ď Au
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normalisers of A in B (see [39]). We call the inclusion A Ď B regular if it is
non-degenerate and NpA,Bq generates B as a C˚-algebra (see [56]).

Proposition 2.12. The following are equivalent for a C˚-inclusion A Ď B:

(1) A is a regular subalgebra of B;

(2) A is the unit fibre for some inverse semigroup grading on B;

(3) A is the unit fibre for some saturated inverse semigroup grading on B.

If these equivalent conditions hold, then

SpA,Bq :“ tM Ď NpA,Bq : M is a closed linear subspace

and AM Ď M, MA Ď Mu

with the operations M ¨ N :“ span tmn :m P M, n P Nu and M˚ :“ tm˚ :m P
Mu is an inverse semigroup. And the subspaces M P SpA,Bq form a saturated

SpA,Bq-grading on B.

Proof. This goes back to [20]. See also [44, Lemma 6.25 and Proposition 6.26].

Lemma 2.13. Any non-degenerate C˚-inclusion A Ď B with commutative B is

regular.

Proof. Let B` be the minimal unitisation of B. If u P B` is unitary, then
A ¨ u Ď NpA,Bq because B is commutative. The unital C˚-algebra B` is
spanned by the unitaries it contains. Hence B is the linear span of A ¨ u for
unitaries u P B`.

2.3 Dual groupoids

Let A be a C˚-algebra with an action E of a unital inverse semigroup S. Let pA
and qA “ PrimpAq be the space of irreducible representations and the primitive

ideal space of A, respectively. Open subsets in pA and in qA are in natural
bijection with ideals in A. The action of S on A induces an action pqEtqtPS on qA
by partial homeomorphisms by [11, Lemma 6.12]. We explain how this action

lifts to an action
` pEt

˘
tPS

of S on pA.

Let t P S. Then zspEtq is an open subset of pA, consisting of all π P pA that are

non-degenerate on spEtq “ xEt | Ety. Let π P pA. The tensor product Et bA Hπ

is non-zero if and only if π belongs to zspEtq. And then the left multiplication
action of A on EtbAHπ is another irreducible representation of A, which we call
pEtpπq P pA. This defines a homeomorphism pEt : zspEtq „ÝÑ zrpEtq with inverse xEt˚ .

The family pE :“ ppEtqtPS forms an action of S on pA by partial homeomorphisms.

Definition 2.14. We call pE the dual action to the action E . The transforma-
tion groupoid pA ¸ S is called the dual groupoid of E .
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Let IpAq for a C˚-algebra A denote the lattice of (closed, two-sided) ideals in A.

Definition 2.15. We call I P IpAq F-invariant for a Hilbert A-bimodule F
if I ¨ F “ F ¨ I. We call I P IpAq E-invariant for an action E of an inverse
semigroup S if I is Et-invariant for all t P S. Let IEpAq denote the set of all
E-invariant ideals in A. We call E minimal if IEpAq “ t0, Au, that is, the only
E-invariant ideals in A are 0 and A.

Remark 2.16. Let B be an S-graded C˚-algebra with grading E “ pEtqtPS .
Then IEpAq “ tJ XA : J P IpBqu (see [44, Proposition 6.19]).

Lemma 2.17. An ideal I in A is E-invariant if and only if the corresponding

open subset pI Ď pA is invariant for the dual groupoid pA ¸ S.

Proof. By Remark 2.4, pA ¸ S-invariance is the same as invariance under the
dual S-action ppEtqtPS on pA. Therefore, we need to show that I is E-invariant

if and only if pEtppI X pDtq “ pI X pDt˚ for all t P S. This follows from a known
fact for any Hilbert A-bimodule F : an ideal I in A is F -invariant if and only
if pI is invariant under the partial homeomorphism pF (see [40] or the proof of
[1, Proposition 3.10]).

Definition 2.18. An inverse semigroup action E on a C˚-algebra A is called
closed if the dual S-action on pA is closed.

Remark 2.19. Let H be an étale locally compact groupoid with a Hausdorff
unit space X and let S be a wide inverse semigroup of bisections of H . If
we equip A “ C0pXq with the canonical action of S, then the dual action on
pA – X is the canonical S-action and pA ¸ S – H . Hence the S-action on A is
closed if and only if H is Hausdorff (see Remark 2.7).

2.4 Non-Triviality conditions for étale groupoids

We carefully distinguish several versions of the concept of topological freeness.
They are all equivalent for groupoids that are second countable, locally compact
and Hausdorff. We will, however, meet groupoids where the object space is the
spectrum of a C˚-algebra, which is often badly non-Hausdorff, and the unit
space is not closed in the groupoid.

Definition 2.20. Let H be an étale groupoid and X Ď H its unit space. The
isotropy group of a point x P X is Hpxq :“ s´1pxq X r´1pxq Ď H . We call H

(1) effective if any open subset U Ď H with r|U “ s|U is contained in X ;

(2) topologically free if, for every bisection U Ď HzX , the set tx P X :HpxqX
U ‰ Hu has empty interior;

(3) AS topologically free if, for finitely many bisections U1, . . . , Un Ď HzX ,
the union

Ťn
i“1 tx P X :Hpxq X Ui ‰ Hu has empty interior;
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(4) topologically principal if the set of points of X with trivial isotropy is
dense or, equivalently, the set tx P X :HpxqzX ‰ Hu has empty interior.

An action of an inverse semigroup on a topological spaceX or on a C˚-algebraA
is called topologically free if the transformation groupoid X ¸ S or the dual
groupoid pA¸S is topologically free, and similarly for effective, AS topologically
free and topologically principal actions.

Remark 2.21. Let α : G Ñ AutpAq be an action of a discrete group on

a C˚-algebra A. The transformation groupoid pA ¸ G for the dual action
is AS topologically free if and only if, for any t1, . . . , tn P Gzt1u, the setŤn

i“1tx P pA : pαti
pxq “ xu has empty interior in pA. This definition is due to

Archbold and Spielberg (see [4, Definition 1]), and this is what “AS” in Defini-
tion 2.20(3) stands for.

Remark 2.22. Topological freeness for groupoids as defined in Definition 2.20.(2)
has not yet received as much attention as it deserves. This condition appears,
for instance, in [5, Lemma 3.1.(3)] and in [25, 14.15(ii)], where it is related to the
conditions that we call “effective” and “topologically principal”, respectively.

We are going to describe the above properties in terms of an inverse semigroup
action h : S Ñ ΠpXq. For t P S, define

Fixphtq :“ tx P XtzX1,t :htpxq “ xu, Fixphtq :“
 
x P XtzX1,t :htpxq “ x

(
.

By definition, Fixphtq “ Fixphtq “ H if t P EpSq. If S is a group and t P Szt1u,
then Fixphtq “ Fixphtq “ tx P X :htpxq “ xu.

Lemma 2.23. Let h : S Ñ ΠpXq be an inverse semigroup action and H :“
X ¸ S.

(1) If H is effective, then H is topologically free. The converse holds if X is

closed in H.

(2) H is topologically free if and only if Fixphtq has empty interior for any

t P S, if and only if Fixphtq has empty interior for any t P S.

(3) H is AS topologically free if and only if
Ťn

i“1 Fixphti
q has empty interior

for any t1, . . . , tn P S.

(4) H is topologically principal if and only if
Ť

tPS Fixphtq has empty interior.

Proof. The construction of H “ X ¸ S implies

tx P X :HpxqzX ‰ Hu “
ď

tPS

Fixphtq.

This readily implies (4).
For a subset A Ď X , let IntpAq denote its interior in X . If t P S, then
IntpXtzX1,tq “ XtzX1,t and hence

Int pFixphtqq “ Int pFixphtqq .
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Thus the second equivalence in (2) is valid. The subset Vt :“ 
rt, xs :x P XtzX1,t

(
is a bisection contained in HzX , and

tx P X :Hpxq X Vt ‰ Hu “ Fixphtq. (2.1)

Hence, ifH is effective or topologically free, then Int pFixphtqq “ Int pFixphtqq “
H. Conversely, if H is not topologically free, then there is a bisection U Ď HzX
such that the interior V of tx P X :Hpxq X U ‰ Hu is non-empty. Let x P V .
Then x P spUq and there is a unique γ P U with spγq “ x because U is
a bisection. And rpγq “ x because Hpxq X U ‰ H. There is t P S with
γ “ rt, spγqs. Since U is open, it contains an open neighbourhood U2 of γ, which
we may take of the form U2 “ trt, xs :x P V2u for an open subset V2 Ď Xt. Then
V XV2 is an open neighbourhood of spγq such that rt, xs P U and HpxqXU ‰ H
for all x P V X V2. Thus rprt, xsq “ sprt, xsq for all x P V X V2. So the interior
of Fixphtq is non-empty. This finishes the proof of (2).
As we noticed above, if H is effective, then Int pFixphtqq “ H for all t P S, and
hence H is topologically free by (2). Suppose now that H is not effective. So
there is a bisection U Ď H with r|U “ s|U that is not contained in X . If X
is closed in H , then V :“ UzX is a bisection contained in HzX , and it is still
non-empty. Since spV q “ tx P X :Hpxq X V ‰ Hu, the groupoid H is not
topologically free. Thus (1) is proved.

The ‘only if’ part in (3) follows from (2.1). For the ‘if’ part, suppose that there
are bisections U1, . . . , Un contained in HzX and a non-empty open subset

W Ď
nď

i“1

tx P X :Hpxq X Ui ‰ Hu. (2.2)

We may assume without loss of generality that W X spUiq ‰ H for i “ 1, . . . , n.
Since U1 is open and contained in HzX there are open sets Wt Ď XtzX1,t, t P S,
with U1 “ Ť

tPStrt, xs :x P Wt, t P Su. If t1 P S is such that Wt1
X W ‰ H,

then replacing W by W XWt1
and U1 by trt1, xs :x P Wt1

u, the inclusion (2.2)
remains valid. Proceeding in this way, we may arrange for the sets Ui to be
of the form Ui “ trti, xs :x P Wiu for some ti P S and some open subsets Wi

of Xti
zX1,ti

for i “ 1, . . . , n. Being open, these subsets are even contained in
XtzX1,t. And

W Ď
nď

i“1

tx :Hpxq X Ui ‰ Hu “
nď

i“1

tx P Wti
:hti

pxq “ xu Ď
nď

i“1

Fixphti
q.

This finishes the proof of (3).

Lemma 2.23 implies the following relations between the properties in Defini-
tion 2.20:

peffectiveq ñ ptop. freeq ð pAS top. freeq ð ptop. principalq.
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And topological freeness and effectiveness are equivalent if the unit space is
closed. Example 6.4 below exhibits a topologically principal action of an inverse
semigroup S on r0, 1s that is not effective (see also [13, Example 5.1] for such
an example). There are situations when topological freeness implies topological
principality. The following result of this nature is essentially due to Renault
(see [56, Proposition 3.6.(ii)]).

Proposition 2.24. Let X be a Hausdorff space. An action h of an inverse

semigroup S on X is topologically free if and only if it is AS topologically free.

If, in addition, X is a Baire space and S is countable, then h is topologically

free if and only if it is topologically principal.

Proof. Assume h to be topologically free. We are going to prove that h is AS
topologically free. This implies the first statement. Let t P S. Lemma 2.23
shows that Fixphtq has empty interior in X . Equivalently, the set of x P Xt

with htpxq ‰ x is dense in Xt. This subset is open because X is Hausdorff.
Therefore, the open subset Yt of all x P X with either x R Xt or x P Xt and
htpxq ‰ x is dense in X . No point in Yt can belong to the closure of Fixphtq.
Therefore, the interior of Fixphtq is empty or, equivalently, Fixphtq is nowhere
dense in X . This is inherited by the subset Fixphtq of Fixphtq. A finite union
of nowhere dense subsets is again nowhere dense. Hence every finite unionŤn

i“1 Fixphti
q for t1, . . . , tn P S is nowhere dense and hence has empty interior.

Thus h is AS topologically free by Lemma 2.23. If, in addition, S is countable,
and X Baire, then the countable union

Ť
tPS Fixphtq is still nowhere dense in X .

Hence Lemma 2.23 implies that h is topologically principal.

In Theorem 6.13, we will prove an analogue of Proposition 2.24 for the dual
groupoidH “ pA¸S of an inverse semigroup action on a separable C˚-algebraA,
so pA need not be Hausdorff. Some further assumption besides X being Baire
and S countable is needed for this converse implication. For instance, the
action of the permutation group S3 on the three-element set X with the chaotic
topology tH, Xu is topologically free, but not AS topologically free.
The following lemma allows to relax the assumptions in Proposition 2.24
slightly:

Lemma 2.25. Let H be an étale groupoid and X its space of units. Let X 1 Ď X

be an open dense subset of X. Then H 1 :“ s´1pX 1q X r´1pX 1q is an open dense

subgroupoid of H, and

(1) H is topologically free if and only if H 1 is topologically free.

(2) H is AS topologically free if and only if H 1 is AS topologically free.

(3) H is topologically principal if and only if H 1 is topologically principal.

Proof. Clearly, H 1 is an open subgroupoid of H . It is dense in H because for
every bisection U Ď H the intersection U X H 1 is open and dense in U . For
any x P X 1 the isotropy groups in H and H 1 are the same. This immediately
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gives (3). If U is a bisection in H , then U Ď HzX if and only if U X H 1 Ď
H 1zX 1. This readily implies (1). Concerning (2), it is easy to see that H 1 is
AS topologically free if H is. Conversely, let H 1 be AS topologically free and
let U1, . . . , Un Ď HzX be bisections of H . Let U 1

j :“ Uj X H 1 for j “ 1, . . . , n.
Then

nď

i“1

tx P X :Hpxq X Ui ‰ Hu XX 1 “
nď

i“1

tx P X 1 :H 1pxq X U 1
i ‰ Hu.

The set on the right has empty interior because H 1 is AS topologically free.
Since X 1 is dense in X , it follows that

Ťn
i“1 tx P X :Hpxq X Ui ‰ Hu has

empty interior. Thus H is AS topologically free.

Corollary 2.26. Suppose that the space of units X of an étale groupoid H

contains an open dense subset X 1 which is Hausdorff. Then H is topologically

free if and only if H is AS topologically free. If X 1 is Baire and H has a

countable cover by bisections, then H is topologically free if and only if it is

topologically principal.

Proof. Combine Proposition 2.24 and Lemma 2.25.

3 Full and reduced crossed products

We first establish some basic notation about generalised conditional expecta-
tions. Then we construct the full and reduced crossed products for inverse
semigroup actions and prove that the canonical weak expectation on the re-
duced crossed product is faithful.

3.1 Generalised expectations

Conditional expectations are crucial tools in the study of crossed products for
group actions. For an inverse semigroup action, the reduced crossed product is
defined in [10] using a “weak conditional expectation” E : A ¸ S Ñ A2, which
takes values in the bidual von Neumann algebra A2. Pseudo-expectations,
which take values in the injective hull of A, have been studied in [52, 53, 61].
To define the essential crossed product, we will use expectations with values in
the local multiplier algebra (see Definition 4.2 below). The following definition
covers all these cases:

Definition 3.1. Let A Ď B be a C˚-inclusion. A generalised expectation

consists of another C˚-inclusion A Ď Ã and a completely positive, contractive
map B Ñ Ã that restricts to the identity map on A. If Ã “ A, Ã “ A2, or
Ã is the injective envelope of A, then we speak of a conditional expectation, a
weak conditional expectation, or a pseudo-expectation, respectively.

Lemma 3.2. Any generalised expectation is an A-bimodule map.
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Proof. The unique unital, linear extension E` : B` Ñ Ã` is still completely
positive and contractive (see, for instance, [6, Subsection 2.2]). And it is the
identity map on A`. Then E` is A`-bilinear by Choi’s Theorem, [12, Theo-
rem 3.1].

Any idempotent linear contractionE : B Ñ A is a completely positive bimodule
map and thus a conditional expectation. This result is due to Tomiyama [60].

Example 3.3. For any C˚-inclusion A Ď B, the identity map on B is a gener-
alised expectation with values in B.

Example 3.4 ([52]). The identity map on A extends to a completely positive
map from B to the injective hull of A. Thus, any C˚-inclusion A Ď B has a
pseudo-expectation.

We will see more examples of generalised expectations in the definitions of the
reduced and essential crossed products for inverse semigroup actions.

Definition 3.5. Let E : B Ñ Ã Ě A be a generalised expectation. Let NE be
the closed linear span of all J P IpBq with J Ď kerE. This is the largest two-
sided ideal in B that is contained in kerE. Let Br :“ B{NE and let Λ: B Ñ Br

be the quotient map. Since E|NE
“ 0, the expectation E descends to a map

Er : Br Ñ Ã Ě A, called the reduced generalised expectation of E.

Since E|A “ IdA and E|NE
“ 0, it follows that A X NE “ 0. Hence the

composite map A Ñ B Ñ B{NE is injective. The map Er is a generalised
expectation for the inclusion A ãÑ Br.

Proposition 3.6. Let E : B Ñ Ã Ě A be a generalised expectation. Let

LN E :“ tb P B :Epb˚bq “ 0u,
RN E :“ tb P B :Epbb˚q “ 0u.

Then LN E and RN E are the largest left and right ideals in B contained

in kerE, respectively. Hence pLN Eq˚ “ RN E and NE Ď LN E X RN E. And

NE “ tb P B :Eppbcq˚bcq “ 0 for all c P Bu “ tb P B : b ¨B Ď LN Eu
“ tb P B :Epxbyq “ 0 for all x, y P Bu.

The third description of NE was pointed out to us by Ruy Exel.

Proof. If necessary, adjoin units to B and Ã to make them unital. The unique
unital extension of E is unital and completely positive. It is already observed
in [12, Remark 3.4] that LN E is the largest left ideal contained in kerE; this is
a general feature of 2-positive maps. The main point is the Schwarz inequality
Epb˚qEpbq ď Epb˚bq for all b P B (see [12, Corollary 2.8]). Since RN E “
pLN Eq˚, it follows that RN E is the largest right ideal contained in kerE.
Thus NE is contained in LN E and RN E . If b P NE , then b ¨ c P NE Ď LN E

for all c P B. Thus Eppbcq˚bcq “ 0 for all c P B. Conversely, if Eppbcq˚bcq “ 0
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for all c P B, then b ¨ B Ď LN E ; and then B ¨ b ¨B Ď LN E because LN E is
a left ideal. This implies b P NE because B ¨ b ¨ B is a two-sided ideal that
contains b. Thus b P NE if and only if Eppbcq˚bcq “ 0 for all c P B, if and only
if b ¨B Ď LN E . And Epxbyq “ 0 for all x, y P B if and only if B ¨ b ¨B Ď kerE,
if and only if the closed two-sided ideal generated by b is contained in kerE, if
and only if b P NE .

Definition 3.7. A generalised expectation E : B Ñ Ã Ě A is faithful if
Epb˚bq “ 0 for some b P B implies b “ 0. It is almost faithful if Eppbcq˚bcq “ 0
for all c P B and some b P B implies b “ 0. It is symmetric if Epb˚bq “ 0 for
some b P B implies Epbb˚q “ 0.

The concept of an almost faithful positive map plays an important role in
the theory of Exel’s crossed products (see [7, Definition 4.1] and [42, Subsec-
tion 2.1]).

Corollary 3.8. Let E : B Ñ Ã Ě A be a generalised expectation.

