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Abstract

In mature epithelial cells, however, cells adhere to one another through tight junc-

tions, adherens junctions and desmosomes thereby displaying a pronounced apical-basal

polarity. In vivo, the apical membrane has a larger surface area and faces the outer

surface of the body or the lumen of internal cavities, whereas the basolateral mem-

brane is oriented on the side away from the lumen and forms focal adhesions with the

extracellular matrix. The mechanical properties of cells are largely determined by the

architecture and dynamics of their viscoelastic cortex, which consists of a contractile,

cross-linked actin mesh attached to the plasma membrane via linker proteins. Measur-

ing the mechanical properties of adherent, polarized epithelial cells is usually limited to

the upper, i.e., apical side of the cells due to their accessibility on culture dishes. More-

over, contributions from the cell interior comprising various filament types, organelles,

and the crowded cytoplasm usually impede examination of the cortex alone. Here, we
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investigate the viscoelastic properties of basolateral membranes derived from polarized

MDCK II epithelia in response to external deformation and compare them to living

cells probed at the apical side. Therefore, we grew MDCK II cells on porous surfaces to

confluency and removed the upper cell body by sandwich cleavage. The free-standing,

defoliated cortices were subject to force indentation and relaxation experiments per-

mitting a precise assessment of cortical viscoelasticity. A new theoretical framework to

describe the force cycles is developed and applied to obtain the time-dependent area

compressibility modulus of cell cortices from adherent cells. Compared to the viscoelas-

tic response of living cells the basolateral membranes are substantially less fluid and

stiffer but obey to the same universal scaling law if excess area is taken into account.

Introduction

Cellular polarity is manifested at various levels such as the distribution of organelles, the

composition of the plasma membrane and the architecture of the cytoskeleton.1 Particu-

larly, epithelial cells exhibit polarized formation of cell-cell junctions comprising adherens

junctions and tight junction separating the apical domain from the basolateral side.2,3 Many

epithelial cells form microvilli at the apical domain filled with bundled actin filaments that

increase the surface area substantially. On the basal side, stress fibers and focal adhesions

emerge, responsible for attaching cells to the extracellular matrix. As for confluent polar

epithelial cells, our understanding of cell mechanics comes mainly from indentation experi-

ments probing the apical side facing the culture medium,4–12 whereas very few studies have

addressed the elastic properties of the basal side let alone dissipative properties.13–15 It is

generally believed that the response of cells to deformation originates predominately from

the cellular cortex consisting of a thin, contractile and transiently cross-linked actin mesh

connected to the plasma membrane.16–19 Pre-stress of the cortex is provided by motor pro-

teins that in conjunction with cross-linked actin ensure resilience of the cell body on the one

hand, and fluidity of the cell to perform dynamic shape changes, on the other hand.17–21 It
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was found that cells generally behave as a soft glassy material with power law exponents

between 0.2 and 0.4 due to the broad distribution of relaxation times.8,12,22–27 Many weak

interactions are involved in structure formation independent of molecular details, rendering

the viscoelastic behavior appear unbound to a specific time scale.

Recently, we found that a linear viscoelastic continuum model of the cortex based on power

law rheology explains consistently the viscoelastic response of nonpolarized MDCK II cells,

confluent cells as well as apical cell membrane fragments over a wide time range.19,28 In

particular, the defoliation of apical membranes by sandwich cleavage from living cells allowed

to examine the impact of motor activity on fluidity.28 Based on these experiments and data

from of a previous publications, I now also revisited indentation-relaxation experiments of

basolateral membranes from MDCK II cells grown on porous supports.5,13 I first present

a comprehensive theoretical model based on free-energy minimization that describes the

viscoelastic response of thin membranes to indentation with a conical indenter and in a

second step compared the stiffness-fluidity relationship to that of living cells probed from

the apical side.

Compared to the viscoelastic properties of confluent cells, isolated basal cortices are much

stiffer and less fluid, but follow the same universal scaling law when the excess area is properly

accounted for.