(1) E is symmetric if and only if LN E “ RN E “ NE ;

(2) E is faithful if and only if LN E “ RN E “ NE “ 0;

(3) E is almost faithful if and only if NE “ 0, if and only if there are no

non-zero ideals in B contained in kerE;

(4) E is faithful if and only if E is almost faithful and symmetric.

Proof. This readily follows from Proposition 3.6.

Corollary 3.9. If A detects ideals in B, then E is almost faithful.

Proof. The intersection NE XA is 0 because E is the identity map on A. There-
fore, if A detects ideals in B, then NE “ t0u, that is, E is almost faithful.

Lemma 3.10. The reduced generalised expectation Er is almost faithful. It is

faithful if and only if E is symmetric.

Proof. Proposition 3.6 implies LN Er
“ ΛpLN Eq, RN Er

“ ΛpRN Eq and
NEr

“ ΛpNEq “ 0. This together with Corollary 3.8 implies all the state-
ments.

Lemma 3.11. Let E : B Ñ Ã Ě A be a generalised expectation, and π : B Ñ C

a ˚-homomorphism. The following are equivalent:

(1) kerπ Ď NE ;

(2) there is a ˚-homomorphism ϕ : πpBq Ñ B{NE with ϕ ˝ π “ Λ: B Ñ
B{NE;

(3) there is a map Eπ : πpBq Ñ Ã with Eπ ˝ π “ E.
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If these conditions hold, then π|A is injective, ϕ and Eπ are unique and, identify-

ing A with πpAq, Eπ is a generalised expectation for the inclusion πpAq Ď πpBq.
The ˚-homomorphism ϕ in (2) is faithful if and only if Eπ is almost faithful.

Proof. Since NE “ ker Λ, the ˚-homomorphism Λ descends to a ˚-homo-
morphism from πpBq – B{ kerπ to B{NE if and only if kerπ Ď NE . Thus (1)
is equivalent to (2). A map Eπ as in (3) exists if and only if Epkerπq “ 0
or, equivalently, kerπ Ď kerE. Since kerπ is an ideal, this is equivalent to
kerπ Ď NE . Thus (3) is equivalent to (1). Since π : B Ñ πpBq is surjective,
the maps ϕ and Eπ are unique if they exist. Then Eπ is automatically a com-
pletely positive contraction. And Eπ is almost faithful if and only if kerπ “ NE ,
if and only if ϕ is injective.

Lemma 3.11 is a key point in the proof of gauge-equivariant uniqueness theo-
rems. An action of a compact group such as T defines a conditional expectation
onto the fixed-point algebra by averaging, and T-equivariant maps intertwine
these expectations. Hence a conditional expectation as in 3.11.(3) exists in the
situation of gauge-equivariant uniqueness theorems.

3.2 Full and reduced crossed products

We fix an action E “
`
pEtqtPS , pµt,uqt,uPS

˘
of a unital inverse semigroup S on a

C˚-algebra A as in Definition 2.8. We recall how the algebraic crossed product
A ¸alg S, the full crossed product A ¸ S and the reduced crossed product
A ¸r S of E are defined in [10]. The algebraic crossed products defined in [10]
and in [20] differ. The definition in [10] has the merit that the canonical maps
from A ¸alg S to A ¸ S and A ¸r S are injective.
For any t P S, let rpEtq and spEtq be the ideals in A generated by the left and
right inner products of elements in Et, respectively. Thus Et is an rpEtq-spEtq-
imprimitivity bimodule. These ideals satisfy

spEtq “ spEt˚tq “ rpEt˚tq “ rpEt˚ q.

If v ď t, then the inclusion map jt,v restricts to a Hilbert bimodule isomorphism
from Ev onto rpEvq ¨ Et “ Et ¨ spEvq. For t, u P S and v ď t, u, this gives Hilbert
bimodule isomorphisms

ϑv
u,t : Et ¨ spEvq

j
´1

t,vÝÝÑ
–

Ev
ju,vÝÝÑ

–
Eu ¨ spEvq.

Let
It,u :“

ÿ

vďt,u

spEvq (3.1)

be the closed ideal generated by spEvq for v ď t, u. This is contained in spEtq X
spEuq, and the inclusion may be strict. There is a unique Hilbert bimodule
isomorphism

ϑu,t : Et ¨ It,u
„ÝÑ Eu ¨ It,u (3.2)
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that restricts to ϑv
u,t on Et ¨ spEvq for all v ď t, u by [10, Lemma 2.4].

Let A ¸alg S be the quotient vector space of
À

tPS Et by the linear span of
ϑu,tpξqδu ´ ξδt for all t, u P S and ξ P Et ¨ It,u. The multiplication maps µt,u

and the involutions E˚
t Ñ Et˚ turn A ¸alg S into a ˚-algebra.

Definition 3.12 ([10]). The (full) crossed product A¸S of the action E is the
maximal C˚-completion of the ˚-algebra A ¸alg S described above.

The C˚-algebra A¸ S is canonically isomorphic to the full section C˚-algebra
of the Fell bundle over S corresponding to E introduced in [20]. It is also
characterised by a universal property.

Definition 3.13. A representation of E in a C˚-algebra B is a family of
linear maps πt : Et Ñ B for t P S such that πtupµt,upξ b ηqq “ πtpξqπupηq,
πtpξ1q˚πtpξ2q “ π1pxξ1 | ξ2yq and πtpξ1qπtpξ2q˚ “ π1pxxξ1 | ξ2yyq for all t, u P S,
ξ, ξ1, ξ2 P Et, η P Eu. Here x¨ | ¨y and xx¨ | ¨yy denote the right and left inner
products, respectively.

Remark 3.14. A representation π of E in B induces a ˚-homomorphism A ¸
S Ñ B and, conversely, every ˚-homomorphism A ¸ S Ñ B is of this form
for a unique representation π (compare [10, Proposition 2.9]). This universal
property determines A¸S uniquely up to isomorphism. Let B be a C˚-algebra
with an S-grading pBtqtPS . Then pBtqtPS is a Fell bundle over S, and the
inclusion maps Bt Ñ B are a representation of this Fell bundle. The induced
˚-homomorphism A¸S Ñ B is surjective because

ř
Bt is dense in B. And its

restriction to A Ď A¸S is injective by construction. Conversely, any surjective
˚-homomorphism A ¸ S Ñ B that restricts to an injective map on A Ď A¸ S

comes from a unique S-grading on B because A¸S is S-graded by the images
of the Hilbert bimodules Et for t P S.

The reduced section C˚-algebra of a Fell bundle over S is introduced in [20].
An equivalent definition appears in [10], where it is called the reduced crossed
product A¸rS of the action E . The main ingredient in the construction in [10]
is a canonical weak conditional expectation E : A2 ¸alg S Ñ A2, involving
the unique normal extension of the S-action E to A2. It is defined in [10,
Lemma 4.5] through the formula

Epξδtq “ s-lim
i

ϑ1,tpξ ¨ uiq (3.3)

for ξ P Et and t P S, where puiq is an approximate unit for I1,t and s-lim
denotes the limit in the strict topology on MpI1,tq Ď A2. In fact, this net also
converges in the strong topology on A2. Let x P A ¸alg S. Then Epx˚xq ě 0,
and Epx˚xq “ 0 implies x “ 0 (see [10, Proposition 3.6]). Thus A2 ¸alg S

may be completed to a Hilbert A2-module ℓ2pS,A2q using the inner product
xx | yy :“ Epx˚yq. The action of A ¸alg S on A2 ¸alg S by left multiplication
extends to a non-degenerate representation of A¸ S on ℓ2pS,A2q.
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Definition 3.15 ([10]). The reduced crossed product A¸r S of the action E is
the image of A ¸ S in Bpℓ2pS,A2qq. Let Λ: A ¸ S Ñ A ¸r S be the canonical
map.

This definition agrees with the one in [10] by [10, Remark 4.2].

Proposition 3.16. The map E : A¸alg S Ñ A2 extends to a weak conditional

expectation A ¸ S Ñ A2, which we also denote by E. Moreover, NE “ ker Λ.

Thus

A¸r S – pA ¸ Sq{NE

is the reduced quotient of A ¸ S for the generalised expectation E, and E de-

scends to an almost faithful weak conditional expectation Er : A¸r S Ñ A2.

Proof. The unit element of A2 gives an element 1 of A2 ¸alg S Ď Bpℓ2pS,A2qq,
and x1 | b ¨ 1y “ Epbq for all b P A¸S. This provides the unique extension of E
to a completely positive, contractive map A ¸ S Ñ A2, which we also denote
by E. By construction, an element b P A ¸ S satisfies Λpbq “ 0 if and only if
b ¨ c “ 0 for all c P ℓ2pS,A2q. This is equivalent to Epc˚b˚bcq “ xb ¨ c | b ¨ cy “ 0
for all c P ℓ2pS,A2q. This follows once it holds for all c in the dense subspace
A2 ¸alg S. Since E is normal, we may further reduce to the weakly dense
subspace A ¸alg S. This is norm dense in A ¸ S. So Λpbq “ 0 if and only if
Epc˚b˚bcq “ 0 for all c P A ¸ S. Then Proposition 3.6 implies ker Λ “ NE .
Hence the weak conditional expectation on A ¸ S descends to one on A ¸r S,
which is almost faithful.

Remark 3.17. The canonical map from A ¸alg S to A ¸r S is injective by
[10, Proposition 4.3].

Remark 3.18. Let pAtqtPS be a non-saturated Fell bundle over a unital inverse
semigroup S. It is turned into a saturated Fell bundle pEtqtPS̃ over another
inverse semigroup S̃ in [9]. This construction does not change the full and
reduced section C˚-algebras by [9, Theorem 7.2]. Therefore, we usually restrict
attention to saturated Fell bundles, which we replace by inverse semigroup
actions as in Definition 2.8.

We recall some known conditions for E : A ¸ S Ñ A2 to be A-valued, that is,
a genuine conditional expectation.

Proposition 3.19 ([10, Proposition 6.3]). The map E is A-valued if and only

if the ideal I1,t defined in (3.1) is complemented in the larger ideal spEtq for

each t P S.

There is a largest ideal J P IpAq with J X I1,t “ t0u, namely,

IK
1,t :“ tx P A :x ¨ I1,t “ 0u. (3.4)

Therefore, I1,t is complemented in spEtq if and only if spEtq “ I1,t ‘pspEtqXIK
1,tq.

Then

Et “ pEt ¨ I1,tq ‘ pEt ¨ IK
1,tq ϑ1,t‘IdÝÝÝÝÝÑ

–
I1,t ‘ pEt ¨ IK

1,tq, (3.5)

and E|Et
is the orthogonal projection onto the summand I1,t by (3.3).
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Proposition 3.20. Let E be an action of S on A. The following are equivalent:

(1) the weak conditional expectation E : A ¸ S Ñ A2 is A-valued;

(2) the subset of units qA is closed in qA ¸ S;

(3) the action is closed, that is, the dual S-action on pA is closed.

Proof. The equivalence of the first two statements is [10, Theorem 6.5]. The

map pA Q rπs ÞÑ kerrπs P qA intertwines the inverse semigroup actions ppEtqtPS

and pqEtqtPS . It is continuous, open and closed because the spaces qA and pA
both have IpAq as their lattice of open subsets. So the map above extends to
a continuous, open and closed groupoid homomorphism

κ : pA ¸ S Ñ qA ¸ S, rt, rπss ÞÑ rt, kerπs.

Since κ´1p qAq “ pA, the space of units pA is closed in pA ¸ S if and only if qA is

closed in qA ¸ S. Now (2) and (3) are equivalent by Lemma 2.6.

3.3 The reduced weak conditional expectation is faithful

It is claimed in [10] that the weak conditional expectation E becomes faithful
on A¸r S. But in [10, Proposition 3.6], this is shown only for its restriction to
A ¸alg S. Here we fill this gap.

Lemma 3.21. Let ̺ : A2 Ñ ś
πP pA BpHπq be the projection to the direct sum

of all irreducible representations in the universal representation of A2. Then

̺ is isometric on the C˚-algebra generated by the range of E in A2. Hence

‖Epxq‖ “ ‖̺ ˝ Epxq‖ for all x P A ¸ S and, in particular, kerE “ kerp̺ ˝ Eq.

Proof. A family of representations pπiqiPI of A is called E-faithful in [10, Def-
inition 4.9] if the extension of the representation

À
iPI πi to A2 restricts to

a faithful representation on the C˚-subalgebra that is generated by the im-
age of E. The family of all irreducible representations of A is E-faithful by
[10, Theorem 7.4].

Theorem 3.22. The weak conditional expectation E : A¸S Ñ A2 is symmetric.

Equivalently, Er : A¸r S Ñ A2 is faithful.

Proof. By Proposition 3.6 and Corollary 3.8, it suffices to show that if b P A¸S
satisfies Epb˚bq “ 0, then Epc˚b˚bcq “ 0 for all c P A ¸ S. Since c P A ¸ S

satisfies Epc˚b˚bcq “ 0 if and only if b ¨ c P LN E , the space of c with this
property is a closed linear subspace. Hence it suffices to prove Epc˚b˚bcq “ 0
for c P Et for some t P S. Here we embed the Hilbert A-bimodules Et of the
S-action on A into A ¸alg S in the usual way. So we may fix t P S and c P Et.
We must show that Epb˚bq “ 0 implies Epc˚b˚bcq “ 0.

Let π P pA. The tensor product Et bA Hπ is non-zero if and only if π belongs to
zspEtq, and then the left multiplication action of A on Et bA Hπ is the irreducible
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representation ω :“ pEtpπq. The element c P Et induces an adjointable linear
map

Tc : Hπ Ñ Et bA Hπ, ξ ÞÑ c b ξ.

Its adjoint is given by T ˚
c pe b ξq “ πpc˚eqξ for e P Et, ξ P Hπ. Let π2 and ω2

be the weakly continuous extensions of π and ω to A2. We claim that

π2pEpc˚dcqq “
#
T ˚

c ω
2pEpdqqTc if π P zspEtq,

0 otherwise,
(3.6)

for all d P A ¸ S. We are interested, of course, in d “ b˚b. If π R zspEtq, then

π2pEpc˚dcqq “ 0. So it suffices to consider the case when π P zspEtq. The set
of d P A ¸ S for which (3.6) holds is a closed linear subspace because the two
sides of the equality are bounded linear operators of d. Therefore, it suffices
to prove (3.6) for d P Eu with some u P S. It is more convenient to work in
the bidual A2 for this computation and to allow d P E2

u. Let rIs for an ideal I
in A denote the support projection of I, that is, the weak limit in A2 of an
approximate unit in I. There is a canonical Hilbert bimodule isomorphism

Θu : E2
u ¨ rI1,us „ÝÑ I2

1,u,

and Epdq “ Θupd ¨ rI1,usq “ Epd ¨ rI1,usq. Similarly, Epc˚dcq “ Θt˚utpc˚dc ¨
rI1,t˚utsq because c˚dc P E2

t˚ut. The Rieffel correspondence for E2
t implies that

E2
t ¨rIs “ pEt ¨Iq2 “ pJ ¨Etq2 “ rJs¨E2

t , where pJ “ pEtppIq. Therefore, c¨rI1,t˚uts “
rJs ¨ c, where pJ “ pEtp {I1,t˚utq. Since

pEtp {I1,t˚utq “ {Itt˚,u “ {I1,u X rpEtq,
we get rJs ¨ c “ rI1,us ¨ c. So

Epc˚dcq “ Θt˚utpc˚d ¨ prI1,us ¨ cqq “ Epc˚pd ¨ rI1,usqcq.
Therefore, the two sides in (3.6) do not change when we replace d by d ¨ rI1,us.
But Θupd ¨ rI1,usq P I2

1,u Ď A2 and d P E2
u ¨ rI1,us Ď E2

u are identified in A2 ¸ S.
Since the two sides in (3.6) only depend on the image of d in A2 ¸ S, we
are reduced to the case d P A2. Then c˚dc P A2 as well, and so Epdq “ d

and Epc˚dcq “ c˚dc. And (3.6) follows because T ˚
c ω

2pdqTc “ π2pc˚dcq. This
finishes the proof of (3.6).

Now Epb˚bq “ 0 is equivalent to ω2pEpb˚bqq “ 0 for all ω P pA by Lemma 3.21.

This implies πpEpc˚b˚bcqq “ T ˚
c ω

2pEpb˚bqqTc “ 0 for all π P pA by (3.6). This
is equivalent to Epc˚b˚bcq “ 0 by Lemma 3.21. This proves the claim about E
being symmetric. And this is equivalent to Er being faithful by Lemma 3.10.

4 The essential crossed product

We are going to define a variant of the reduced crossed product that is based
on a generalised expectation with values in the local multiplier algebra.
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4.1 The definition of the essential crossed product

Definition 4.1 ([3]). Let A be a C˚-algebra. The essential ideals in A form
a directed set for the relation Ě because I X J P IpAq is essential if I, J P IpAq
are essential. If I Ď J Ď A are essential ideals, then a multiplier of J re-
stricts to a multiplier of I. This defines a canonical, unital ˚-homomorphism
MpJq Ñ MpIq, which is injective because I is essential in J . The local multi-

plier algebra MlocpAq of A is the inductive limit C˚-algebra of this inductive
system.

The canonical map A Ñ MlocpAq is injective because A Ñ MpIq is injective
for any essential ideal I in A. We identify A with its image in MlocpAq.

Definition 4.2. For any C˚-inclusion A Ď B, a generalised expectation with
values in MlocpAq is called an Mloc-expectation.

Now let us fix an action E of a unital inverse semigroup S on a C˚-algebraA. We
modify the construction of the reduced crossed product by replacing the weak
conditional expectation E : A¸S Ñ A2 by an Mloc-expectation EL : A¸S Ñ
MlocpAq. We first define EL on the dense subalgebra A¸alg S Ď A¸ S. This
is spanned by Et for t P S. Let t P S and define I1,t as in (3.1). Recall that the
ideal IK

1,t defined in (3.4) is the largest ideal J P IpAq with J X I1,t “ t0u. The

ideal Jt :“ I1,t ‘ IK
1,t Ď A is essential by construction. And

Et ¨ Jt – pEt ¨ I1,tq ‘ pEt ¨ IK
1,tq ϑ1,t‘IdÝÝÝÝÝÑ

–
I1,t ‘ pEt ¨ IK

1,tq

as in (3.5). Any ξ P Et defines a map Jt Ñ Et ¨ Jt, a ÞÑ ξ ¨ a. Composing with
the orthogonal projection to I1,t defines an adjointable operator Jt Ñ I1,t Ď Jt

or, equivalently, a multiplier of Jt. We let ELpξq P MpJtq Ď MlocpAq be this
multiplier of Jt.

Proposition 4.3. The map
À

tPS Et Q ξ ÞÑ ELpξq P MlocpAq factors through

to a map A¸alg S Ñ MlocpAq, which extends to an Mloc-expectation EL : A¸
S Ñ MlocpAq that satisfies ‖ELpxq‖ ď ‖Epxq‖ for all x P A ¸ S.

Proof. If ξ P Et ¨ Jt, then the above definition gives ELpξq P I1,t Ď A. In this
case, ELpξq “ Epξq because the strict limit in (3.3) is equal to a norm limit.
More generally, let ξ P A ¸alg S. Then there are a finite subset F Ď S and
ξt P Et for t P F with ξ “

ř
tPF ξt P A ¸alg S. The ideal J :“

Ş
tPF Jt in A is

essential as a finite intersection of essential ideals. The arguments above imply

Epξqa “
ÿ

tPF

Epξtaq “
ÿ

tPF

ELpξtaq “
˜ÿ

tPF

ELpξtq
¸
a P J

for every a P J . Hence
ř

tPF ELpξtq P MpJq Ď MlocpAq coincides with
the multiplier given by multiplication by Epξq. This implies that ELpξq :“ř

tPF ELpξtq is well defined on A ¸alg S (because E is). The norm of ELpξq

Documenta Mathematica 26 (2021) 271–335



294 B. K. Kwaśniewski, R. Meyer

in MlocpAq is equal to its norm in MpJq. If a P J satisfies ‖a‖ ď 1, then
‖ELpξq¨a‖ “ ‖Epξq¨a‖ ď ‖Epξq‖. Hence ‖ELpξq‖ ď ‖Epξq‖. Thus EL extends
to a contractive linear map EL : A¸ S Ñ MlocpAq because E : A¸ S Ñ A2 is
contractive. The above considerations also imply EL|A “ IdA.
To see that EL is completely positive, let x P MnpA ¸alg Sq. There are a
finite subset F Ď S and xt P Et b Mn for t P F such that x “ ř

tPF xt.
Then J :“ Ş

s,tPF Js˚t is an essential ideal in A. One checks as above that
multiplication by Epx˚xq on MnpJq coincides with ELpx˚xq P MpMnpJqq “
MnpMpJqq Ď MnpMlocpAqq. Therefore, if y P MnpJq, then

y˚ ¨ ELpx˚xq ¨ y “ y˚ ¨ Epx˚xq ¨ y “ Eppxyq˚xyq ě 0

because E is completely positive. Therefore, ELpx˚xq is positive in
MnpMlocpAqq. So EL is completely positive on A¸alg S. It follows that EL is
completely positive on A ¸ S. So EL is an Mloc-expectation.

Definition 4.4. The essential crossed product A¸essS is the reduced quotient
pA ¸ Sq{NEL for the generalised expectation EL.

Remark 4.5. Since ‖ELpxq‖ ď ‖Epxq‖ for all x P A¸S, it follows that kerEL Ě
kerE. Thus A¸essS is also a quotient of A¸rS. By construction, EL descends
to an almost faithful Mloc-expectation A ¸ess S Ñ MlocpAq for the inclusion
A ãÑ A ¸ess S.

Remark 4.6. If the action is closed, then EL “ E and A¸essS “ A¸rS by the
construction and (3.5). Thus essential crossed products give something new
only for non-closed actions.

Example 4.7. We show by an example that A ¸ess S may differ from A ¸r S.
Let G be an amenable discrete group. View G as an inverse semigroup and
adjoin a zero element to it. This gives the inverse semigroup S :“ GY t0u with
g ¨ 0 “ 0 ¨ g “ 0 for all g P S and such that g ¨h for g, h P G is the usual product
in G. Let G act on A :“ Cr0, 1s by Eg :“ Cr0, 1s for g P G and E0 :“ C0p0, 1s,
equipped with the usual involution and multiplication maps. If g P Gzt1u, then
Ig,1 “ C0p0, 1s because v P S satisfies v ď 1, g if and only if v “ 0. The full
crossed product for this action is a Cr0, 1s-C˚-algebra with fibres C˚pGq at 0
and C at x P p0, 1s. The reduced crossed product is equal to the full one here
because G is amenable. (If G is non-amenable, then the fibre of the reduced
crossed product at 0 is C ‘ C˚

r pGq and not C˚
r pGq. We restrict to amenable

groups to avoid discussing this issue further.) The essential crossed product in
this case reduces to A “ Cr0, 1s. Indeed, let ξg P Eg “ Cr0, 1s. Let ξ1 P E1 be
the same element of Cr0, 1s. Then ELpξgq “ ELpξ1q because the ideal C0p0, 1s
in A is essential. Thus kerEL contains the kernel of the ˚-homomorphism
A¸alg S Ñ A that applies the trivial representation of the group in each fibre.
It follows that A¸ess S – A.
In this example, EL takes values in A although the action is not closed. And the
map A¸algS Ñ A¸essS is not injective. In contrast, the map A¸algS Ñ A¸rS

is always injective.
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Remark 4.8. Unlike the reduced and full crossed products, the essential crossed
product is not functorial for ˚-homomorphisms. This is because the local mul-
tiplier algebra is not functorial. The problem is very visible for quotient maps.
If I Ď A is an essential ideal, then a local multiplier of A does not descend
to anything on A{I. For instance, consider the restriction map Cr0, 1s Ñ C,
f ÞÑ fp0q, in the situation of Example 4.7. This is S-equivariant, where S acts
on C by the trivial action, with 0 acting by the ideal t0u. Now C¸S – C˚pGq,
and the weak conditional expectation C˚pGq Ñ C is the usual trace, which has
values in C “ C2 “ MlocpCq. Hence the essential and reduced crossed products
are the same for the action on C. But the fibre restriction map A¸rS Ñ C˚

r pGq
does not factor through A¸ess S “ A.

In order to relate EL : A ¸ess S Ñ MlocpAq to E : A ¸ S Ñ A2, we use
Lemma 3.21. It says that the ˚-homomorphism ̺ : A2 Ñ

ś
πP pA BpHπq is iso-

metric on EpA¸ Sq. We shall embed MlocpAq into a quotient of
ś

πP pA BpHπq.

Definition 4.9. A subset of pA is nowhere dense if its closure has empty interior.
It is meagre if it may be written as a countable union of nowhere dense subsets.
It is comeagre if its complement is meagre. For pfπq

πP pA P ś
πP pA BpHπq, define

∥

∥pfπq
πP pA

∥

∥

ess
:“ inf

"
sup
πPR

‖fπ‖ :R Ď pA comeagre

*
.

By definition, a subset is meagre if and only if it is contained in a union of
countably many closed subsets with empty interior. Thus a subset is comeagre
if and only if it contains an intersection of countably many dense open subsets.
Any countable intersection of comeagre subsets is again comeagre, and a subset
that contains a comeagre subset is also comeagre. It follows that the infimum
in Definition 4.9 is a minimum. And the set of comeagre subsets of pA is directed
by Ě. The values supπPR ‖fπ‖ for comeagre subsets R Ď pA form a monotone
net indexed by this directed set. Thus

‖pfπq‖ess “ min
RĎxA

comeagre

sup
πPR

‖fπ‖ “ lim
RĎxA

comeagre

sup
πPR

‖fπ‖.

Proposition 4.10. The function ‖¨‖ess on
ś

πP pA BpHπq is a C˚-seminorm.

Let D be the quotient of
ś

πP pA BpHπq by the null space of ‖¨‖ess. The faithful

representation A ãÑ ś
πP pA BpHπq factors through to A ãÑ D, and the latter

extends to an isometric ˚-homomorphism ι : MlocpAq ãÑ D such that the fol-

lowing diagram commutes:

A ¸ S A2
ś

πP pA BpHπq

MlocpAq D

E

EL

̺

q

ι

If b P A ¸ S, then ELpbq “ 0 if and only if tπ P pA :π2pEpbqq “ 0u is comeagre

in pA.
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Proof. If R Ď pA is a comeagre subset, then the supremum of ‖fπ‖ for π P R is
a C˚-seminorm on

ś
πP pA BpHπq. As the pointwise limit of these C˚-seminorms,

‖¨‖ess is a C˚-seminorm as well. Since
ś

πP pA BpHπq is already a C˚-algebra,
the quotient D by the null space of this C˚-seminorm is complete, hence a
C˚-algebra.
We define ι. Let J Ď A be an essential ideal. Then pJ Ď pA is a dense open
subset, hence comeagre. If π P pJ , then π extends uniquely to a representation π̄
of MpJq, and so π̄paq P BpHπq is defined for all a P MpJq. This defines
a unital ˚-homomorphism ιJ : MpJq Ñ D. If K Ď J , then the composite
of ιK with the restriction map MpJq Ñ MpKq is equal to ιJ . Hence the
maps ιJ for all essential ideals J Ď A combine to a unital ˚-homomorphism
ι : MlocpAq Ñ D. To see that ι is isometric, it suffices to prove that ‖a‖ ď
‖ιJ paq‖ holds for all essential ideals J Ď A and all a P MpJq. Let ε ą 0 and

C :“ ‖a‖MpJq. The function {MpJq Q π Ñ ‖πpaq‖ has the supremum ‖a‖ and

is lower semicontinuous (see [17, Proposition 3.3.2]), and pJ is an open dense

subset in {MpJq. Therefore, U :“ tπ P pJ : ‖π̄paq‖ ą C´εu is a non-empty open

subset of pJ Ď pA. Since pA is a Baire space, every comeagre subset R Ď pA is
also dense in pA. Thus R X U ‰ H, and the supremum of ‖π̄paq‖ for π P R is
at least C ´ ε. Then ‖ιJ paq‖ ą C ´ ε follows. Since ε ą 0 is arbitrary, this
implies ‖ιJ paq‖ ě C. Hence ι : MlocpAq Ñ D is isometric.
Now we show that the diagram in the proposition commutes. Let b P A¸alg S.
Then b “

ř
tPF ξtδt for a finite subset F Ď S and ξt P Et. Let Jt :“ I1,t ‘ IK

1,t

and J “ Ş
tPF Jt. These are essential ideals in A. We have already seen that

Epbq¨a P J for all a P J , and ELpbq is the resulting multiplier of J . If π P pJ Ď pA,

then π2pEpbqq “ π̄pELpbqq. Since pJ is comeagre, q maps ̺ ˝ Epbq to ιpELpbqq.
Hence the diagram commutes on all elements of A ¸alg S. Since A ¸alg S is
dense in A ¸ S and all maps involved are contractive, it commutes on all of
A ¸ S.

Theorem 4.11. The Mloc-expectation EL : A ¸ S Ñ MlocpAq is symmetric

and thus descends to a faithful Mloc-expectation A¸ess S Ñ MlocpAq.
Proof. The two statements in the assertion are equivalent by Lemma 3.10.
Let Et be the Hilbert A-bimodules that define the S-action on A. We em-
bed these into A ¸ess S as usual. Arguing as in the beginning of the proof of
Theorem 3.22, it suffices to show that if b P A ¸ess S satisfies ELpb˚bq “ 0,
then ELpc˚b˚bcq “ 0 for all c P Et, t P S. Thus let b P A ¸ess S be such that

ELpb˚bq “ 0. By Proposition 4.10, the set of ω P pA with ω2pEpb˚bqq ‰ 0
is meagre. Equation (3.6) shows that π2pEpc˚b˚bcqq ‰ 0 can only happen if

π P s
` pEt

˘
and ωpEpb˚bqq ‰ 0 for ω “ pEtpπq. Therefore, the set

!
π P pA :π2pEpc˚b˚bcqqq ‰ 0

)
Ď pEt

´1
´!
ω P zrpEtq :ω2pEpb˚bqq ‰ 0

)¯

is meagre as a subset of a meagre set. Thus ELpc˚b˚bcq “ 0 by Proposition 4.10.
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Corollary 4.12. NEL “
!
b P A ¸ S : tπ P pA :π2pEpb˚bqq “ 0u is comeagre

)
.

4.2 Topological gradings

The following definition is an inverse semigroup analogue of [18, Definition 3.4].
We choose to use the essential instead of the reduced crossed product here.

Definition 4.13. Let B be a C˚-algebra with an S-grading pBtqtPS . Let
π : A¸S Ñ B be the canonical ˚-epimorphism as in Remark 3.14. The grading
is called topological and B is called topologically S-graded if kerπ is contained
in the kernel NEL of the quotient map A¸ S Ñ A ¸ess S.

By definition, a grading is topological if and only if there is a (surjective)
˚-homomorphism

ϕ : B Ñ A ¸ess S

with ϕ˝π “ Λ. So B lies between the full and the essential crossed products and
may be called an exotic crossed product. Another equivalent characterisation
when a grading is topological is ‖πpxq‖ ě ‖x‖ess for all x P A ¸ S or all
x P A ¸alg S, where ‖x‖ess denotes the norm in the essential crossed product
A¸essS. Equivalently, B is isomorphic to a completion of the ˚-algebraA¸algS

for a C˚-norm that lies between the maximal and the essential C˚-norm:

Proposition 4.14. Let B be an S-graded C˚-algebra. View the grading as

an S-action on its unit fibre A, and let π : A ¸ S Ñ B be the induced surjec-

tive ˚-homomorphism as in Remark 3.14. Let EL : A ¸ S Ñ MlocpAq be the

canonical Mloc-expectation. The following are equivalent:

(1) the S-grading on B is topological;

(2) there is an Mloc-expectation P : B Ñ MlocpAq with P ˝ π “ EL;

(3) ‖ELpxq‖ ď ‖πpxq‖ for all x P A ¸alg S.

If P is an Mloc-expectation as in (2), then the canonical surjective
˚-homomorphism B Ñ A ¸ess S is an isomorphism if and only if P is

almost faithful, if and only if P is faithful.

Proof. The assertions mostly follow from Lemma 3.11. That P is almost faith-
ful if and only if it is faithful follows from Theorem 4.11.

4.3 Coincidence of the reduced and essential crossed products

The essential crossed product has the advantage of having the “right” ideal
structure, even for non-Hausdorff groupoids and similar situations. A serious
disadvantage is that it is not functorial (see Remark 4.8). This suggests that
it is not the right object for K-theory computations. A question like exactness
does not even make sense for it. So it is desirable to know when the reduced and
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essential crossed products are the same, meaning that the canonical quotient
map A¸r S Ñ A ¸ess S is an isomorphism.
Let E : A ¸ S Ñ A2 be the canonical weak conditional expectation and let
EL : A ¸ S Ñ MlocpAq be the canonical Mloc-expectation. By definition,
A ¸r S “ A ¸ess S if and only if NE “ NEL. A case when this is particularly
clear is when E is a genuine conditional expectation, taking values in A Ď A2.
Then EL also takes values in A Ď MlocpAq and EL “ E. If E is not A-valued,
then NE Ď NEL. The difference between A ¸r S and A ¸ess S is measured by
the ideal

Jsing :“ ΛpNELq
in A ¸r S because

pA ¸r Sq{Jsing – A ¸ess S.

We call elements of Jsing singular. Proposition 4.10 describes the kernels of E
and EL using the supremum and the essential supremum norm of functions
on pA, where the essential supremum is defined as the supremum over comeagre
subsets. We use it to describe Jsing. If a P A2, then we define

νa : pA Ñ r0,8q, π ÞÑ ‖π2paq‖,

where π2 : A2 Ñ BpHπq denotes the unique extension of π to A2. If b P A ¸ S,
then

‖Epbq‖ “ ‖̺ ˝ Epbq‖ “ sup
πP pA

νEpbqpπq “ ‖νEpbq‖8

by Lemma 3.21. Similarly, Proposition 4.10 gives

‖ELpbq‖ “ ‖ι ˝ ELpbq‖ “ min
RĎ xA

comeagre

sup
πPR

νEpbqpπq “: ‖νEpbq‖ess.

In particular, ELpbq “ 0 if and only if tπ P pA : νEpbqpπq ‰ 0u is meagre.

Proposition 4.15. Let b P A ¸ S. The function νEpbq : pA Ñ r0,8q is lower

semicontinuous on a comeagre subset. The following are equivalent:

(1) tπ P pA : νEpbqpπq ‰ 0u is meagre;

(2) tπ P pA : νEpbqpπq ‰ 0u has empty interior;

(3) the subsets tπ P pA : νEpbqpπq ą εu have empty interior for all ε ą 0.

Proof. Assume first that b “ ř
tPF ξtδt P A ¸alg S. In the last part of the

proof of Proposition 4.10, we have defined an essential ideal J in A such that
ELpbq P MpJq and π2pEpbqq “ π̄pELpbqq for all π P pJ Ď pA, where π̄ denotes

the unique extension of π to MpJq. The map π ÞÑ π̄ identifies pJ with an open

subset in {MpJq, and the function ω Ñ ‖ωpELpbqq‖ is lower semicontinuous

on {MpJq by [17, Proposition 3.3.2]. Hence νEpbq is lower semicontinuous on pJ ,
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which is a dense open subset in pA. Now let b P A¸S. Then there is a sequence
pbnqnPN in A ¸alg S with lim bn “ b. Since E is contractive, the sequence of
functions νEpbnq converges uniformly towards νEpbq. For each n P N, there is an

essential ideal Jn as above such that νbn
is lower semicontinuous on xJn. The

intersection Y :“ ŞxJn is comeagre. If π P Y , then the functions νEpbnq are
lower semicontinuous at π. Since they converge uniformly to νEpbq, the latter
is also lower semicontinuous at π.
The statement (1) implies (2) because pA is a Baire space (see [17, Proposi-
tion 3.4.13]). And (2) clearly implies (3). To complete the proof, we show

that not (1) implies not (3). Let Y be the comeagre subset of pA defined above.

If tπ P pA : νEpbqpπq ‰ 0u is not meagre, then it cannot be contained in the
complement of Y . So there is π P Y with νEpbqpπq ‰ 0. Since νEpbq is lower
semicontinuous at π, it follows that νEpbqpωq ą νEpbqpπq{2 ą 0 for all ω in some
neighbourhood of π.

Corollary 4.16. An element b P A ¸r S belongs to Jsing if and only if the

subset tπ P pA : νErpb˚bqpπq ‰ 0u is meagre in pA, if and only if this subset has

empty interior, if and only if tπ P pA : νErpb˚bqpπq ą εu has empty interior in pA
for all ε ą 0.

Proof. Combine Corollary 4.12 and Proposition 4.15.

Corollary 4.17. A¸ess S “ A¸r S if and only if for every b P pA¸r Sq`zt0u
there is ε ą 0 such that tπ P pA : νErpbqpπq ą εu has non-empty interior, if and

only if for every b P pA¸r Sq`zt0u the set tπ P pA : νErpbqpπq ‰ 0u is not meagre.

Corollary 4.18. If there is ε ą 0 with ‖νEpbq‖ess ě ε¨‖νEpbq‖8 for all positive

elements b P pA ¸alg Sq`, then A¸ess S “ A ¸r S.

Proof. By Proposition 4.10, the assumption implies ‖ELpb˚bq‖ ě ε‖Epb˚bq‖
for all b P A¸alg S. This inequality extends by continuity to all b P A¸ S and
then implies LN EL “ LN E . Since both E and EL are symmetric, the latter
is equivalent to NEL “ NE and then to A ¸ess S “ A ¸r S.

The condition in Corollary 4.18 has the advantage to involve only elements
of A ¸alg S, making it more checkable. It is unclear, however, whether it is
necessary.

Remark 4.19. The reader may readily rephrase the above results to characterise
when kerEL “ kerE. Namely, this is equivalent to conditions as above for all
elements in A¸r S, not only in the positive cone pA ¸r Sq`.

4.4 The local multiplier algebra and the injective hull

Let IpAq be the injective hull of A (see [29]). The canonical embedding
A ãÑ IpAq factors through the inclusion A Ď MlocpAq and an embedding
ι : MlocpAq ãÑ IpAq by [26, Theorem 1]. And this is an isomorphism if A is
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commutative. Hence every Mloc-expectation is a pseudo-expectation, and both
the kernel and the ideal NE do not change when we view an Mloc-expectation
as a pseudo-expectation. The two notions are exactly the same if A is commu-
tative.