Theory

Here, I describe how force cycle experiments carried out with a conical indenter can be mod-

eled with a minimum of essential assumptions to correctly access the viscoelastic properties

of thin pore-spanning cortices. This comprises a scaling factor, the area compressibility mod-

ulus K0
A, the pre-stress σ0, and the fluidity β (power law exponent) of the membrane-cortex

composite. The general geometry is schematically shown in Fig. 1A. R denotes the radius

of the pore and a is the contact radius of the membrane with the conical indenter.
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Force response of viscoelastic cortices spanned over a pore

In contrast to our previous publication that simplified the theoretical treatment by assuming

that the AFM-indenter can be modelled by a cylindrical flat punch with a small radius of a

few nanometers,28 I now consider a conical indenter and also abandoned the small gradient

approximation, which is typically used to simplify the description of the force response.9,29–32

The following treatment is partly inspired by the work of Powers et al.33 who dealt with the

formation of tethers pulled from a planar membrane. The free energy of the membrane is

given by34,35

Eel =

∫
S

[κ
2

(2H)2 +
κ̄

2
K
]

dA+

∫
σdA, (1)

where S is the surface of the membrane, H its mean curvature (2H = 1/R1 + 1/R2) and K

the Gaussian curvature (K = (R1R2)
−1). κ and κ̄ are the splay and saddle splay moduli,

respectively, i.e., essentially elastic constants. While κ can easily be obtained experimentally

and is always positive, κ̄ is difficult to obtain. The Gaussian curvature is independent of how

the surface is embedded in R3 and is an intrinsic property of the surface. According to the

Gauss-Bonnet theorem the integral of the Gaussian curvature over a surface depends only

on its topology and boundary. This implies that for a closed surface the energy contribution

of the Gaussian curvature during any deformation is constant unless the topology of the

surface changes and can be ignored when determining the shape of the membrane. Since

the membrane has edges, the Gaussian modulus affects the shape through the boundary

conditions, which we will neglect for the sake of simplicity, i.e., we set κ̄ = 0.33 σ denotes

the surface tension, i.e., comprising mainly the free energy contribution (per unit area)

arising from adhesion of the cortex fragment to the pore rim, and in more general terms

it represents the chemical potential of the membrane reservoir. I can also be considered a

the Lagrangian multiplier to keep the area constant. The shape equation is obtained from

standard variational calculus representing the balance of normal forces per unit area:36
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∆p− 2σH + 2κ
(
∆H + 2H3 − 2HK

)
= 0. (2)

The pressure difference ∆p enters as the Lagrange multiplier ensuring constant volume. For

free spanning membranes on pores open to both sides we can discard this contribution for

the free membrane. We assume that the energy contribution due to recruiting new surface

area against the surface tension σ ≈ 10−3 N is substantially larger then the bending energy.

Since κ is expected to be rather small, on the order of 10−19 J depending on the thickness

d of the cortex κ ∝ d3 and the lipid composition, we can assume that the dimensionless

perturbation parameter ε = κ/σ is indeed very small (≈ 10−16 m2). Thermal fluctuations

are therefore negligible and we can rewrite equation (2):

2ε
(
∆H + 2H3 − 2HK

)
− 2H = 0 (3)

Assuming that ε = 0 we obtain H = 0, the minimal surface equation, which is essentially

a catenoid since it is the only non-axisymmetric and non-planar minimal surface with zero

mean curvature. It is, however, immediately clear that this simplified differential equation

is not entirely compatible with the boundary condition since ε is multiplied with the highest

derivative of H. Precisely, an external force is balanced by curvature where the indenter

meets the membrane r = a implying that H 6= 0. In contrast, the boundary condition

σH = 0 at r = R, the pore rim, is compatible with the differential equation as the pore

rim acts as a hinge. Employing the concept of perturbation theory, we therefore need to

consider a boundary layer at the contact line with the indenter rendering outer r > δ and

inner (r < δ) solutions incompatible. The outer solution of the free membrane is a catenoid

held between two circular boundaries, one being the pore with a large radius R and the

smaller one defined by the contact with the conical indenter at r = a. The thickness of

the boundary layer δ =
√
κ/σ can be inferred from equating ε∆H with H and represents

a characteristic length scale. On scales larger than δ tension dominates, while on smaller
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length scales bending is the most important energy contribution. In our case, δ is on the

order of 10 nm. In the following we will only consider the dominant outer solution since

the characteristic length scale is governed by the surface tension due to the thin membrane

patches and the large adhesion forces.