Let A “ C0pXq be commutative. Let BpXq Ě A be the C˚-algebra of all
bounded Borel functions on X . The subset

MpXq :“ tf P BpXq : f vanishes on a comeagre setu

is an ideal in BpXq with C0pXq X MpXq “ 0. So C0pXq embeds into
BpXq{MpXq. Gonshor has identified IpC0pXqq with the algebra BpXq{MpXq
(see [28, Theorem 1]). In fact, this follows from a much earlier result of
Dixmier [16]. So

MlocpC0pXqq – BpXq{MpXq – IpC0pXqq

for any locally compact Hausdorff space X . For Gonshor, injectivity means
that if A Ñ B is an injective ˚-homomorphism to another commutative
C˚-algebra B such that A detects ideals in B, then there is an injective
˚-homomorphism B ãÑ MlocpAq that respects the inclusions of A. Roughly
speaking, MlocpAq is the largest commutative C˚-algebra in which A detects
ideals.

If A is simple, then MlocpAq “ MpAq. In particular, if A is simple and
unital, then MlocpAq “ A. A simple unital C˚-algebra need not be injective;
an example is the Calkin algebra, see [29]. So IpAq differs from MlocpAq in
general.

5 Aperiodic inclusions and generalised expectations

In this section, we fix a general C˚-inclusion A Ď B. More generally, we often
treat an injective ˚-homomorphism A ãÑ B as if it were an inclusion. Recall
that IpBq denotes the lattice of (closed, two-sided) ideals in B. We say that A
detects ideals in B if J X A ‰ 0 for any ideal J P IpBq with J ‰ 0. This is
a fundamental property in the study of the ideal structure of reduced crossed
products (see [4, 43, 44, 58]). The usual assumptions that guarantee it imply a
stronger property, namely, that the full crossed product has a unique quotient
in which the coefficient algebra detects ideas. In this section, we study this
generalised intersection property. We introduce the concept of aperiodicity for
the C˚-inclusion A Ď B, which implies the generalised intersection property.
If, in addition, E : B Ñ Ã is a generalised expectation, then we find a criterion
when A detects ideals in B{NE : this happens if the conditional expectation is
supportive. We show that any Mloc-expectation has this property. This gives
general simplicity and pure infiniteness criteria for B when E is almost faithful.
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5.1 Generalised intersection property and hidden ideal

Before we begin with the study of aperiodicity, we prove some elementary
results about detection of ideals in quotients of B. Let

I0pBq :“ tJ P IpBq : J XA “ 0u.

So A detects ideals in B if and only if I0pBq “ t0u.

Lemma 5.1. Let J P IpBq. The composite map A Ñ B Ñ B{J is injective if

and only if J P I0pBq. If this is the case, then the inclusion A ãÑ B{J detects

ideals if and only if J is a maximal element of I0pBq.
Proof. The first claim holds because the kernel of the composite map A Ñ B{J
is AXJ . To prove the second claim, we use that any ideal in B{J is the image
of an ideal K P IpBq with J Ď K. And AXK “ 0 is the preimage in A of the
ideal in B{J corresponding to K. So A does not detect ideals in B{J if and
only if there is K P I0pBq with J Ĺ K.

Example 5.2. Consider the unital inclusion C Ď C˚pZq – CpTq. An ideal
J P IpCpTqq satisfies J X C “ 0 if and only if it is proper. Thus I0pCpTqq has
many different maximal elements, namely, all the maximal ideals C0pTztzuq
for z P T. The resulting quotients are all isomorphic to C, in which C detects
ideals. There is, however, no canonical way to choose one of these quotients.

Lemma 5.3. We have 0 P I0pBq. If J1, J2 P IpBq satisfy J1 Ď J2 and J2 P I0pBq,
then J1 P I0pBq. If X Ď I0pBq with the partial order Ď is directed, then the

supremum of X in IpBq belongs to I0pBq. Any element of I0pBq is contained

in a maximal element of I0pBq.
Proof. The claim about subideals and 0 P I0pBq are obvious. Let X Ď I0pBq
be directed. Its supremum in IpBq is the closure K of the union

Ť
JPX J , which

is equal to the closed linear span because X is directed. If a P A and J P X ,
then the distance between a and J is ‖a‖ because A ãÑ B{J is injective. Hence
the distance between a and K is ‖a‖. So K P I0pBq. It follows that any chain
of ideals in I0pBq has a supremum in I0pBq. So the set of elements in I0pBq
containing a given J P I0pBq has a maximal element by Zorn’s Lemma. This
element remains maximal in I0pBq.

Proposition 5.4. The subset I0pBq has a unique maximal element if and only

if J1 ` J2 P I0pBq for all J1, J2 P I0pBq. If N is this unique maximal element,

then I0pBq “ tJ P IpBq : J Ď N u.

Proof. By Lemma 5.3, J1 ` J2 P I0pBq holds for all J1, J2 P I0pBq once it
holds for all maximal elements of I0pBq. If J1 ‰ J2 for two maximal elements
of I0pBq, then J1 ` J2 Ľ J1, J2 and hence J1 ` J2 R I0pBq because otherwise
J1, J2 would not be maximal. Hence J1 `J2 P I0pBq for all J1, J2 P I0pBq if and
only if I0pBq has a unique maximal element. Since IpBq is a complete lattice,
a subset of IpBq is of the form tJ P IpBq : J Ď N u for some N P IpBq if and
only if it has N as a unique maximal element.
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Definition 5.5. The inclusion A Ď B has the generalised intersection property

if there is a unique maximal ideal N P IpBq with N XA “ 0. Then we call N
the hidden ideal, and we define Bess :“ B{N .

Proposition 5.4 shows that the hidden ideal exists if and only if the sum of two
ideals in I0pBq remains in I0pBq, if and only if I0pBq “ tJ P IpBq : J Ď N u for
some N P IpBq, and then N is the hidden ideal.

Definition 5.6. A C˚-subalgebra A Ď B is called B-minimal if BIB “ B for
all 0 ‰ I P IpAq.
In the following proposition, and in the whole paper, we assume A ‰ 0.

Proposition 5.7. A C˚-inclusion A Ď B has the generalised intersection prop-

erty if and only if there is a unique quotient B{N of B such that A X N “ 0
and the image of A detects ideals in B{N . Then N is the hidden ideal and

Bess “ B{N .

If the C˚-inclusion A Ď B has the generalised intersection property and A is

B-minimal, then Bess is the unique simple quotient of B for which the quotient

map is injective on A. Moreover, B is simple if and only if A detects ideals

in B and A is B-minimal.

Proof. The first part of the assertion follows from Lemma 5.1 and Proposi-
tion 5.4. Assume that the C˚-inclusion A Ď B has the generalised intersection
property and that A is B-minimal. Since A detects ideals in Bess “ B{N ,
every non-zero ideal in Bess is the image of an ideal J P IpBq, with N Ď J and
J XA ‰ 0. Then B “ BpJ XAqB Ď J by minimality. So the ideal in question
is Bess. That is, Bess is simple. If J is any ideal in I0pBq such that B{J is
simple, then A detects ideals in B{J and hence B{J “ Bess by the first part.
As a result, if A detects ideals in B and A is B-minimal, then B “ Bess is
simple. Conversely, if A does not detect ideals in B, then there is an ideal
J Ď B with J ‰ 0 and J X A “ 0. It cannot be 0 or B. So B is not simple.
If A is not B-minimal, then there is 0 ‰ I P IpAq with BIB ‰ B. Then
BIB P IpBq is not B and not 0 because it contains I. So B is not simple.

Proposition 5.8. Let A Ď B be a C˚-inclusion with a generalised expectation

E : B Ñ Ã Ě A. The following are equivalent:

(1) NE is the hidden ideal for the inclusion A Ď B;

(2) B{NE is the unique quotient of B for which the induced map A Ñ B{NE

is injective and detects ideals;

(3) if J P IpBq satisfies J XA “ 0, then J Ď kerE;

(4) if J P IpBq satisfies J XA “ 0, then J Ď NE;

(5) for every C˚-algebra C and ˚-homomorphism π : B Ñ C that is injective

on A, there is a ˚-homomorphism ϕ : πpBq Ñ B{NE with ϕ˝π “ Λ: B Ñ
B{NE;
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(6) for every C˚-algebra C and ˚-homomorphism π : B Ñ C that is injective

on A, there is a generalised expectation Eπ : πpBq Ñ Ã with Eπ ˝ π “ E.

In particular, A detects ideals in B if and only if the statements above hold

and E is almost faithful.

Proof. Statements (3) and (4) are equivalent by the definition of NE . Since
NE X A “ 0, (4) is equivalent to (1). And (1) and (2) are equivalent by
Proposition 5.7. Any ideal J in B is the kernel of a ˚-homomorphism B Ñ B{J .
And a ˚-homomorphism π ofB is faithful onA if and only if its kernel J :“ kerπ
satisfies J XA “ 0. Hence (4)–(6) are equivalent by Lemma 3.11.

If A detects ideals in B, then NE “ 0 is the hidden ideal and E is almost
faithful. Conversely, if NE is the hidden ideal and E is almost faithful, then
NE “ 0 and A detects ideals in B by (2).

5.2 Aperiodic inclusions

Kishimoto’s condition for automorphisms was extended to bimodules in [43]
in order to generalise the known criteria for detection of ideals in reduced
crossed products for group actions to Fell bundles over groups. Here we rename
Kishimoto’s condition, speaking more briefly of aperiodicity.

Let HpAq denote the set of non-zero, hereditary C˚-subalgebras of A. Let A`

be the cone of positive elements in A.

Definition 5.9 ([43]). Let X be a normed A-bimodule. We say that x P X

satisfies Kishimoto’s condition if, for all D P HpAq and ε ą 0, there is a P D`

with ‖a‖ “ 1 and ‖axa‖ ă ε. We call X aperiodic if Kishimoto’s condition
holds for all x P X .

Lemma 5.10. Consider the C˚-algebra A as an A-bimodule. No non-zero pos-

itive element of A satisfies Kishimoto’s condition.

Proof. Given b P A` with ‖b‖ “ 1, [43, Lemma 2.9] provides a hereditary
subalgebra D0 Ď A such that ‖xbx‖ ě ‖x2‖ ´ ‖xbx´ x2‖ ą p1 ´ εq‖x‖2 for all
x P D`

0 .

Lemma 5.11 ([43, Lemma 4.2]). The subset of elements in a normed

A-bimodule that satisfy Kishimoto’s condition is a closed vector subspace.

Lemma 5.12. Subbimodules, quotient bimodules, extensions, finite direct sums,

and inductive limits of aperiodic normed A-bimodules remain aperiodic. If

f : X Ñ Y is a bounded A-bimodule homomorphism with dense range and X

is aperiodic, then so is Y . If D P HpAq, then an aperiodic A-bimodule is

also aperiodic as a D-bimodule. If J P IpAq is an essential ideal and X an

A-bimodule, then JXJ is aperiodic as a J-bimodule if and only if X is aperiodic

as an A-bimodule.
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Proof. The claims about subbimodules and about aperiodicity as a D-bimodule
are trivial. If f : X Ñ Y is a bounded A-bimodule homomorphism and x P X ,
then fpxq inherits Kishimoto’s condition from x. Hence the second statement
follows from Lemma 5.11. This implies the claim about quotient bimodules.
The claim about extensions is proved as in the proof of [43, Lemma 4.2].
Namely, let M1  M2 ։ M3 be an extension of A-bimodules such that M1

and M3 are aperiodic. Let x P M2, ε ą 0, and D P HpAq. We may assume
without loss of generality that ‖x‖ “ 1. Since M3 is aperiodic, there is a0 P D`

with ‖a0‖ “ 1 and ‖a0xa0 ` M1‖M3
ă ε{2. Hence a0xa0 “ x1 ` x2 with

x1 P M1 and ‖x2‖ ă ε. By [43, Lemma 2.9], there is D0 P HpAq such that
D0 Ď D and ‖a ´ a ¨ a0‖ ď ε‖a‖ for all a P D0. Kishimoto’s condition for x1

gives a P D`
0 Ď D` with ‖a‖ “ 1 and ‖ax1a‖ ă ε. Then ‖axa‖ ă 4ε. Thus M2

is aperiodic.
A direct sum of two aperiodic normed A-bimodules is also an extension, hence
inherits aperiodicity. By induction, this remains true for direct sums of finitely
many aperiodic normed A-bimodules; here the norm should be one that de-
fines the product topology. The claim about inductive limits follows from
Lemma 5.11.
Now let J P IpAq be an essential ideal and X an A-bimodule. The claims
in the lemma already proven show that JXJ is aperiodic as a J-bimodule
if X is aperiodic as an A-bimodule. Conversely, assume JXJ to be aperi-
odic as a J-bimodule. The Cohen–Hewitt Factorisation Theorem shows that
JX , XJ and JXJ are closed J-subbimodules in X . There are extensions
JXJ  JX ։ JX{JXJ and JX  X ։ X{JX . The quotients in both are
aperiodic as J-bimodules because they satisfy xa “ 0 or ax “ 0 for all a P J ,
respectively. Hence the claim about extensions shows that X is also aperiodic
as a J-bimodule. Let D P HpAq, x P X , and ε ą 0. Since J is essential, the
intersection D X J is still non-zero. It is a hereditary C˚-subalgebra in J , and
Kishimoto’s condition for x gives a P pD X Jq` with ‖a‖ “ 1 and ‖axa‖ ă ε.
This witnesses that X is aperiodic as an A-bimodule.

Remark 5.13. An infinite direct sum of aperiodic normed bimodules inherits
aperiodicity when it is given a norm that defines the product topology on each
finite sub-sum. This follows from Lemma 5.12 by viewing it as an inductive
limit of finite direct sums.

For any C˚-inclusion A Ď B, both A and B are naturally normed A-bimodules.
So is the quotient Banach space B{A with the quotient norm.

Definition 5.14. A C˚-inclusion A Ď B is aperiodic if the Banach A-bimodule
B{A is aperiodic.

Proposition 5.15. If A Ď B is aperiodic and A Ď C Ď B, then the inclusion

A Ď C is aperiodic. If A Ď B is aperiodic and J P IpBq satisfies J X A “ 0,

then the induced inclusion A ãÑ B{J is aperiodic. Let I P IpAq. If A Ď B is

aperiodic, then I Ď IBI is aperiodic; conversely, A Ď B is aperiodic if I Ď IBI

is aperiodic and I is essential.
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Proof. This follows from Lemma 5.12 because C{A and IBI{I are isometrically
isomorphic to A-subbimodules of B{A and pB{Jq{A – B{pJ ` Aq is isometri-
cally isomorphic to a quotient bimodule of B{A.

Proposition 5.16. Let A Ď B be aperiodic and J P IpBq. Then J XA “ 0 if

and only if J is an aperiodic A-bimodule.

Proof. First assume J XA ‰ 0. Then there is b P J XA with b ‰ 0. Then b˚b

is a non-zero positive element of J X A. By Lemma 5.10, it does not satisfy
Kishimoto’s condition. Then J is not aperiodic. Another proof goes as follows.
The intersection JXA is an A-subbimodule in J and an ideal in A. Lemma 5.10
shows that JXA is not aperiodic as a JXA-bimodule. Then Lemma 5.12 implies
that J is not aperiodic as an A-bimodule.
Now assume that J X A “ 0. Then the composite ˚-homomorphism A ãÑ
B ։ B{J is injective, hence isometric. So its image is closed. Thus the map
A ‘ J Ñ B, pa, xq ÞÑ a ` x, is a continuous bijection onto a closed subspace
of B. It follows that it is a topological isomorphism. Then the injective map
J ãÑ B{A is also a topological isomorphism onto its image. Since B{A is
aperiodic by assumption, so is J by Lemma 5.12.

Theorem 5.17. Every aperiodic inclusion A Ď B has the generalised inter-

section property. The hidden ideal is the largest ideal that is aperiodic as an

A-bimodule.

Proof. Let IapBq be the set of all ideals in B that are aperiodic as an
A-bimodule. Certainly, 0 P IapBq. Let J1, J2 P IapBq. Then there is a Ba-
nach A-bimodule extension J1  J1 ` J2 ։ J2{pJ1 X J2q. So Lemma 5.12
implies J1 ` J2 P IapBq. Hence IapBq Ď IpBq is closed under finite joins.
Lemma 5.12 implies that IapBq is also closed under increasing unions. Hence it
is closed under arbitrary joins. Let N be the join of all ideals in IapBq. Then
J P IpBq satisfies J Ď N if and only if J P IapBq. Proposition 5.16 says that
IapBq “ I0pBq. So N is the hidden ideal.

Remark 5.18. Let A Ď B be a C˚-inclusion that need not be aperiodic. The
proof of Theorem 5.17 still gives N P IpBq such that J P IpBq is aperiodic as
an A-bimodule if and only if J Ď N . That is, N is the largest aperiodic ideal
in B. The proof of Proposition 5.16 still shows that N X A “ 0. So we get
an induced inclusion A ãÑ B{N . Lemma 5.12 implies that no non-zero ideal
in B{N is aperiodic as an A-bimodule. But A need not detect ideals in B{N .
For instance, in Example 5.2, the largest aperiodic ideal is 0 because a unital
C-bimodule is never aperiodic.

5.3 Supportive generalised expectations

Now assume the inclusion A Ď B to be aperiodic and let E : B Ñ Ã Ě A be a
generalised expectation. Then A Ď B has the generalised intersection property
by Theorem 5.17. The hidden ideal N contains NE because NE X A “ 0.
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When is N equal to NE? We cannot expect this for all generalised expectations.
For instance, for the trivial generalised expectation in Example 3.3 we always
have NE “ 0 independently of N . More importantly, there are examples of
aperiodic inclusions coming from non-Hausdorff groupoids where NE ‰ N for
the canonical weak conditional expectation E : B Ñ A2. We are going to
identify an extra property of generalised conditional expectations that implies
that the hidden ideal is NE . Even more, it implies that the positive elements
in A support all positive elements in B{NE .

Definition 5.19. A generalised expectation E : B Ñ Ã Ě A is called sup-

portive if, for any b P B` with Epbq ‰ 0, there are δ ą 0 and a hereditary
C˚-subalgebra D P HpAq such that ‖xEpbqx‖ ě δ for all x P D` with ‖x‖ “ 1.

Remark 5.20. By definition, E is supportive if and only if no non-zero element
of EpB`q satisfies Kishimoto’s condition. Then any aperiodic ideal in B is
contained in kerE and hence in NE . If A Ď B is aperiodic, then Proposi-
tion 5.16 implies that NE is aperiodic because NE X A “ 0; so the unique
maximal aperiodic ideal is NE if A Ď B is aperiodic and E is supportive. This
short argument justifies our definition of supportive conditional expectations.
Theorem 5.28 will prove the stronger statement that A supports B.

Remark 5.21. Since the property of being supportive depends only on EpB`q,
a generalised expectation E : B Ñ Ã Ě A is supportive if and only if the
corresponding reduced generalised expectation B{NE Ñ Ã is supportive.

Proposition 5.22. Any Mloc-expectation E : B Ñ MlocpAq and, in particular,

any genuine conditional expectation E : B Ñ A is supportive.

Proof. Let b P B` satisfy Epbq ‰ 0. Then there is ε ą 0 with ‖Epbq‖ ą ε and
p1 ´εq2 ą 1{2. By the definition of MlocpAq as an inductive limit, there are an
essential ideal I Ď A and c P MpIq Ď MlocpAq with ‖Epbq ´ c‖ ă ε{4. Since
Epbq ě 0, we may assume without loss of generality that c ě 0. Then ‖c‖ ą
3ε{4. Hence there is a P I with 0 ď a ď 1, ‖a‖ “ 1, and ‖ac1{2‖ ą p3ε{4q1{2.
Let d :“ pc1{2a2c1{2q1{2 P I. [43, Lemma 2.9] gives a hereditary C˚-subalgebra
D P HpAq such that ‖xd ´ x‖ ă ε‖x‖ ¨ ‖d‖ and ‖xd‖ ą p1 ´ εq‖x‖ ¨ ‖d‖ for
all x P D. Let x P D` satisfy ‖x‖ “ 1. Then xcx ě xc1{2a2c1{2x “ xdpxdq˚.
Hence

‖xcx‖ ě ‖xd‖2 ą p1 ´ εq2‖d‖2 ą p1 ´ εq2 ¨ 3ε{4 ą 3ε{8.

Then
‖xEpbqx‖ ě ‖xcx‖ ´ ‖x‖2‖Epbq ´ c‖ ą 3ε{8 ´ ε{4 “ ε{8.

Since this holds for all x P D` with ‖x‖ “ 1, E is supportive.

Lemma 5.23. A generalised expectation E : B Ñ Ã Ě A is supportive if, for

any b P B` with Epbq ‰ 0, there is a P A`zt0u with a ď Epbq.
Proof. Choose 0 ă δ ă ‖a1{2‖ and let ε “ 1 ´ δ{‖a1{2‖. The element
‖a‖´1{2a1{2 P A` has norm 1, and [43, Lemma 2.9] gives a hereditary sub-
algebra D P HpAq with ‖a1{2x‖ ą p1 ´ εq‖a1{2‖‖x‖ “ δ‖x‖ for all x P D. Let

Documenta Mathematica 26 (2021) 271–335



Essential Crossed Products 307

x P D. Since x˚Epbqx ě x˚ax, we may estimate ‖x˚Epbqx‖ ě ‖x˚ax‖ “
‖a1{2x‖2 ě δ2‖x‖2 as desired.

Definition 5.24 ([41, Definition 2.39]). We say that A` supports B if, for
every b P B`zt0u, there is a P A`zt0u with a À b in the Cuntz preorder
(see [14]); that is, for every ε ą 0, there is x P B with ‖a´ x˚bx‖ ă ε.

Definition 5.25 ([46, Lemma 2.1]). An element a P B`zt0u is infinite in B if
and only if there is b P B`zt0u such that for all ε ą 0 there are x, y P aB with
‖x˚x´ a‖ ă ε, ‖y˚y ´ b‖ ă ε and ‖x˚y‖ ă ε.

Proposition 5.26. If B is simple, then B is purely infinite if and only if

A` Ď B supports B and all elements of A`zt0u are infinite in B.

Proof. Since B is simple, every infinite element in B is properly infinite by
[35, Proposition 3.14]. Hence by [35, Theorem 4.16], B is purely infinite if and
only if all elements of B`zt0u are infinite in B. If B is purely infinite, then
elements of A`zt0u are infinite in B, and A` supports B by [35, Definition 4.1]
and the simplicity of B. Conversely, assume that A` supports B and that
all elements of A`zt0u are infinite in B. Let b P B`zt0u. Then there is
a P A`zt0u with a À b. Since B is simple, b P BaB “ B. This implies b À a by
[35, Proposition 3.5]. Hence a and b are Cuntz equivalent. So b is infinite.

Lemma 5.27. If N P I0pBq is such that for every b P B` with b R N , there

is a P A`zt0u with a À b, then N is the hidden ideal for A Ď B and A`

supports B{N . In particular, if A` supports B, then A detects ideals in B.

Proof. Let J P IpBq satisfy J Ę N . Then there is b P J`zN . By assumption,
there is a P A`zt0u with a À b. This implies a P BbB Ď J , and so J XA ‰ t0u.
Therefore, if J X A “ t0u for J P IpBq, then J Ď N . The converse also holds
because N XA “ 0. So N is the hidden ideal. And a À b in B implies a À qpbq,
where q : B Ñ B{N is the quotient map. Hence A` supports B{N .

Theorem 5.28. Let A Ď B be an aperiodic C˚-inclusion. Let E be an Mloc-

expectation or, more generally, a supportive generalised expectation E : B Ñ
Ã Ě A. Then

(1) for every b P B` with b R NE , there is a P A`zt0u with a À b;

(2) A` supports B{NE;

(3) A detects ideals in B{NE;

(4) NE is the hidden ideal for the inclusion A Ď B, and so all the equivalent

statements in Proposition 5.8 hold;

(5) B is simple if and only if A is B-minimal and E is almost faithul;

(6) if B is simple, then B is purely infinite if and only if all elements of

A`zt0u are infinite in B.

Documenta Mathematica 26 (2021) 271–335



308 B. K. Kwaśniewski, R. Meyer

Proof. (1) implies (2)–(4) by Lemma 5.27. (4) implies (5) by Proposition 5.7,
and (2) implies (6) by Proposition 5.26. So everything follows once we show (1).
Moreover, Mloc-expectations are supportive by Proposition 5.22. So we may
assume E to be a supportive generalised expectation.
Let b P B` with b R NE . Then b1{2 R NE . Proposition 3.6 gives x P B`

with Epx˚bxq ‰ 0. Since x˚bx À b, we may replace b by x˚bx and assume
without loss of generality that Epbq ‰ 0. Since E is supportive, there are
δ ą 0 and D P HpAq such that ‖hEpbqh‖ ě δ for all h P D` with ‖h‖ “ 1.
Choose ε :“ δ{4. Since B{A is aperiodic, there is h P D` with ‖h‖ “ 1 and
‖hbh‖B{A ă ε. That is, there is c P A with ‖hbh ´ c‖ ă ε. Since hbh is self-
adjoint, even positive, we may replace c by its real part pc˚ `cq{2. This makes c
self-adjoint and does not increase ‖hbh´c‖. Next, decompose c into its positive
and negative parts, c “ c` ´c´ with c˘ ě 0 and c` ¨c´ “ c´ ¨c` “ 0. We claim
that ‖hbh´ c`‖ ă 2ε. First, ‖hbh´ c‖ ă ε implies ε ě hbh´ c ě ´c “ c´ ´ c`

because hbh ě 0. Since c˘ are orthogonal, this implies ε ě ‖c´‖ “ ‖c ´ c`‖.
So ‖hbh´ c`‖ ď ‖hbh´ c‖ ` ‖c´ c`‖ ă 2ε. Now we estimate

‖c`‖ “ ‖Epc`q‖ ě ‖hEpbqh‖ ´ ‖Ephbh´ c`q‖ ą δ ´ 2ε “ 2ε.

Hence pc` ´ εq` ‰ 0. Let a :“ pc` ´ εq` P A`zt0u. Since ‖hbh ´ c`‖ ă 2ε,
[36, Lemma 2.2] gives a contraction y P B with a “ y˚hbhy. Thus a À b.

By Proposition 5.15, the reduced inclusion A ãÑ B{NE is aperiodic if A Ď B

is aperiodic. The converse is false:

Example 5.29. Embed A “ C diagonally into B “ C‘C and define E : B Ñ A,
Epx, yq :“ x. Then the reduced inclusion is an isomorphism A – B{NE and
hence aperiodic. But the inclusion A Ď B is not aperiodic.

6 Aperiodicity for inverse semigroup actions

In this section, we characterise when the inclusion A Ď A ¸ S for an inverse
semigroup action is aperiodic. In this case, A ¸ess S is the unique quotient of
A¸S in which A embeds and detects ideals. Even more, A` supports A¸essS.
Using previous results in [43], we relate aperiodicity of an inverse semigroup
action to topological freeness of the dual groupoid and pure outerness of the
action. Following Archbold and Spielberg [4], we also show directly that a
variant of topological freeness implies detection of ideals.

6.1 Aperiodic inverse semigroup actions

Definition 6.1. An inverse semigroup action E is called aperiodic if the Hilbert
A-bimodules Et ¨ IK

1,t are aperiodic for all t P S, where IK
1,t is defined in (3.4).

Recall the inverse semigroup SpA,Bq for a regular inclusion defined in Propo-
sition 2.12.

Documenta Mathematica 26 (2021) 271–335



Essential Crossed Products 309

Lemma 6.2. Let A Ď B be a regular C˚-inclusion and let S Ď SpA,Bq be a

subset with closed linear span B; for instance, S “ SpA,Bq. Let pN XAqK for

N P SpA,Bq be the annihilator of the ideal N XA in A. The inclusion A Ď B

is aperiodic if and only if the image of N ¨ pN X AqK in B{A is an aperiodic

A-bimodule for all N P S.

Proof. Since
ř
N is dense in B, the images of the A-submodules N Ď B

in B{A are linearly dense. By Lemma 5.11, B{A is aperiodic if and only if
these images, equipped with the quotient norm from B{A, are all aperiodic.
Fix N P S and put I :“ N XA. Let J :“ I` IK. This is an essential ideal in A
and N ¨ J “ N ¨ I ‘N ¨ IK “ N XA‘N ¨ IK. By Lemma 5.12, the image of N
in B{A is an aperiodic A-bimodule if and only if the image of J ¨N ¨ J in B{A
is an aperiodic J-bimodule, if and only if the image of J ¨ N ¨ J in B{A is an
aperiodic A-bimodule. And the same proof works with N ¨J instead of J ¨N ¨J .
Finally, the subspace N ¨ J has the same image in B{A as N ¨ pN XAqK.

Proposition 6.3. Let B be an S-graded C˚-algebra with a grading E “ pEtqtPS.

Let A :“ E1 Ď B and turn E into an S-action on A. If this action is aperiodic,

then the inclusion A Ď B is aperiodic. The converse holds if the grading is

topological as in Definition 4.13.

Proof. Suppose first that E is aperiodic. Any S-grading satisfies Et Ď Eu for
t ď u in S. Hence the ideal I1,t used in Definition 6.1 is contained in Et X A

for all t P S. So Et ¨ pEt X AqK is a subbimodule of Et ¨ IK
1,t and hence inherits

aperiodicity from the latter by Lemma 5.12. Thus A Ď B is aperiodic by
Lemma 6.2.
Conversely, assume that A Ď B is aperiodic. Let t P S. Using that the grading
is topological, we are going to prove that the seminorm on EtI

K
1,t induced by

the quotient norm on B{A is equal to the usual norm in B. Hence EtI
K
1,t

inherits aperiodicity from B{A by Lemma 5.12. It is clear that ‖x‖B{A ď
‖x‖B for all x P B. It remains to prove the opposite inequality for x P EtI

K
1,t.

Since ‖x‖2
B “ ‖x˚x‖A, it follows that ‖x‖B “ ‖x‖A¸essS . By Proposition 4.14,

‖x‖B{A ě ‖x‖pA¸essSq{A. So we may assume without loss of generality that
B “ A¸essS. By definition of EL, ELpa˚xq “ 0 for all a P A. Hence xd1 and
ad1 in pA¸algSqdMlocpAq are orthogonal. The following norms are computed
in the Hilbert module completion F of pA ¸alg Sq d MlocpAq or in MlocpAq:

‖px` aq d 1‖2 ě ‖xd 1‖2 “ ‖xxd 1 |xd 1y‖ “ ‖ELpx˚xq‖ “ ‖x˚x‖ “ ‖x‖2.

The first inequality follows because x d 1 and a d 1 are orthogonal, and
ELpx˚xq “ x˚x because x˚x P A. Hence the norm of the operator of left
multiplication by x ` a on F is at least ‖x‖ for all a P A. This implies
‖x‖pA¸essSq{A ě ‖x‖B as desired.

Example 6.4. We are going to build a regular inclusion A Ď B with two different
wide gradings, such that one grading gives an aperiodic action and the other
not. By Proposition 6.3, the inclusion A Ď B is aperiodic although it can be
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equipped with a wide grading which is not aperiodic. So the equivalence in the
second part of Proposition 6.3 fails for non-topological gradings, even if they
are wide.
Let B be the C˚-algebra of all bounded functions f : r0, 1s Ñ C such that f is
continuous at irrational numbers and, at rational numbers in r0, 1s, still satisfies
fptq :“ limxÕt fpxq and that the limit from the right limxŒt fpxq exists. Let
A :“ Cpr0, 1sq Ď B. A character on B maps f : r0, 1s Ñ C to the value fptq
for some t P r0, 1s or to the right limit fpt`q :“ limxŒt fpxq for some t P Q.
The set RzQ of irrational numbers is dense in the spectrum of B. This implies
that A detects ideals in B. The inclusion A Ď B is unital, and it is regular by
Lemma 2.13 because B is commutative. If u P B is unitary, then u ¨ A Ď B

belongs to SpA,Bq (see the proof of Lemma 2.13). These elements generate a
subgroup of SpA,Bq that is isomorphic to the quotient group Γ :“ UpBq{UpAq.
Let Γ0 Ď Γ be the subgroup of all unitaries that are discontinuous at only
finitely many points of r0, 1s. These separate the characters of B and hence
generate B as a C˚-algebra by the Stone–Weierstraß Theorem. So B is graded
by the group Γ0. And then it is also graded by the larger group Γ. If u P Γ0,
then f P A satisfies f ¨ u P A if and only if fptq “ 0 at all t P r0, 1s where u
is not continuous. So A X u ¨ A “ C0pr0, 1szF q for a finite set F Ď Q. In
order for this to be useful, the subgroup Γ0 of SpA,Bq must be enlarged to
the wide inverse subsemigroup that it generates. Or we may as well take
Γ̄0 :“ tu ¨J :u P Γ0, J Ÿ Au. Since r0, 1szF is dense in r0, 1s, the ideals IK

t,1 are

zero for all t P Γ̄0. Hence the Γ̄0-action on A defined by the Γ̄0-grading of B is
aperiodic.
This action is topologically principal as well because its isotropy is trivial in
r0, 1szQ. At the same time, this action is trivial: any slice u ¨ J in Γ̄0 is
isomorphic to J as an A-bimodule, and the multiplication in the Fell bundle
over Γ̄0 is also the usual multiplication in A. The Γ0-grading on B is not
aperiodic, however, because for any t P Γ0zt1u, there is no element in Γ0 below
1 and t, so that I1,t “ 0. We thank Jonathan Taylor for pointing this out to
us.
Let Γ̄ :“ tu ¨ J :u P Γ, J Ÿ Au. Then B carries a wide Γ̄-grading. There is a
unitary u P B that is discontinuous at all rational points in r0, 1s. Then u ¨ f
for f P A is only continuous if f “ 0. So u ¨ A X A “ 0. Then IA,u¨A “ 0 and
aperiodicity of the Γ̄-grading on B would ask for u ¨ A to be aperiodic as an
A-bimodule. This contradicts Lemma 5.10 because u ¨ A carries the standard
A-bimodule structure. Hence the Γ̄-action on A defined by the Γ̄-grading on B
is not aperiodic.

6.2 Properties of aperiodic inverse semigroup actions

The following theorem specialises Theorem 5.28 to aperiodic inverse semigroup
actions:
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Theorem 6.5. Let E be an aperiodic action of a unital inverse semigroup S on

a C˚-algebra A. Let EL : A¸S Ñ MlocpAq be the canonical Mloc-expectation.

(1) The ideal NEL is the hidden ideal of the C˚-inclusion A Ď A¸ S.

(2) A` supports A¸ess S.

(3) A detects ideals in A¸ess S, and A¸ess S is the unique quotient of A¸S

with this property.

(4) For any representation π of pEtqtPS in a C˚-algebra B that is faithful

on A, the image of the induced ˚-homomorphism A¸S Ñ B is an exotic

crossed product, that is, πpBq is topologically graded by pEtqtPS .

Proof. Proposition 6.3 implies that the inclusion A Ď A¸S is aperiodic. Then
(1)–(3) follow from Theorem 5.28. In the situation of (4), the theorem implies
kerπ Ď NEL. And then (4) follows easily.

Theorem 6.6. Let B be an S-graded C˚-algebra and turn the grading into an

action E of S on A. Then B is simple if and only if A detects ideals in B and

the action E is minimal. In particular, if the S-action on A is aperiodic and

minimal, then A¸ess S is simple.

Proof. It is shown in [44, Section 6.3] that an ideal in A is of the form J X A

for J P IpBq if and only if it is invariant. Therefore, the minimality assumption
here is equivalent to the B-minimality assumption in Proposition 5.7, and the
first claim follows. The second claim follows because A detects ideals in A¸essS

for any aperiodic action (Theorem 6.5).

Corollary 6.7. Let E be an aperiodic, minimal action of a unital inverse

semigroup S on a C˚-algebra A. Then A¸ess S is simple and purely infinite if

and only if every element in A`zt0u is infinite in A ¸ess S.

Proof. This follows from the previous theorem and Proposition 5.26.

Proposition 6.8. Let E be an aperiodic action of a unital inverse semigroup S

on a C˚-algebra A. Let ‖¨‖min be the infimum of all C˚-seminorms on A¸alg S

that restrict to the given C˚-norm on A. This is a C˚-seminorm on A ¸alg

S. The Hausdorff completion of A ¸alg S in this seminorm is canonically

isomorphic to A ¸ess S.

Proof. Any C˚-seminorm on A ¸alg S is of the form ‖πpxq‖ for a representa-
tion x. And π is injective on A if and only if ‖πpxq‖ “ ‖x‖ for all x P A. Hence
Theorem 6.5.(4) says that the C˚-norm of A ¸ess S, restricted to A ¸alg S,
is the minimal C˚-seminorm on A ¸alg S that restricts to the given C˚-norm
on A.
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6.3 Aperiodicity, topological freeeness and pure outerness

Aperiodicity of single Hilbert bimodules is shown in [43] to be equivalent to
several other properties, under some mild assumptions. This allows us to com-
pare aperiodicity of inverse semigroup actions to the non-triviality conditions
in Definition 2.20.

Definition 6.9. A Hilbert A-bimodule H over a C˚-algebra A is purely outer

if there is no non-zero ideal J P IpAq with H ¨ J – J as a Hilbert bimodule
(see [43]). An action E of an inverse semigroup on a C˚-algebra A is purely

outer if the Hilbert A-bimodules Et ¨ IK
1,t are purely outer for all t P S.

Definition 6.10 ([43]). A Hilbert A-bimodule H over a C˚-algebra A is topo-

logically non-trivial if the set
!

rπs P pA : pHrπs “ rπs
)

has empty interior. Here

pHrπs “ rπs means that the irreducible representations H bA π and π are uni-
tarily equivalent.

Theorem 6.11 ([43, Theorem 8.1]). Let A be a C˚-algebra and let H be a

Hilbert A-bimodule. Consider the following conditions:

(1) H is aperiodic;

(2) the partial homeomorphism pH of pA is topologically non-trivial;

(3) H is purely outer.

Then (1) or (2) implies (3). If A contains a separable essential ideal, then (1)
and (2) are equivalent. If A contains a simple, essential ideal, then (1) and (3)
are equivalent. If A contains an essential ideal of Type I, then (1)–(3) are

equivalent.