Figure 1: A Parametrization of the indentation experiment. The free membrane is in red
color and the indenter in black. B General shape of the membrane (green) at two different
indentation depths after minimizing the area.

The problem of finding the shape r(z) of the membrane during indentation therefore reduces

to the problem of finding its minimal free surface. We first consider the elementary case

of two rings of equal size separating the membrane by 2L to form a shape with zero mean

curvature. The area element dA = 2πrds generates the surface through the integral

A =

∫
2πrds = 2π

∫ +L

−L
r
√

1 + r′2dz (4)

with r′ = dr/dz. Using standard techniques of variational calculus we arrive at

rr′′ = 1 + r′2. (5)

The differential equation can be integrated in two consecutive steps. Using (1 + r′2)
′
= 2r′r′′

we obtain
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r = rN
√

1 + r′2 (6)

with rN being a constant. Second, we employ the identity

r = rN cosh

(
z − C
rN

)
, (7)

with the integration constant C being zero for two equally sized rings. Since we have one

radius given by the pore rim R and the other one by the contact radius a we need to infer

C from this boundary condition. rN is identified as the minimal radius of the catenoid, its

so-called neck radius. C can be obtained from r = R of the upper rim:

C = ±rN cosh−1(R/rN) (8)

leading to

r(z) = rN cosh

(
z

rN

)
∓
√

1− r2N sinh

(
z

rN

)
(9)

The upper sign corresponds to catenaries with a minimum neck radius at a positive value

of z(C > 0), the indentation depth. Conversely, for z(r), the shape equation of the free

membrane, we can write:

z(r) = rN cosh−1
(
r

rN

)
+ rN cosh−1

(
R

rN

)
(10)

or in nondimensional form (z̃ = z/R, r̃N = rN/R, r̃ = r/R):

z̃(r̃) = r̃N cosh−1
(
r̃

r̃N

)
+ r̃N cosh−1

(
1

r̃N

)
(11)

A simple relation holds between rN the minimal radius and the force f :
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f = −∂E
∂z

= −
∂(2πσ

∫ za
0
r
√

1 + r′2dz)

∂z
= − 2πσr√

1 + r′2
, (12)

with za the indentation depth at r = a. At the neck of the catenoid r = K, we have r′ = 0

and therefore K = f/(2πσ). Since at r(za) = a with a > K we can write:

za = rN ln

(
a±

√
a2 − r2N

1−
√

1− r2N

)
(13)

Equation 13 is responsible for two branches forming a closed curve in the f − za plane for

a < R. In principle, a critical (maximal) separation za exists, where no solution is found, i.e.

the catenoid becomes unstable and breaks. If the contact radius a is fixed and the indentation

depth below the maximum (prior to instability) two catenoidal equilibrium solutions exist

(see eq. 13). We only have to consider the branch (minus sign in eq. 13) with larger r̃N

that has less area. The other branch is not found for real minimal surfaces. Therefore, we

proceed with the minus sign in eq. 13. The existence of an elastic boundary layer allows

the limit of a point force, i.e. a → 0, which is in contrast to pure soap films. In practice,

however, point forces do not play a role since conventional AFM tips display curvature radii

of approximately 20 nm. Now we only have to determine the contact radius a from the

continuity condition, where the slope is identical for indenter and free-standing membrane.

For a conical indenter we find:

dz(r)

dr

∣∣∣∣
r=a

=
1√(

a
rN

)2
− 1

= − tan θ (14)

with π/2− θ the half-opening angle of the cone giving

a =

√(
rN
− tan θ

)2

+ r2N (15)

and the indentation depth at the tip of the indenter is z(r = 0) = za + a tan(θ). Note that

a > rN as rN is the smallest possible radius of a catenoid. The tension of the membrane is
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not necessarily a constant but depends on the area dilatation which inevitably occurs upon

indentation.

σ = σ0 +KAα (16)

with σ0 the initial pre-stress and KA the area compressibility modulus. α = A−A0

A0
denotes

the relative area dilatation with A the actual area and A0 the area prior to indentation, i.e.,

A0 = πR2. The actual area of the free membrane forming the catenoid is:

Acat =
πr2N

2
(sinh(2za/rN) + 2C − sinh(2C) + 2za/rN) (17)

with C = − cosh−1(R/rN). Additionally, we need to consider coating of the cone up to

r = a leading to Acone = πa2/ cos(θ) and therefore the overall area of the membrane is

A = Acone +Acat. If excess membrane area Aex is recruited from the pore rim we refer to an

apparent compressibility module KA
A0

A0+Aex
.

As shown previously, viscoelasticity enters through the time dependency of the area com-

pressibility modulus KA = K0
A

(
t
t0

)−β
with 0 ≤ β ≤ 1 and t0 = 1s (set arbitrarily).19 The

power law indicates that relaxation is not tied to an internal time scale.22 Consequently, the

elastic-viscoelastic-correspondence principle leads to the following expression for the overall

tension:

σ(t) = σ0 +

∫ t

0

K0
A

(
t− τ
t0

)−β
∂α(τ)

∂τ
dτ (18)

Since viscoelasticity of the membrane-cortex composite impacts only the in-plane area com-

pressibility modulus, we can safely assume that the contour during indentation is identical

to the contour for the elastic case. In nondimensional form (ã = a/R) the indentation depth

at r = 0 is37
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z̃ = K̃ ln

(
ã−

√
ã2 − K̃2

1−
√

1− K̃2

)
+ ã tan(θ), (19)

which tells us that for a given indenter geometry, i.e., θ value, the shape of the membrane

and its scaled force response is uniquely defined by the distance between the two rings.

The same is naturally true for the surface integral. This allows us to numerically compute

z̃ = h(r̃N) as well as α(r̃N) for each value of θ once and for all and fit the two curves with two

polynomials, g̃(z̃,Θ) =
∑

n cnz̃
n and α(z̃,Θ) =

∑
n dnz̃

n, respectively. This permits us to

obtain an analytical solution of the corresponding elastic-viscoelastic problem for indentation

(approach)

fapp = 2πg̃(z̃,Θ)R

(
σ0 +

∫ t

0

KA(t− τ)
∂α(τ)

∂τ
dτ

)
(20)

and retraction

fret = 2πg̃(z̃,Θ)R

(
σ0 +

∫ tm

0

KA(t− τ)
∂α(τ)

∂τ
dτ +

∫ t

tm

KA(t− τ)
∂α(τ)

∂τ
dτ

)
. (21)

Here we assumed that in-plane stretching of the membrane/cortex is time dependent α(z̃(t))

as we apply a linear ramp z̃(t) = ṽ0t at the approach and z̃(t) = ṽ0(2tm− t) upon retraction,

respectively (ṽ0 = v0/R). Hereditary integrals using a polynomial to the order n for α(t) are

readily solved:

fapp = 2πg̃(z̃,Θ)R

(
σ0 +K0

A

∑
n

dn
t−βn(ṽ0t)

nΓ(1− β)Γ(n)

Γ(1− β + n)

)
(22)
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fret =2πg̃(z̃,Θ)R

(
σ0 +K0

A

∑
n

dn

[
t−β (tmṽ0)

n
2F1

(
β, n;n+ 1;

tm
t

)
+

(−1)βΓ(β + 1)Γ(n)
(

1
2tm−t

)−β
(−ṽ0(t− 2tm))n

Γ(β + n+ 1)
−

(t− tm)β
(
t−tm
t−2tm

)−β
(tmṽ0)

n
2F1

(
−β, n;n+ 1;− tm

t−2tm

)
n


 ,

(23)

with the Gamma function Γ(n) =
∫∞
0
xn−1e−xdx and the ordinary hypergeometric function

2F1(a, b; c; z) . Usually, polynomials to the order of n = 4 are sufficient to describe the

functions g̃(z̃,Θ) and α(z̃,Θ) with sufficient accuracy. Experimental force - time curves

were subject to fitting a piecewise function f(t ≤ tm) = fapp(t) and f(t > tm) = fret(t).