Lemma 6.12 ([43, Proposition 9.7]). Assume that A contains an essential ideal

which is separable or whose spectrum is Hausdorff. Let pHiqiPI be a countable

family of Hilbert A-bimodules. The following are equivalent:

(1) pHi is topologically non-trivial for every i P I;

(2) the union
Ť

iPI

!
rπs P pA : xHirπs “ rπs

)
has empty interior.

Proof. We only need to show that (1) implies (2). By [43, Corollary 6.9] we may

assume that A is separable or that pA is Hausdorff (compare Corollary 2.26).

If pA is Hausdorff, then the sets
!

rπs P pA : xHirπs “ rπs
)

for i P I are closed in pA.

Hence (1) implies (2) because pA is a Baire space.
Now assume A to be separable. We will reduce our considerations to the case
when the Hilbert bimodules Hi come from automorphisms of A. We may
assume that A and pHiqiPI are embedded into a C˚-algebra B in such a way
that all the structure of these objects is inherited from B. In addition, we may

Documenta Mathematica 26 (2021) 271–335



Essential Crossed Products 313

assume that the C˚-algebra B is generated by A and pHiqiPI . Let F be the free
group on the set I. We define an F-grading pEtqtPF on B with unit fibre A. Let

Et :“ Ht if t P I, and Et :“ H˚
t if t P I´1.

If t1 ¨ ¨ ¨ tn P F is a reduced word, that is, tk P I Y I´1 for 1 ď k ď n and
tk ‰ t´1

k`1 for 1 ď k ă n, then

Et1¨¨¨tn
:“ Et1

Et2
¨ ¨ ¨ Etn

.

One readily sees that pEtqtPF is indeed an F-grading on B and hence a Fell
bundle over F. Let γ : F Ñ AutpCq be the Morita globalisation of pEtqtPF in
[43, Proposition 7.1]. So C is a separable C˚-algebra and for each i P I, the
Hilbert bimodules pEtit´1 qtPF coverCγi

up to Morita equivalence. For each t P F,
either Etit´1 “ EtHiEt´1 or Etit´1 “ EuHiEu´1 with u “ ti˘1. Hence Etit´1

is topologically non-trivial if Hi is. Thus by [43, Proposition 6.8.(2)]

γi is topologically non-trivial, that is, the sets
!

rπs P pC : yCγi
rπs “ rπs

)
“

!
rπs P pC : rπ ˝ γis “ rπs

)
for i P I have empty interiors. As in the proof of

[49, Proposition 4.4], one shows that the union
Ť

iPI

!
rπs P pC : rπ ˝ γis “ rπs

)

has empty interior. Since γ : F Ñ AutpCq is a Morita globalisation of pEtqtPF,

the partial action ppEtqtPF may be identified with the restriction of pγ to an open

subset. Hence the union
Ť

iPI

!
rπs P pA : xHirπs “ rπs

)
has empty interior.

Theorem 6.13. Let A be a C˚-algebra, S a unital inverse semigroup, and E
an S-action on A by Hilbert bimodules. Consider the following conditions:

(1) the action E is aperiodic;

(2) for each t P S and 0 ‰ K P IpIK
1,tq there is rπs P pK with pEtrπs ‰ rπs;

(3) the dual groupoid pA ¸ S is topologically free;

(4) the dual groupoid pA ¸ S is AS topologically free;

(5) the dual groupoid pA ¸ S is topologically principal;

(6) the action E is purely outer.

If A contains an essential ideal which is separable or of Type I, then (1)–(4)
are equivalent. If, in addition, S is countable, then (1)–(5) are equivalent. In

general, each of the conditions (1)–(5) implies (6). Conversely, (6) implies (1)
if A contains an essential ideal which is of Type I or simple.

Proof. By definition, the action E has one of the properties in Definition 2.20
if and only if the dual groupoid pA¸ S has that property. The groupoid pA¸ S
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is the union of the bisections pEt. And pEt X pA “ xI1,t. The restriction of pEt to xIK
1,t

is the complement of the closure of pEt X pA in pEt. So

!
rπs P xIK

1,t : pEtrπs “ rπs
)

“ FixppEtq (6.1)

in the notation of Lemma 2.23. Condition (2) for t P S makes precise what it

means for the partial homeomorphism of pA induced by Et¨IK
1,t to be topologically

non-trivial. So (2) and (3) are equivalent by Lemma 2.23. If A contains an
essential ideal which is separable or of Type I, then (1) is equivalent to (2) by
Theorem 6.11. By Lemma 6.12, condition (2) holds if and only if countable

unions of the subsets FixppEtq have empty interior. Accordingly, (2) and (4) are
equivalent by Lemma 2.23.(3). Also by Lemma 2.23, conditions (2) and (5) are
equivalent if S is countable. The implications concerning condition (6) follow
from Theorem 6.11.

Following Archbold and Spielberg [4], we prove that A detects ideals in A¸essS

for AS topologically free actions, without going through aperiodicity and thus
without separability assumptions on A:

Theorem 6.14. Let A be a C˚-algebra with an AS topologically free action E
of a unital inverse semigroup S. Then A¸ess S is the unique quotient of A¸S

in which A embeds and detects ideals.

Proof. By Proposition 5.8 it suffices to show that, for any representation π : A¸
S Ñ BpHq which is injective on A, there is a map Eπ : πpA ¸ Sq Ñ MlocpAq
such that Eπ ˝ π “ EL ˝ π. This is equivalent to ‖ELpaq‖ ď ‖πpaq‖ for all
a P A ¸ S. It suffices to check this on the dense ˚-subalgebra A ¸alg S. So
take a P A ¸alg S and write it as a “

ř
tPF atδt for a finite subset F Ď S and

at P Et for t P F . Define Jt :“ I1,t ‘ IK
1,t and J :“ Ş

tPS Jt as in the proof of
Proposition 4.3. These are essential ideals in A, and ‖ELpaq‖ is equal to the
supremum of ‖ELpaxq‖ for x P J with ‖x‖ ď 1. So ‖ELpaq‖ ď ‖πpaq‖ follows
if ‖ELpaxq‖ ď ‖πpaxq‖ holds for all x P J . So we may assume without loss of
generality that at P Et ¨ J for all t P F .
Then we may further decompose at “ ELpatδtq ` a1

t with ELpatδtq P I1,t and
a1

t P EK
t :“ Et ¨ IK

1,t. Thus a “ ELpaq ` ř
tPF a

1
tδt with ELpaq P A. To simplify,

we may assume without loss of generality that ‖ELpaq‖ “ 1. Let 0 ă ε ă 1.

The set U :“ trσs P pA : ‖σpELpaqq‖ ą 1 ´ εu is open and non-empty because
‖ELpaq‖ “ 1. For each t P S, Equation (6.1) and Lemma 2.23.(3) show that

there is rσs P U with xEK
t rσs ‰ rσs for all t P F . There is a representation

ν : πpA ¸ Sq Ñ BpHνq that extends the irreducible representation σ, that is,
there is a closed subspace Hσ Ď Hν on which ν ˝ π is unitarily equivalent
to σ. For each t P F , let Pt be the orthogonal projection from Hν onto the
closed subspace νpπpEK

t qqHσ . Let Pσ be the orthogonal projection onto Hσ.
The subspaces PtHν are invariant for νpπpAqq, and ν ˝ π : A Ñ BpPtHνq is

either zero or an irreducible representation whose equivalence class is xEK
t rσs
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(see [40, Lemma 1.3] or [1, Proposition 3.1]). Therefore, xEK
t rσs ‰ rσs implies

PσPt “ 0. Thus Pσνpπpa1
tqqPσ “ PσPtνpπpa1

tqqPσ “ 0 for all t P F . Hence

1 ´ ε ă ‖σpEpaqq‖ “ ‖PσνpπpEpaqqqPσ‖ “ ‖PσνpπpaqqPσ‖ ď ‖πpaq‖.

Since ε P p0, 1q is arbitrary, this implies ‖ELpaq‖ “ 1 ď ‖πpaq‖. Then EL

factors through π, as desired.

Corollary 6.15. Suppose that E is aperiodic or that pA¸S is AS topologically

free. Then A ¸ess S is simple if and only if E is minimal, if and only if pA ¸ S

is minimal.

Proof. Theorem 6.6 applies in both cases.

Remark 6.16. More recently, it is shown in [45] that topologically free actions
are aperiodic. This significantly improves Theorem 6.14 and Corollary 6.15.
First, aperiodicity is weaker than (AS) topological freeness and, secondly, it
also gives results about pure infiniteness (see Corollary 6.7).

The aperiodicity assumption in Theorem 6.5 is not necessary for A to detect
ideals in A ¸ess S. An easy counterexample is an irrational rotation algebra,
viewed as the (essential) crossed product for a twisted action of the group Z2

on A “ C. An important case where aperiodicity is necessary for detection of
ideals is when S is very special, namely, Z or Zn with square-free n P Ně1:

Theorem 6.17. Let the compact group Γ be either T or Zn with square-free

n P Ně1. Let B be a C˚-algebra with a continuous action β : Γ Ñ AutpBq and

let A “ Bβ be the fixed point algebra. Assume that A contains an essential ideal

which is separable, simple, or of Type I. Then the following are equivalent:

(1) A Ď B is aperiodic;

(2) A detects ideals in B;

(3) A` supports B.

Proof. Let G “ pΓ be the dual group, that is, G “ Z or G “ Γ “ Zn. Let
B “ pBgqgPG be the Fell bundle formed by the spectral subspaces of the action β.
Then B0 “ Aβ “ A and B “ C˚

r pBq “ C˚pBq by the Gauge-Equivariant
Uniqueness Theorem. By Proposition 6.3, the inclusion A Ď B is aperiodic if
and only if the Fell bundle is aperiodic. Then [43, Theorem 9.12] implies that
(1)–(3) are equivalent.

Remark 6.18. For an action of a discrete group on a separable C˚-algebra for
which A Ď A ¸r G detects ideals, Kennedy and Schafhauser [32] introduce a
cohomological obstruction whose vanishing implies aperiodicity (the condition
they call proper outerness is aperiodicity).
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7 Fell bundles over groupoids

Fell bundles over groups are studied, for instance, in [22]. We are going to
describe their analogues over étale groupoids through inverse semigroup actions.
Then we carry over our definitions and results for inverse semigroup actions to
the realm of Fell bundles over étale groupoids. Throughout this section, X is

a locally compact Hausdorff space, H is an étale groupoid with unit space X,

and S Ď BispHq is a unital, wide inverse subsemigroup of bisections of H.

7.1 Groupoid Fell bundles and inverse semigroups actions

Definition 7.1 ([8, Section 2]). A Fell bundle over H is an upper semicon-
tinuous bundle A “ pAγqγPH of Banach spaces with a continuous involution
˚ : A Ñ A and a continuous multiplication

¨ : tpa, bq P A ˆ A : a P Aγ1
, b P Aγ2

, γ1, γ2 P H, spγ1q “ rpγ2qu Ñ A,

which is associative whenever defined. In addition, the fibres Ax for x P X

must be C˚-algebras and the fibres Aγ for γ P H must be Hilbert Arpγq-Aspγq-
bimodules for the left and right inner products xxx | yyy :“ xy˚ and xx | yy :“ x˚y

for x, y P Aγ . Then the multiplication map yields isometric Hilbert bimodule
maps

µγ1,γ2
: Aγ1

bAspγ1q
Aγ2

Ñ Aγ1γ2

for all γ1, γ2 P H with spγ1q “ rpγ2q. If these maps are surjective, the Fell
bundle A is called saturated. This holds if and only if µγ,γ´1 is surjective for
all γ P H .

Example 7.2. An action α of H on a C˚-algebra as in [54, Section 3] yields a
saturated Fell bundle over H . Namely, let Aγ :“ Arpγq for γ P H and define
the multiplication maps and involutions by Aη ˆAγ Ñ Aηγ , pa, bq ÞÑ a ¨ αηpbq,
and Aγ Ñ Aγ´1 , a ÞÑ α´1

γ pa˚q.
We are going to turn a Fell bundle A “ pAγqγPH over H into an inverse semi-
group action. Let A be the C0pXq-algebra corresponding to the bundle of
C˚-algebras pAxqxPX . Let S Ď BispHq be any unital, wide inverse subsemi-
group of bisections of H and let U P S. This subset is always Hausdorff and
locally compact because the source and range maps restrict to homeomorphisms
from U onto the open subsets spUq and rpUq in X . Let AU be the space of
C0-sections of the restriction of pAγqγPH to U . The spaces ArpUq and AspUq are
closed ideals in A “ AX . And the formulas

pa ¨ ξ ¨ bqpγq :“ aprpγqqξpγqbpspγqq,
xξ | ηypspγqq :“ ξpγq˚ηpγq,

xxξ | ηyyprpγqq :“ ξpγqηpγq˚

for a P ArpUq, ξ, η P AU , b P AspUq, and γ P U define on AU the structure
of a Hilbert ArpUq-AspUq-bimodule. For U, V P S, there is a unique isometric
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Hilbert bimodule map µU,V : AU bA AV Ñ AUV with

µU,V pξ b ηqpγ1 ¨ γ2q “ ξpγ1qηpγ2q

for all γ1 P U , γ2 P V . The involutions are the maps AU Ñ A˚
U , f˚pγq :“

fpγ´1q˚. This defines a Fell bundle over S (see [8, Example 2.9]). If A is
saturated, then the maps µU,V are surjective, that is, the Fell bundle over S is
saturated. Then the Fell bundle above defines an action of S on A by Hilbert
bimodules.
If A is not saturated, then we have to modify S to make the Fell bundle
saturated. Instead of using the general construction in [9] mentioned in Re-
mark 3.18, we prefer a more concrete construction that depends on the Fell
bundle A. Let S̃U for U P S be the set of all Hilbert subbimodules of AU and
let S̃ be the disjoint union of the sets S̃U . By the Rieffel correspondence, any
element of S̃U is of the form F “ AU ¨ I “ J ¨ AU , where I and J are the
source and range ideals of F . The involutions AU Ñ A˚

U and multiplication
maps µU,V : AU bA AV Ñ AUV map Hilbert subbimodules again to Hilbert
subbimodules. So they define maps S̃U Ñ S̃U˚ and S̃U ˆ S̃V Ñ S̃UV . These
define an involution and a multiplication on S̃.

Lemma 7.3. The multiplication above makes S̃ a unital inverse semigroup. And

pFqUPS,FPS̃U
is a saturated Fell bundle over S̃. There is also a canonical inverse

semigroup homomorphism S̃ Ñ S with fibres S̃U . The Fell bundles over S and S̃

defined above have the same algebraic, full and reduced section C˚-algebras.

Proof. The equation tt˚t “ t holds for all t P S̃ because F bA F˚ bA F – F
holds for all Hilbert A-bimodules F . To show that S̃ is an inverse semigroup,
it suffices to prove that the idempotent elements in S̃ form a commutative
subsemigroup. If F P S̃U is idempotent, then U2 “ U and soAU is an ideal in A.
Then F is an ideal in A as well. The product of two ideals is their intersection.
Since this operation on ideals is commutative and EpSq is commutative, the
idempotents in S̃ form a commutative semigroup. Therefore, S̃ is an inverse
semigroup. The element A P S̃1 is an identity element in S̃.
We have defined the multiplication in S̃ so that the involutions and multi-
plication maps in our original Fell bundle over S restricted to the elements
of S̃ give pFqUPS,FPS̃U

the structure of a saturated Fell bundle over S̃. We
only discuss the inclusion maps (which are redundant in the saturated case by
the results in [11]). Let F1 Ď AU1

and F2 Ď AU2
be elements of S̃. Then

pU1,F1q ď pU2,F2q holds in S̃ if and only if U1 ď U2 in S and the multiplica-
tion map AU2

bA AspU1q ãÑ AU1
maps F2 bA spF1q onto F1; this follows from

our description of idempotent elements in S̃ above. In this situation, there is a
canonial inclusion map F1 – F2 bA spF1q ãÑ F2. It agrees with the restriction
of the map AU1

ãÑ AU2
. And pU1,F1q ď pU2,F2q holds if and only if the map

AU1
ãÑ AU2

maps F1 into F2.
A section of the Fell bundle over S̃ is a finite formal linear combination of
elements of F for pU,Fq P S̃. The relations are defined in [8] using only the
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inclusion maps F1 ãÑ F2 for F1 Ď AU1
, F2 Ď AU2

with pU1,F1q ď pU2,F2q.
More relations are used in [10], giving a variant of the algebraic section alge-
bra; but this is worked out only in the saturated case. The relations in [8]
already suffice to show that any element of F for pU,Fq P S̃ is identified in
the algebraic section C˚-algebra with the corresponding element of pU,AU q.
And these are subjected to the same relations and ˚-algebra structure as in
the section C˚-algebra of the Fell bundle over S. So the section ˚-algebras of
the Fell bundles as defined in [8] are canonically isomorphic. The same would
be true for the definition in [10] if that were carried over to the non-saturated
case. The full section C˚-algebras are defined as the maximal C˚-completions
of the section ˚-algebras. Hence these are also canonically isomorphic. The
reduced section C˚-algebra of a non-saturated Fell bundle is defined in [20]
using all representations of the full section C˚-algebra that are obtained by
inducing irreducible representations of A in a certain way. When we identify
the full section C˚-algebras as above, we get the same induced representations
for both of them. Hence the reduced section C˚-algebras are also isomorphic.
For saturated Fell bundles, the definition of the reduced section C˚-algebra
through a weak conditional expectation is equivalent to Exel’s definition by
Lemma 3.21.

Let A be a Fell bundle over H . Then H acts naturally on the space pA of
all irreducible representations of the unit fibre A “ AX . First, any irreducible
representation of A factors through the evaluation map A Ñ Ax for some x P X ,
and this defines a continuous map ψ : pA Ñ X . Such a map is also equivalent to
a C0pXq-C˚-algebra structure on A by the Dauns–Hofmann Theorem (see [48]).

The map ψ is the anchor map of the H-action on pA. Secondly, if γ P H , then the
Hilbert Arpγq, Aspγq-bimodule Aγ induces a partial homeomorphism xAγ from
zAspγq to zArpγq. If the Fell bundle over H is not saturated, then the domain and

codomain xAγ may be smaller than zAspγq and zArpγq, respectively. These partial

homeomorphisms still form a continuous “partial” action of H on pA, and this
is enough to form a transformation groupoid pA¸H , just as for a partial group
action on a space. The proof of Proposition 2.2 extends to this situation and
shows that pA¸H – pA¸ S “ pA¸ S̃.

Remark 7.4. If H is Hausdorff, then the unit space of H is closed in H . This
implies that the unit space pA is closed in pA¸H . That is, all inverse semigroup
actions associated to actions of H are closed (see [10, Example 6.7]).

The following theorem describes when a saturated Fell bundle over BispHq
comes from a saturated Fell bundle over H . The extra ingredient is the map
ψ : pA Ñ X .

Theorem 7.5 ([11, Theorem 6.1]). Let H be an étale groupoid with locally

compact, Hausdorff object space X. A saturated Fell bundle over BispHq comes

from a saturated Fell bundle over H if and only if the map U ÞÑ AU from open

subsets in X to ideals in A commutes with suprema, if and only if there is a

continuous map π : pA Ñ X such that xAU “ π´1pUq for all open subsets U Ď X.
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A similar result holds for non-saturated Fell bundles over H and BispHq. And
if we replace BispHq by S Ď BispHq, then a Fell bundle over S comes from
a Fell bundle over H if and only if there is a continuous, S-equivariant map
π : pA Ñ X such that xAe “ π´1peq for all e P EpSq, identified with open subsets
of X .