Force response of living cells

We use the model von Hubrich et al. to fit the data28 In brief, confluent cells are as capped

cylinders with contact angles around φ0 = 35 ◦ prior to deformation.38 Generally, we consider

the cell as a liquid-filled object surrounded by an isotropic viscoelastic shell deformed at

constant volume. The force f acting on the apex of the cell:28

f = 2π

(
R2

1

(
R1 sin(φ) + a sin(Θ)

R2
1 − a2

)
−R1 sinφ

)
σ(t) (24)

or in nondimensional form (f̃ = f/(2πR1σ(t)), ã = a/R1, z̃ = z/R1)

f̃ =
sin(φ) + ã sin(Θ)

1− ã2
− sinφ = g̃(Θ, φ, z) (25)

with R1, the radius at the base of the spherical cap and φ the contact angle in response

to deformation.5 For a given set of angles φ and Θ the function g̃(Θ, φ, z) is computed nu-

merically and the outcome fitted by by a polynomial g̃(Θ, φ0, z) =
∑

n cnz̃
n to obtain the
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coefficients cn. Computation of area change has been outlined before and the outcome ap-

proximated with a polynomial as described above α̃(Θ, φ0, z) =
∑

n dnz̃
n to determine dn,

respectively.5,28

Viscoelasticity of the shell is included through equation (18) replacing σ(t). What follows

is numerical solution of a set of non-linear equations for the shape of the deformed cell to

fulfil force balances and the constant volume boundary condition.28 For a given indenter

geometry and contact angle φ0 this has to be solved only once and scaling is accomplished

by multiplication with R1.

Results and Discussion

Previously, we investigated the topography and elastic properties of basolateral membranes

derived from confluent MDCK II cells grown on porous substrates.13 Defoliation was accom-

plished according to the squirting - lysing protocol, in which the confluent MDCK II cells

were first subject to osmotic swelling with addition of hypotonic buffer (Fig. 2A).13,39 The

cells were ruptured by applying a gentle buffer stream from a syringe directed to the cell

monolayer at an angle of 45 ◦. The indentation curves obtained from the pore’s center were

previously described using an asymptotic linear relationship between force and indentation

depth essentially capturing only the pre-stress of the cortex.13 I now reevaluated the data,

including also the retraction curves that were not considered in the previous publication, by

applying the viscoelastic model described above. Both indentation and relaxation were fitted

with equations (22, 23) as a piecewise function providing access to three relevant mechanical

parameters, the pre-stress σ0, the scaling factor (apparent area compressibility modulus) K0
A

and the fluidity or power law exponent β, the latter two as we will see are not independent.

It is important to notice that for pore-spanning membranes and cortices, the pre-stress σ0

corresponds mainly to the differential adhesion free energy between the pore rims Gpr and
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the free-standing part Gp

σ0 =
Gpr −Gp

πR2
. (26)

Figure 2: A Preparation of basolateral membrane sheets on porous supports.13 MDCK II
cells are first grown to confluence on a porous support with pores of 1.2 µm in diameter. After
exposing the cells to hypotonic solution (1) the swelling makes them susceptible for shear
stress (2) applied by a buffer stream. The isolated membranes were subject to indentation
experiments using a conventional AFM instrument. B Fluorescence micrograph showing
the results of the squirting-lysing protocol (TRITC - phalloidin stained actin filaments).
C AFM image showing actin stress fibres. D Typical force indentation - relaxation curve
(circles) subject to fitting of equations (22, 23) (red line). Fitting range was limited to avoid
interference from adhesion events. The inset shows the shape of the membrane at largest
indentation depth.