7.2 The full groupoid crossed product

If U Ď H is a bisection, then U is Hausdorff and locally compact. Let
CcpU,Aq Ď AU be the space of continuous sections of A|U with compact sup-
port. Extend functions in CcpU,Aq by 0 to H . These extensions need not
be continuous any more. Let SpH,Aq be the linear span of CcpU,Aq for all
bisections U Ď H . We call sections in SpH,Aq quasi-continuous. The space
SpH,Aq carries a convolution product and an involution given by

pf ˚ gqpγq :“
ÿ

rpηq“rpγq

fpηq ¨ gpη´1 ¨ γq, pf˚qpγq :“ fpγ´1q˚

for all f, g P SpH,Aq, γ P H . The full section C˚-algebra C˚pH,Aq of the
Fell bundle A over H is defined as the maximal C˚-completion of the ˚-algebra
SpH,Aq.

Proposition 7.6. Let H be an étale groupoid with locally compact and Haus-

dorff unit space X and let A be a Fell bundle over H. Turn A into a satu-

rated Fell bundle over an inverse semigroup S̃ as in Lemma 7.3 above. Then

C˚pH,Aq – A ¸ S̃.

Proof. If the Fell bundle A is saturated, then the isomorphism C˚pH,Aq –
A ¸ S is [11, Corollary 5.6]. Under separability hypotheses, [8, Theorem 2.13]
says that C˚pH,Aq is isomorphic to the full section C˚-algebra of the Fell bun-
dle pAU qUPS . This is isomorphic to A¸ S̃ by Lemma 7.3. We briefly sketch the
proof to point out that the extra saturatedness or separability assumptions in
these proofs are not needed. What makes the proof tricky is that the algebraic
˚-subalgebras used to define C˚pH,Aq and A¸ S̃ are not the same. The proof
shows that they have the same ˚-representations.
If U P BispHq, then any compact subset of U is covered by finitely many
bisections in S. Using a partition of unity, one shows that functions in
Ccpt,Aq for t P S already span SpH,Aq. This gives a surjective linear mapÀ

tPS̃ Ccpt,Aq ։ SpH,Aq. The proof of Lemma 7.3 shows that A¸algS̃ Ď A¸S̃
is spanned by the subspaces At for t P S, giving a surjective linear mapÀ

tPS At ։ A¸alg S̃. We claim that the map
À

tPS Ccpt,Aq Ñ À
tPS At defined

by the inclusion maps Ccpt,Aq Ñ At for t P S descends to a well defined map
SpH,Aq Ñ A ¸alg S̃. This follows from [11, Proposition B.2], which describes
the kernel of the map

À
tPS Ccpt,Aq Ñ SpH,Aq in terms of the inclusion maps

Ccpt,Aq ãÑ Ccpu,Aq for t ď u. The resulting map SpH,Aq Ñ A ¸alg S̃ is an
injective ˚-algebra homomorphism, but not surjective.
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If U Ď X , then any ˚-representation of CcpU,Aq is already bounded in the
C˚-norm on AU because CcpU,Aq is a union of C˚-subalgebras of AU . Hence
it extends uniquely to a ˚-representation of AU . Then it follows that the re-
striction of a ˚-representation of SpH,Aq to Ccpt,Aq for t P S is bounded in
the norm of At and hence extends uniquely to a bounded linear map on At.
These maps form a representation of the Fell bundle pAtqtPS over S. Thus
SpH,Aq and A¸alg S̃ have the same representations and hence the same max-
imal C˚-completions.

Remark 7.7. A Fell line bundle over H is a continuous Fell bundle with Aγ – C

as a vector space for all γ P H . Such Fell bundles correspond to “twists” of H
(the proof of [15, Theorem 5.6] still works for non-Hausdorff groupoids). The
corresponding Fell bundles over inverse semigroups are studied in [8], where
they are called semi-Abelian. The section C˚-algebra of a Fell line bundle
over H is a twisted groupoid C˚-algebra of H . The usual groupoid C˚-algebra
C˚pHq corresponds to the “trivial” Fell line bundle, where all the multiplication
maps are the usual multiplication map on C.

7.3 The reduced section C˚-algebra

Next we define the reduced section C˚-algebra of the Fell bundle A over H .
Let x P X . Then

CcpHx,Aq “
à

spγq“x

Aγ

is a pre-HilbertAx-module for the obvious right multiplication and the standard
inner product xf | gy :“

ř
spγq“x fpγq˚gpγq. Let ℓ2pHx,Aq denote its Hilbert

Ax-module completion. If f P SpH,Aq, g P CcpHx,Aq, then define λxpfqpgq P
CcpHx,Aq by

λxpfqpgqpγq :“
ÿ

rpηq“rpγq

fpηqgpη´1γq.

The operator λxpfq extends uniquely to an adjointable operator on ℓ2pHx,Aq
with adjoint λxpf˚q, and this defines a non-degenerate ˚-representation
of SpH,Aq on ℓ2pHx,Aq. It extends uniquely to a non-degenerate
˚-representation

λx : C˚pH,Aq Ñ B
`
ℓ2pHx,Aq

˘
.

Definition 7.8. The reduced norm on C˚pH,Aq or SpH,Aq is defined by

‖f‖r :“ sup
xPX

‖λxpfq‖.

The reduced section C˚-algebra C˚
r pH,Aq of the Fell bundle A over H is defined

as the completion of SpH,Aq in the reduced norm. Equivalently, it is the
quotient of C˚pH,Aq by the ideal

Ş
xPX kerpλxq, which is the null space of the

reduced norm on C˚pH,Aq.
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Proposition 7.9. The isomorphism C˚pH,Aq – A ¸ S̃ in Proposition 7.6
descends to an isomorphism C˚

r pH,Aq – A ¸r S̃.

Proof. For saturated Fell bundles over H , which correspond to saturated Fell
bundles over S and thus actions of S by Hilbert bimodules, this is contained
in [10, Theorem 8.11]. The same idea works in the non-saturated case. Each
representation π of A may be induced to a representation ipπq of A ¸ S̃. The
representation

À
πP pA ipπq of A ¸ S̃ descends to a faithful representation of

A ¸r S̃. This is how Lemma 3.21 is proven. Any irreducible representation
of A factors through one of the fibres Ax for x P X . The representation of
A¸ S̃ induced by π P xAx corresponds to the representation λx b 1 of C˚pH,Aq
on ℓ2pHx,Aq bAx

Hπ. And ‖λxpfq‖ is the supremum of ‖λx b 1Hπ
pfq‖ over

all π P xAx. So the reduced norm that defines C˚
r pH,Aq corresponds to the

supremum of ‖ipπqpfq‖ over all π P pA, which gives A¸r S̃.

Let BpH,Aq denote the Banach space of bounded Borel sections of the Ba-
nach space bundle A, and similarly for BpX,Aq. So SpH,Aq Ď BpH,Aq Ďś

γPH Aγ as vector spaces.

Proposition 7.10. The embedding SpH,Aq Ñ BpH,Aq extends uniquely to

an injective and contractive linear map j : C˚
r pH,Aq Ñ BpH,Aq. The map

Er : C˚
r pH,Aq Ñ BpX,Aq, f ÞÑ jpfq|X ,

is a faithful generalised expectation.

Proof. Let γ P H . Then Aγ Ď ℓ2pHspγq,Aq is a direct summand. Let Tγ : Aγ Ñ
ℓ2pHspγq,Aq be the isometric inclusion. Then T ˚

γ is the orthogonal projection
onto Aγ . If f P C˚

r pH,Aq, then define

jpfqpγq :“ T ˚
γ λxpfqTspγq : Aspγq Ñ Aγ .

If f P CcpU,Aq for some bisection U Ď H , then jpfqpγqpaq “ fpγq ¨ a for all
a P Aspγq and γ P H . Thus jpfqpγq is the compact operator corresponding under
the isomorphism KpAspγq, Aγq – Aγ to the element fpγq P Aγ . We simply
write jpfqpγq “ fpγq for all f P SpH,Aq. Since ‖Tγ‖ “ 1, we may estimate
‖jpfqpγq‖ ď ‖λxpfq‖ ď ‖f‖r for all f P C˚

r pH,Aq. The section jpfq P ś
xPX Ax

is Borel for all f P CcpU,Aq and hence for f P SpH,Aq. Since j is bounded,
SpH,Aq is dense in C˚

r pH,Aq, and uniform limits of Borel functions are Borel,
it follows that j is the unique contractive linear map C˚

r pH,Aq Ñ BpH,Aq
extending j on SpH,Aq.
If x P X , then f ÞÑ jpfqpxq “ T ˚

x λxpfqTx is a completely positive, contractive
linear map Ex : C˚

r pH,Aq Ñ Ax. Hence Erpfq :“ jpfq|X is completely positive
and contractive as a map to

ś
xPX Ax. Then it is a completely positive con-

traction Er : C˚
r pH,Aq Ñ BpX,Aq as well. Being the identity map on A, it is

a generalised conditional expectation. We may further compose Ex with the
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faithul representation Ax Ñ ś
πPyAx

BpHπq. Since pA “ Ů
xPX

xAx, this gives a
generalised expectation

Ẽr : C˚
r pH,Aq Ñ

ź

πP pA
BpHπq, Ẽrpfqpπq :“ πpjpfq|X q.

Let Er : A¸r S̃ Ñ A2 be the canonical weak conditional expectation (it should
not be confused with Er : C˚

r pH,Aq Ñ BpX,Aq as the domain and codomain
are different). The generalised expectation

̺ ˝ Er : A¸r S̃ Ñ
ź

πP pA
BpHπq,

is faithful by Lemma 3.21 and Theorem 3.22. The isomorphism C˚
r pH,Aq –

A¸r S̃ in Proposition 7.9 intertwines the generalised expectations Ẽr and ̺˝Er

because it does so on functions in f P Ccpt,Aq for t P S. Hence the generalised
expectation Ẽr is faithful. Then so is Er : C˚

r pH,Aq Ñ BpX,Aq.
If f P SpH,Aq, then we compute

Erpf˚ ˚ fqpxq “ jpf˚ ˚ fqpxq “
ÿ

spγq“x

f˚pγ´1qfpγq “
ÿ

spγq“x

jpfqpγq˚jpfqpγq.

The norm of the left hand side is bounded by ‖f‖2

C˚
r pH,Aq

. The norm of

the right hand side is the square of the norm of jpfq in ℓ2pHx,Aq. Hence
jpfq|Hx

P ℓ2pHx,Aq and ‖jpfq|Hx
‖ℓ2pHx,Aq ď ‖f‖C˚

r pH,Aq for all f P C˚
r pH,Aq.

By continuity, we get

Erpf˚ ˚ fqpxq “
ÿ

spγq“x

jpfqpγq˚jpfqpγq (7.1)

for all f P C˚
r pH,Aq. So Erpf˚ ˚ fq “ 0 is equivalent to jpfq “ 0. Since Er is

faithful, this is equivalent to f “ 0. Hence j is injective.

Remark 7.11. If A is a Fell line bundle, then its restriction to the unit space
is the trivial bundle X ˆ C. Hence identifying sections jpfq|X with scalar-
valued functions on X , we may view Er as a generalised expectation into the
C˚-algebra BpXq of Borel functions on X . This expectation has been used
already by Khoskham and Skandalis [33].

7.4 The essential groupoid crossed product

Definition 7.12. Let C˚
esspH,Aq be the quotient of C˚pH,Aq that corresponds

to the quotient A ¸ess S̃ of A ¸ S̃ under the isomorphism in Proposition 7.6.

So C˚
esspH,Aq is the quotient of C˚pH,Aq by the ideal NEL for the canonical

Mloc-expectation

EL : C˚pH,Aq „ÝÑ A¸ S̃ Ñ MlocpAq.
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Since EL is symmetric by Theorem 3.22, b P C˚pH,Aq belongs to NEL if and
only if ELpb˚ ˚ bq “ 0. Since A ¸ess S̃ is a quotient of A ¸r S̃, Proposition 7.9
allows to identify C˚

esspH,Aq with the quotient of C˚
r pH,Aq by the image of NEL

in C˚
r pH,Aq. We denote this image by Jsing as in Section 4.3 and call its

elements singular. We are going to describe Jsing in terms of the groupoid Fell
bundle.
By Proposition 4.10, the essential multiplier algebra MlocpAq is embeds into
the quotient of

ś
πP pA BpHπq by the null space of the essential supremum

norm ‖¨‖ess, which takes the minimum of the supremum norms over comea-

gre subsets of pA. In the proof of Proposition 7.10, we have noticed that the
canonical generalised expectation Er : C˚

r pH,Aq Ñ
ś

xPX Ax – composed with
the standard faithful representations – gives a faithful generalised expectation

Ẽr : C˚
r pH,Aq Ñ

ź

xPX

Ax Ñ
ź

πP pA
BpHπq,

which corresponds to ̺ ˝ Er : A ¸r S̃ Ñ ś
πP pA BpHπq. So by Proposition 4.10,

the norm of the image of b P C˚
r pH,Aq in C˚

esspH,Aq is the essential supremum

of
∥

∥Ẽrpbqpπq
∥

∥. Therefore, b P Jsing if and only if the set of π P pA with Ẽrpb˚ ˚
bqpπq ‰ 0 is meagre. In general, this is the best we can say. Under extra
assumptions, we are going to rewrite this in terms of the set of x P X with
Erpb˚ ˚ bqpxq ‰ 0, or the set of γ P H with jpbqpγq ‰ 0. The starting point is
the following analogue of Proposition 4.15:

Lemma 7.13. Let f P C˚
r pH,Aq. There is a comeagre subset C Ď H such that

the section jpfq of A is continuous in all points of C; that is, if γ P C, then

there is an open neighbourhood U of γ and a continuous section h of A|U with

limηÑγ ‖fpηq ´ hpηq‖ “ 0. Thus the section Erpfq of A|X is continuous in

C XX, which is comeagre in X.

Proof. First let f P CcpU,Aq for some bisection U . Then jpfq is a continuous
section on U and vanishes on the interior of HzU . Thus it is continuous in all
points of the dense open subset HzBU . If f P SpH,Aq, then f is a finite linear
combination of functions as above. Hence jpfq is continuous in all points of a
finite intersection of dense open subsets, which is again dense open. Finally, if
f P C˚

r pH,Aq, then there is a sequence pfnqnPN in SpH,Aq with lim ‖fn ´f‖ “
0. Hence jpfnq converges uniformly towards jpfq. For each n P N, there is a
dense open subset Yn Ď H where fn is continuous. Let C :“ Ş

nPN Yn. The
subset C is comeagre as a countable intersection of dense open subsets. Its
intersection with the closed subspace X Ď H is comeagre in X .
We claim that jpfq is a continuous section in all γ P C. Thus Erpfq “ jpfq|X
is continuous in C XX . A continuous section h with limηÑγ ‖fpηq ´ hpηq‖ “ 0
is built as follows. Let fn and Yn for n P N be as above. Define f´1 :“ 0. We
may arrange that ‖fn ´ fn´1‖8 ă 2´n for all n P N. Let U be a bisection
containing γ. Since Yn is open, there is a function wn P CcpU X Yn X Yn´1q
with wnpγq “ 1 and ‖wn‖8 ď 1. Then pfn ´ fn´1q ¨wn is a continuous section
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of A|U with ‖pfn ´ fn´1q ¨ wn‖ ď 2´n. Hence h :“ ř8
n“0pfn ´ fn´1q ¨ wn is

a well defined continuous section of A|U . The continuity of the functions wn

implies that limηÑγ ‖fpηq ´ hpηq‖ “ 0.

In order to compare our description of the essential crossed product to the one
in [25], we need more information about the comeagre subset C in Lemma 7.13.

Definition 7.14. Call x P X dangerous if there is a net pγnq in H that con-
verges towards two different points γ ‰ γ1 P H with spγq “ spγ1q “ x.

Lemma 7.15. Let f P C˚
r pH,Aq and γ P H. If spγq is not dangerous, then jpfq

is continuous at γ. If x P X is dangerous, then the isotropy group Hpxq at x

is non-trivial. If H is covered by countably many bisections, then the subset D

of dangerous points is meagre, and so is s´1pDq Ď H.

Proof. First let f P CcpU,Aq for some U P BispHq and assume that jpfq is
discontinuous at γ P H . Then γ P HzU and there is a net pγnq converging to γ
with fpγnq Ñ 0. So γn must lie in the support of f , which is a compact subset
of U . Passing to a subnet, we may arrange that γn converges to some γ1 P U .
This must be different from γ. Since X is Hausdorff, spγq “ lim spγnq “ spγ1q.
So spγq is dangerous. In other words, jpfq for f P CcpU,Aq is continuous at
all γ P H with spγq R D. This remains so for uniform limits of finite linear
combinations of such jpfq, giving the first claim for all f P C˚

r pH,Aq. The
same argument shows that rpγq “ rpγ1q. So γ´1γ1 is a non-trivial element in
the isotropy group of x and Hpxq is non-trivial if x is dangerous.
Now assume that H is covered by countably many bisections S Ď BispHq. The
arrows γ, γ1 witnessing that some x P X is dangerous must belong to some
bisections U, V P S. Since a countable union of meagre subsets is meagre, it
suffices to fix U, V P S and prove the meagreness of the set of all x P X for
which there are γ P U , γ1 P V with spγq “ spγ1q “ x and a net pγnq in H

converging both to γ and γ1. Since U and V are open, we may restrict our net
pγnq to a subnet that belongs to U XV . But γ, γ1 R U X V . Since s restricts to
homeomorphisms U – spUq and V – spV q, it follows that x P BpspUXV qq. This
subset is closed and nowhere dense, hence meagre. The subset s´1pBpspUXV qqq
is also closed and nowhere dense because s is continuous and open. Hence
s´1pDq Ď H is meagre as well.

Example 7.16. If H is not covered by countably many bisections, then all x P X
may be dangerous. To produce such an example, let X “ r0, 1s and let the
free group F on the set r0, 1s act identically on X . For each t P r0, 1s we
identify the arrow s Ñ s given by the generator t P F with the identity arrow
on s if s P r0, tq. This extends to a congruence relation „ on the transformation
groupoid r0, 1s¸F . By construction, each t P r0, 1s is dangerous in r0, 1s¸F {„.

So far, we have assumed A to be an upper semicontinuous field. Then
Lemma 7.13 implies that, for every f P C˚

r pH,Aq, the function

νf : H Ñ r0,8q, γ ÞÑ ‖jpfqpγq‖Aγ
,
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is upper semicontinuous in a comeagre subset of X . This is useless, however.
The applications of Proposition 4.15 in Section 4.3 need lower semicontinuity
instead. Therefore, we assume A to be a continuous field of Banach spaces
from now on. For brevity, we call A a continuous Fell bundle.

Remark 7.17. A Fell bundle A over H is continuous if and only if its re-
striction A|X is a continuous field of C˚-algebras over X . One implica-
tion is trivial, and the continuity of A|X implies continuity of A because
‖apγq‖2

Aγ
“ ‖a˚a‖Aspγq

for all a P Aγ . Recall also that a C0pXq-C˚-algebra

structure on the C˚-algebra AX is equivalent to a continuous map ψ : yAX Ñ X .
The field A|X is a continuous field of C˚-algebras if and only if ψ is open (see
[48, Theorem 3.3]). A Fell bundle A is a line bundle if and only if A|X is
the trivial C˚-algebra bundle over X with fibre C. This implies that A is
continuous. In fact, Fell line bundles are locally trivial.