The area compressibility modulus is the response function of the linear - elastic resistance of

the cortex/membrane assembly against in-plane area dilatation. Depending on the bound-

ary conditions, area dilatation occurs inevitably during deformation as required for devia-

tion from a minimal surface. While cells maintain a constant volume during deformation,

the basal membrane sheets are physically and chemically attached to the pore rims - the

strength of attachment given by equation (24).19,40,41 The measured area compressibility

modulus of the basolateral membrane sheets contains contributions from the rather inexten-
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sible membrane and the actin mesh. Albeit the outstretched plasma membrane is almost

inextensible exhibiting considerable large KA values of 0.1 - 0.5 N/m depending on the lipid

composition,42 excess membrane area Aex can be recruited from wrinkles and folds during

indentation. This diminishes the measured area compressibility by a factor of A0/(A0+Aex).

Experiments with neat lipid bilayers neither display a measurable area compressibility mod-

ulus nor a hysteresis during relaxation.32 The second contribution to KA comes from the

underlying actin cortex, which points towards the indenter in this case. Notably, recruit-

ment of excess area from the adjacent surface is also possible in this case, giving rise to

apparent values (vide infra), which are substantially smaller compared to the isolated pore.

As pointed out previously, knowledge of cortex thickness and mesh size allows to roughly

estimate the elastic modulus of a cross-linked actin network:19,43

KA ≈
3kBT l

2
p

ζ2
d

l3c
, (27)

with the distance between cross-links lc ≈ ζ4/5l
1/5
p and the persistence length lp.43 Assuming

reasonable values for the mesh size of ζ = 100 nm, a cortex thickness d of 150 nm and a

persistence length of 17 µm44 we obtain a KA values of about 2.5 mN/m. In the previous

publication we removed filamentous actin partly resulting in a substantial softening of the

membrane patch.13

The power law exponent β represents the flow behaviour of the cortex. If β is close to zero,

the cortex behaves as an elastic solid, whereas a β value of one corresponds to a Newtonian

liquid. Generally, intermediate values are found for living cells. It could be shown that

β is not independent of the corresponding elastic modulus or scaling factor in the case of

power law rheology, which in our case is the apparent area compressibility modulus K0
A, but

decreases according to β ∝ − lnK0
A (vide infra).19 Fig. 2D shows a typical force cycle curve

consisting of an approach curve generated by a linear ramp and a subsequent relaxation

also following a linear ramp (identical approach and retraction velocity) obtained by probing
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a basolateral membrane patch. The patch covering the pore was indented precisely in the

center fulfilling the axial symmetry conditions of the theory. Due to the potential for adhesion

events to affect the retraction curve, only a portion of the retraction curve (approximately

1/3) was considered for fitting.

Fig. 3 shows the results of fitting equations (22, 23) to experimental force curves obtained

from basolateral membrane patches of adherent MDCK II cells . The mean pre-stress σ̄0

was 1.6 ± 1 mN/m, which we largely attribute to differential adhesion at the pore rim

and stress exerted by actin bundles. The large variance is due to substantial pore to pore

variation supporting the theory of differential adhesion that can locally be quite different,

for instance in the vicinity of focal contacts. Most importantly, a linear decrease of β with

lnK0
A was found, which could be expected considering the reported scaling behavior of living

cells and apical membrane fragments.22,28,45 Since β and K0
A depend on each other in this

way it implies automatically that stiffer cortices are also less fluid and vice versa. This

universal law has first been discovered by Fabry et al. using ferrimagnetic beads adhering

to the actin cytoskeleton and actuated by an external magnetic field.22 A weak power law

was observed for G′ being larger than G′′ below 300 Hz. The spectra were described by

a structural damping model that produced parameters falling onto a master curve. This

essentially suggested that the constitutive elastic and frictional properties are controlled by

a single parameter, for instance, β over a wide frequency range.22 Thus, in principle, the cells

can respond to external cues by modulating solely β as the control parameter. However, if

the data are extrapolated to a fully elastic material (β = 0, intersection with the x-axis) the

basolateral membranes exhibit a very low stiffness compared to living cells (Fig. 3).28 This

needs further exegesis. If one takes into account that the excess area might be as large as

the patch itself including hidden reservoirs Aex ≈ 329± 49µm46 since upon indentation the

cortex can follow the indenter into the pore, the corrected (see arrow in Fg. 3) correlation

(ϕK0
A with ϕ = A0+Aex

A0
) continues the scaling found for living cells probed at the apical side

(Fig. 3). Therefore, considering only one parameter, the fluidity β is sufficient. The lack of
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functional motor proteins could be responsible for the flatter slope found for the basolateral

membrane patches compared to that of living cells. This was shown recently for apical cell

membrane fragment after addition of exogenous ATP to revive some of the remaining myosin

motors significantly increasing fluidity of the cortex.28 A direct comparison between cortex

fragments derived either from the basolateral or the apical side show that polarity has only

a small impact on viscoelasticity. Hubrich et al.28 found that apical membrane fragments

also exhibit low fluidity in the range of 0.2 similar to what was found here, while living cells

display substantially higher fluidity presumably due to motor activity as mentioned above.

Along the same lines, Kim et al. found only small differences in elasticity of PaTu8988S and

PaTu8988T probed either from the basal or apical side, respectively.15

Notably, the presence of pores during cell culture renders MDCK generally softer than cul-

tured on continuous stiff surfaces such as culture dishes or silica. This was recently shown

in a systematic fashion using different pore sizes.47 The area compressibility modulus might

be reduced by a factor of 2-3 comparing cells cultured on flat substrates with those grown

on porous surfaces with a pore diameter of 5 µm.47
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Figure 3: Fluidity β as a function of area compressibilityK0
A for basolateral membrane sheets

(purple) and living cells probe from the apical side (dark yellow). The data for living cells
were obtained from reevaluating experiments by Pietuch et al.5 using the model of Hubrich
et al.28 The arrow illustrates what happens to the data if K0

A is rescaled by the average area
of a membrane footprint, the flow illustrated by the inset in the top right corner.

In conclusion, for the first time it was possible to obtain the viscoelastic properties of baso-

lateral membranes in the absence of other cellular ingredients by site-specific indentation -

relaxation experiments of planar membrane patches on porous substrates. The theoretical

model to describe the force cycles correctly describes the shape of the free membrane/cortex

in terms of a minimal surface and permits to easily modify the constitutive equations to

capture dissipative processes in thin films employing the viscoelastic-elastic correspondence

principle.8 It could be shown that the universal scaling law between stiffness of cells and

their fluidity is largely preserved, implying that cell cortices cannot change their elastic and
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dissipative properties independently.19,22,45 A decrease of stiffness is always accompanied by

an increase in fluidity. We found that regulation of mechanical properties can also be accom-

plished via storage of excess area to soften the apparent modules over orders of magnitude.

The cortex fragments are stiffer and less fluid compared to living cells which can be partly

attributed to arrested myosin motors but could also be a consequence of polarity and there-

fore larger pre-stress exerted by stress fibers at the basal side. While for unstressed actin

networks a power law exponent of 0.5 is expected, we found substantially lower values of

only 0.2.27 Missing motor activity decreases the noise level necessary to drive the cytoskele-

ton into a disordered state that eventually enables the cells to perform tasks like spreading,

migration and division.

Polarity of epithelial cells is very pronounced on many levels and cortical viscoelasticity

seems to be no exception. However, more experiments involving fully active cortices with

myosin motors are needed to obtain a more comprehensive picture of viscoelasticity in the

context of cell polarity.

Material and Methods

All experimental data were obtained from previous publications. Experimental force data

from confluent MDCK II were taken from Pietuch et al.,5 while all data from basolateral

membrane patches were published by Lorenz et al.13 In these works only the approach

curves were evaluated using exclusively elastic tension models. Here, I included the available

retraction curves in the comprehensive viscoelastic analysis. The following paragraphs repeat

the key steps in obtaining these data.

Preparation of baslolateral membrane patches on porous substrates

Porous silicon substrates purchased from fluXXion B.V. were used as cell culture substrates.