We can now describe the ideal Jsing :“ ker
`
C˚

r pH,Aq Ñ C˚
esspH,Aq

˘
:

Proposition 7.18. Let H be an étale groupoid with locally compact and Haus-

dorff unit space X. Let A be a continuous Fell bundle over H; so the map

ψ : pA Ñ X with ψ´1pxq “ xAx Ď pA for x P X is open. Assume H to be covered

by countably many bisections. Let f P C˚
r pH,Aq and ε ě 0. Define

sε
pApfq :“

!
π P pA : ‖πpẼrpf˚ ˚ fqq‖ ą ε

)
,

sε
Xpfq :“ tx P X : ‖Erpf˚ ˚ fqpxq‖ ą εu,
sε

Hpfq :“ tγ P H : ‖jpfqpγq‖ ą εu.

Let D Ď X be the set of dangerous points. The following are equivalent:

(1) f P Jsing;

(2) s0
pApfq Ď ψ´1pDq;

(3) s0
pApfq Ď pA is meagre;

(4) s0
pApfq Ď pA has empty interior;

(5) sε
pApfq Ď pA has empty interior for all ε ą 0;

(6) s0
Xpfq Ď D;

(7) s0
Xpfq Ď X is meagre;

(8) s0
Xpfq Ď X has empty interior;

(9) sε
Xpfq Ď X has empty interior for all ε ą 0;

(10) s0
Hpfq Ď s´1pDq;

(11) s0
Hpfq Ď H is meagre;
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(12) s0
Hpfq Ď H has empty interior;

(13) sε
Hpfq Ď H has empty interior for all ε ą 0.

In general, without any restriction on A and H, (1) is equivalent to each of

the conditions (3)–(5). And if A is a Fell line bundle, then they are further

equivalent to (7)–(9).

Proof. In general, without any restriction on A and H , (1) is equivalent to (3)–

(5) by Corollary 4.16. If A is a line bundle, then ψ : pA Ñ X is a homeomorphism
and ψpsε

pApfqq “ sε
Xpfq for all ε ě 0. Thus (3)–(5) are equivalent to (7)–(9) in

this case.

From now on, we assume A to be a continuous Fell bundle and H to be covered
by countably many bisections. We first show that (10)–(13) are equivalent. The
subset s´1pDq Ď H is meagre by Lemma 7.15. So (10) implies (11). Since H
is a union of open sets that are Baire, H is a Baire space. Hence a meagre
subset of H must have empty interior. So (11) implies (12). And (12) implies
(13) because s0

Hpfq Ě sε
Hpfq for all ε ą 0. If s0

Hpfq is not contained in s´1pDq,
then there is γ P H with spγq R D and jpfqpγq ‰ 0. Let ε “ ‖jpfqpγq‖{2.
Since spγq R D and the bundle A is lower semicontinuous, ‖jpfq‖ is lower
semicontinuous in γ by Lemma 7.13. This gives an open neighbourhood U of γ
with ‖jpfqpηq‖ ą ε for all η P U . So sε

Hpfq has non-empty interior. This shows
that (13) implies (10) and finishes the proof that (10)–(13) are equivalent.

The spaces X and pA are Baire spaces as well (see [17, Proposition 3.4.13]).
The subset D Ď X is meagre. Since ψ is open and continuous, this implies
that ψ´1pDq Ď pA is also meagre. By Lemma 7.15, the function ‖Erpf˚ ˚
fqpxq‖ is continuous in XzD. We claim that the function ‖Ẽrpf˚ ˚ fqpπq‖
is lower semicontinuous in ψ´1pXzDq. Indeed, if x P XzD, then there is a
continuous section h of A|X with limyÑx ‖Erpf˚ ˚ fqpyq ´ hpyq‖ “ 0. Since

h P A, the function ‖Ẽrphqpπq‖ “ ‖πphq‖ is lower semicontinuous on pA (see
[17, Proposition 3.3.2]). Since

∣

∣‖Ẽrphqpπq‖ ´ ‖Ẽrpf˚ ˚ fqpπq‖
∣

∣ ď ‖Erpf˚ ˚ fqpyq ´ hpyq‖

for π P xAy Ď pA, it follows that ‖Ẽrpf˚ ˚ fqpπq‖ is lower semicontinuous in
ψ´1pxq.
Using the facts gathered in the previous paragraph, we may carry over the proof
of the equivalence (10)–(13) to prove that (6)–(9) are equivalent and that (2)–
(5) are equivalent. Finally, Erpf˚˚fqpxq “ 0 is equivalent to ‖πpẼrpf˚˚fqq‖ “ 0

for all π P xAx, and to jpfq|Hx
“ 0 by (7.1). Hence (6) is equivalent to (2) and

(10).

Remark 7.19. By definition, C˚
r pH,Aq “ C˚

esspH,Aq if and only if the only
element f P C˚

r pH,Aq that belongs to Jsing is the zero element. Thus Proposi-
tion 7.18 implies many equivalent characterisations for C˚

r pH,Aq “ C˚
esspH,Aq.
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Remark 7.20. An element f of C˚
r pHq is called singular in [13] if s0

Hpfq :“ tγ P
H : jpfqpγq ‰ 0u has empty interior. Proposition 7.18 shows that f P C˚

r pHq is
singular in the notation of [13] if and only if it belongs to Jsing, provided H is
covered by countably many bisections. This follows if H is countable at infinity.

Let A be a Fell line bundle. Remark 7.17 shows that A is a continuous field of
Banach spaces over H . Exel and Pitts show that

Γ :“ tf P C˚
r pH,Aq :Erpf˚fqpxq “ 0 for all x P X with Hpxq “ txuu

is an ideal in C˚
r pH,Aq, and they define the essential groupoid C˚-algebra as

the quotient C˚
r pH,Aq{Γ. It is clear that Γ X C0pXq “ 0 if and only if the

set of x P H with Hpxq “ txu has empty interior, that is, H is topologically
principal. Therefore, the map from C0pXq to C˚

r pH,Aq{Γ is injective if and
only if H is topologically principal. In contrast, we have defined C˚

esspH,Aq
so that the map C0pXq Ñ C˚

esspH,Aq is always injective. Hence the essential
twisted groupoid C˚-algebras defined here and in [25] differ when H is not
topologically principal. If, however, H is topologically principal, then the two
definitions are equivalent:

Proposition 7.21. Let H be topologically principal and let A be a Fell bundle

over H. Assume either that A is a Fell line bundle or that A is continuous

and H is covered by countably many bisections. Then

Jsing “ tf P C˚
r pH,Aq :Erpf˚ ˚ fqpxq “ 0 for all x P X with Hpxq “ txuu.

Proof. Assume Erpf˚fqpxq ‰ 0 for some x P X with Hpxq “ txu. Then
Erpf˚fq is continuous at this point by Lemma 7.15. Hence there is an open
neighbourhood of x on which Erpf˚fqpyq ‰ 0. Thus f R Jsing by Proposi-
tion 7.18. Conversely, assume Erpf˚fqpxq “ 0 for all x P X with Hpxq “ txu.
Since H is topologically principal, the set of x P X with Hpxq ‰ txu has empty
interior. Hence the set of x P X with Erpf˚fqpxq ‰ 0 has empty interior. Then
f P Jsing by Proposition 7.18.

If A is a Fell line bundle, then the conditions above may also be related to
supportive conditional expectations and the criterion in Lemma 5.23:

Theorem 7.22. Let H be a topologically free étale groupoid with locally compact

Hausdorff object space X. Let L be a Fell line bundle over H. The following

are equivalent:

(1) C˚
r pH,Lq “ C˚

esspH,Lq;

(2) C0pXq supports C˚
r pH,Lq;

(3) C0pXq detects ideals in C˚
r pH,Lq;

(4) for any f P C˚
r pH,Lq`zt0u, there is a P C0pXq`zt0u with a ď jpfq|X ;

(5) the canonical weak expectation C˚
r pH,Lq Ñ C0pXq2 is supportive.
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Proof. The dual groupoid of our action is H , and C0pXq is of Type I. So Theo-
rem 6.13 shows that the inclusion C0pXq ãÑ C˚pH,Lq – C0pXq¸S is aperiodic.
Thus Theorem 6.5 shows that the essential crossed product C˚

esspH,Lq is the
unique quotient of C˚pH,Lq in which C0pXq embeds and detects ideals, and
also that C0pXq supports C˚

esspH,Lq. So (1) and (3) are equivalent and they
imply (2). And (2) implies (3) by Lemma 5.27. Hence the conditions (1)–
(3) are equivalent. Assume (1) and let f P C˚

r pH,Lq`zt0u. Since Jsing “ 0,
Proposition 7.18 implies that there are ε ą 0 and an open subset U Ď X with
jpfq|Xpxq “ Erpfqpxq ą ε for all x P U . There is a P C0pUq with 0 ď a ď ε.
It witnesses that f satisfies the condition in (4). So (1) implies (4). And (4)
implies (5) by Lemma 5.23. Condition (5) implies (2) and (3) by Theorem 5.28.
This shows that all conditions are equivalent.

Remark 7.23. The existence of non-trivial singular elements in C˚
r pH,Lq for

a Fell line bundle L depends on the line bundle L. Exel constructed in [21,
Section 2] a non-Hausdorff, topologically principal, étale groupoid H such that
C0pXq does not detect ideals in C˚

r pHq. A line bundle L over the same groupoid
such that C0pXq does detect ideals in C˚

r pH,Lq is built in [25, Section 23].

7.5 Simplicity and pure infiniteness for groupoid Fell bundles

The following theorem carries our results for inverse semigroup crossed products
over to the groupoid case:

Theorem 7.24. Let A be a Fell bundle over an étale groupoid H with locally

compact Hausdorff object space X. Assume that A :“ C0pA|Xq contains an

essential ideal that is separable or of Type I. The inclusion A Ď C˚pH,Aq is

aperiodic if and only if the dual groupoid pA ¸ H is topologically free. This

follows if PrimpAq ¸ H is topologically free. If A is a continuous Fell bundle,

then it follows also if H is topologically free.

Proof. The first statement follows from Theorem 6.13 because pA ¸ H is natu-
rally isomorphic to the dual groupoid pA ¸ S̃ for the inverse semigroup action
defined in Lemma 7.3. If X ։ Y is an H-equivariant, continuous and open map
between two H-spaces, then X ¸ H inherits topological freeness from Y ¸ H .
Hence pA ¸ H is topologically free if PrimpAq ¸ H is topologically free. And
PrimpAq ¸ H is topologically free if H “ X ¸ H is topologically free and the
base map ψ : PrimpAq Ñ X is open. The base map is open if and only if A
is a continuous C0pXq-algebra if and only if A is a continuous Fell bundle (see
Remark 7.17).

Theorem 7.25. Let A be a Fell bundle over an étale groupoid H with locally

compact Hausdorff object space X. Assume that the inclusion A :“ C0pA|X q Ď
C˚pH,Aq is aperiodic. Then

(1) A supports C˚
esspH,Aq;
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(2) A detects ideals in C˚
esspH,Aq, and C˚

esspH,Aq is the only quotient of

C˚pH,Aq with this property;

(3) if J P IpC˚pH,Aqq and JXA “ 0, then J Ď kerpC˚pH,Aq Ñ C˚
esspH,Aqq;

(4) C˚
esspH,Aq is simple if and only if the dual groupoid pA¸H is minimal;

(5) if pA¸H is minimal, then C˚
esspH,Aq is simple and purely infinite if and

only if every element of A`zt0u is infinite in C˚
esspH,Aq.

Proof. We may apply Theorems 6.5 and 6.6 and Corollary 6.7, replacing A¸S

and A¸ess S by C˚pH,Aq and C˚
esspH,Aq. This implies all the statements.

The simplicity criterion above strengthens the criterion of Renault [55] by re-

moving the Hausdorffness assumption, replacing PrimpAq ¸H by pA¸H in the
topological freeness assumption, and weakening the separability assumptions.
In the group case, Theorem 7.25 implies Kishimoto’s theorem that purely outer
group actions on simple C˚-algebras are simple, whereas Renault’s criterion
says nothing about this situation. Theorems 7.25 and 7.24 combined with the
criteria for C˚

r pH,Aq “ C˚
esspH,Aq also imply the results in [13] about the

simplicity of C˚
r pHq.

Theorem 7.26. Let H be a minimal, topologically free, étale groupoid with

locally compact Hausdorff object space X. Let L be a Fell line bundle over H.

Then C˚
esspH,Lq is simple. And C˚

esspH,Lq is purely infinite if and only if every

element of C0pXq is infinite in C˚
esspH,Lq.

In particular, C˚
esspH,Lq is purely infinite if, for every non-empty open subset

U Ď X there are n P N, a non-empty open subset V Ď U , and bisections

t1, . . . , tn P BispHq on which L is trivial such that

rptiq X rptjq “ H for 1 ď i ă j ď n, V “
nď

i“1

sptiq,
nď

i“1

rptiq Ĺ V.

Proof. Theorem 7.24 implies that the inclusion C0pXq Ď C˚pH,Lq is aperiodic

because pA “ X . Then the inclusion C0pXq Ď C˚
esspH,Lq is aperiodic as well.

Now Theorem 7.25 implies the first part of the statement. It remains to check
that the criterion in the second paragraph implies that any f P C0pXq`zt0u is
infinite in B :“ C˚

esspH,Lq (see Definition 5.25).
Let S be the set of bisections in BispHq that trivialise L. This is a unital,
wide inverse subsemigroup, and we may identify C˚

esspH,Lq with the essential
crossed product C0pXq ¸ess S by the inverse semigroup action E “ pEtqtPS

associated to the Fell line bundle L. Let U :“ tx P X : fpxq ‰ 0u. Choose
H ‰ V Ď U and t1, . . . , tn P S as in the statement of the theorem. Let
a “ b P C0pXq`zt0u be any non-zero positive function that is supported in the

open subset V z
Ťn

i“1 rptiq. Then a À f . Since C˚
esspH,Lq is simple, f is infinite

if a is infinite (see the proof of Proposition 5.26). Let w1, . . . , wn P C0pXq
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be a partition of unity subordinate to the open covering V “ Ťn
i“1 sptiq. Let

ai :“ a ¨ w1{2

i for i “ 1, . . . , n. These functions vanish outside V , and ai is
supported in sptiq. Since L|ti

is a trivial line bundle, ai gives an element of Eti
,

which we denote by aiδti
. It belongs to a ¨ Eti

by construction. The product
paiδti

q˚ajδtj
is defined using the Fell bundle structure. It vanishes for i ‰ j

because rptiq X rptjq “ H. Similarly, paiδti
q˚a “ 0. And

řn
i“1paiδti

q˚aiδti
“řn

i“1 a¨wi “ a. Hence x :“
řn

i“1 aiδti
and y :“ ?

a are elements of a¨C˚
esspH,Lq

such that x˚x “ a, y˚y “ a ‰ 0 and x˚y “ 0. Thus a is infinite in C˚
esspH,Lq.

In fact, the proof shows that a is properly infinite.

Remark 7.27. The condition in the second paragraph of Theorem 7.26 is satis-
fied, for instance, for the transformation groupoids of strongly boundary group
actions (see [47]) and, more generally, for filling actions (see [30]). Hence the
pure infiniteness results in [30, 47] are covered by Theorem 7.26.
For an étale, locally compact groupoid H , the condition of being locally con-

tracting in [2] is the same as the condition in Theorem 7.26 with n “ 1, without
the trivialisation of the Fell line bundle. Thus C˚

esspHq is purely infinite and
simple if H is a minimal, topologically free, étale, locally contracting groupoid
with locally compact Hausdorff object space.

Now we specialise further to the trivial Fell bundle, which gives the groupoid
C˚-algebra C˚pHq without any twist. Then C˚pHq – C0pXq ¸ S for any
unital, wide inverse subsemigroup S Ď BispHq, acting in the canonical way
on C0pXq. We are going to show that C0pXq Ď C˚pHq has the generalised
intersection property with essential quotient C˚

esspHq if and only if H is topo-
logically free. One direction already follows from our general results. For
the other direction, we construct the orbit representations of C˚pHq. We
construct them as covariant representations of the S-action on C0pXq. Let
x P X and let rxs :“ rps´1pxqq Ď X be the orbit of x. The orbit represen-

tation of rxs takes place on the Hilbert space ℓ2prxsq. Here C0pXq acts by
pointwise multiplication. If U P S is a bisection of H , then f P C0pUq acts
on ℓ2prxsq by πU pfqξprpγqq :“ fpγq ¨ ξpspγqq for all γ P U with spγq P rxs,
and πU pfqξpyq “ 0 for y P rxszrpUq. Simple computations show that
πU pfq˚ “ πU˚ pf˚q, πU pfqπV pgq “ πUV pf ˚ gq for U, V P S, f P C0pUq,
g P C0pV q, and πU pfq “ πV pfq for U Ď V and f P C0pUq Ď C0pV q. Hence the
maps πU for U P S form a representation of the action of S on C0pXq. Then
they induce a non-degenerate representation πrxs of C0pXq¸S on Bpℓ2rxsq. Let
π :“

À
xPX πrxs be the direct sum of all these representations.

Lemma 7.28. The representation π is faithful on C0pXq. If it factors through

C˚
esspH,Aq, then H is topologically free.

Proof. The algebra C0pXq acts on ℓ2prxsq by pointwise multiplication. These
representations are faithful when we sum over all x P X . Assume that H is
not topologically free. That is, there is a non-empty bisection U Ď HzX with
r|U “ s|U . Since U X X “ 0, it follows that ELpfq “ 0 for all f P C0pUq.
Choose any non-zero f P CcpUq. Define f0 P CcpspUqq Ď C0pXq by f0pspγqq :“
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fpγq for all γ P U . Since r|U “ s|U , both f P C0pUq and f0 P C0pXq act on
ℓ2prxsq by pointwise multiplication with the same function f0, for all x P X .
Hence f ´ f0 P kerπ. But ELpf ´ f0q “ ´f0 ‰ 0. Hence f ´ f0 R NEL.

Theorem 7.29. Let H be an étale groupoid with locally compact, Hausdorff

unit space X. The inclusion C0pXq Ď C0pXq ¸S “ C˚pHq has the generalised

intersection property with hidden ideal NEL if and only if H is topologically

free.

Proof. The dual groupoid for the S-action on C0pXq is simply H , and C0pXq
is of Type I. So Theorem 6.13 (or Theorem 7.24) shows that the action of S on
C0pXq is aperiodic if and only if H is topologically free. Aperiodicity implies
that C0pXq Ď C0pXq ¸ S “ C˚pHq has the generalised intersection prop-
erty with hidden ideal NEL. Conversely, if H is not topologically free, then
Lemma 7.28 exhibits an ideal kerπ with kerπ XA “ 0, but kerπ Ę NEL.

The special case of Theorem 7.29 for transformation groups goes back to
Kawamura–Tomiyama and Archbold–Spielberg (see [31, Theorem 4.1] and
[4, Theorem 2]). The special case of Hausdorff groupoids with C˚

r pHq instead
of C˚

esspHq is similar to [5, Proposition 5.5]; replacing “topologically principal”
by “topologically free” allows us to remove the second countability assumption,
and replacing the reduced by the essential crossed product allows to remove
the Hausdorffness assumption.
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