Pores possess a depth of 800 nm and display a diameter of 1.2 µm. The substrates were first
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coated with a thin adhesive layer of chromium (3 nm) followed by a gold coating of 60 nm,

which has been proven to be an excellent surface for culturing MDCK II cells.48 Basolateral

membrane fragments of MDCK II cells were obtained using a squirting - lysing protocol

described previously.13,39 Confluent MDCK II cells were grown in minimal essential medium

(MEM) on porous substrates supplemented with 2 mM L-glutamine and 10% (v/v) fetal

calf serum (FCS) at 37◦ in an 95% air/5% CO2 humidified incubator. Cell were subject to

osmotic stress using hypotonic buffer. Shear stress by a buffer stream led to cleavage of the

cells and also eventually to complete removal of the upper cell bodies.

Atomic force microscopy and indentation experiments

AFM measurements were carried out with a MFP-3D microscope (Asylum Research, Santa

Barbara, CA, USA) at 20◦ using MSCT cantilevers from Veeco with a nominal spring con-

stant of 0.01 N/m. Ramp velocities were kept constant and set to 2 µm/s.

Acknowledgement

This work was supported by the VW foundation (Living Foams) and the DFG JA 963/18-1. I

thank A. Pietuch, B. Lorenz and I. Mey for providing the experimental data and stimulating

discussions.

References

(1) Rodriguez-Boulan, E.; Macara, I. G. Organization and execution of the epithelial po-

larity programme. Nature Reviews Molecular Cell Biology 2014, 15, 225–242.

(2) Niessen, C. M.; Leckband, D.; Yap, A. S. Tissue Organization by Cadherin Adhesion

Molecules: Dynamic Molecular and Cellular Mechanisms of Morphogenetic Regulation.

Physiological Reviews 2011, 91, 691–731.

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2021. ; https://doi.org/10.1101/2021.05.20.444971doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.20.444971
http://creativecommons.org/licenses/by-nc-nd/4.0/


(3) Shin, K.; Fogg, V. C.; Margolis, B. Tight Junctions and Cell Polarity. Annual Review

of Cell and Developmental Biology 2006, 22, 207–235, PMID: 16771626.

(4) Sen, S.; Subramanian, S.; Discher, D. E. Indentation and Adhesive Probing of a Cell

Membrane with AFM: Theoretical Model and Experiments. Biophys. J. 2005, 89, 3203–

3213.

(5) Pietuch, A.; Brückner, B. R.; Fine, T.; Mey, I.; Janshoff, A. Elastic properties of cells in

the context of confluent cell monolayers: impact of tension and surface area regulation.

Soft Matter 2013, 9, 11490.

(6) Rother, J.; Noeding, H.; Mey, I.; Janshoff, A. Atomic force microscopy-based microrhe-

ology reveals significant differences in the viscoelastic response between malign and

benign cell lines. Open Biol. 2014, 4, 140046–140046.

(7) Cartagena-Rivera, A. X.; Logue, J. S.; Waterman, C. M.; Chadwick, R. S. Actomyosin

Cortical Mechanical Properties in Nonadherent Cells Determined by Atomic Force Mi-

croscopy. Biophysical Journal 2016, 110, 2528–2539.

(8) Brückner, B. R.; Nöding, H.; Janshoff, A. Viscoelastic Properties of Confluent MDCK

II Cells Obtained from Force Cycle Experiments. Biophysical Journal 2017, 112, 724–

735.

(9) Nehls, S.; Janshoff, A. Elastic Properties of Pore-Spanning Apical Cell Membranes

Derived from MDCK II Cells. Biophysical Journal 2017, 113, 1822–1830.

(10) Krieg, M.; Fläschner, G.; Alsteens, D.; Gaub, B. M.; Roos, W. H.; Wuite, G. J. L.;

Gaub, H. E.; Gerber, C.; Dufrêne, Y. F.; Müller, D. J. Atomic force microscopy-based

mechanobiology. Nature Reviews Physics 2018, 1, 41–57.

(11) Garcia, P. D.; Garcia, R. Determination of the viscoelastic properties of a single cell

cultured on a rigid support by force microscopy. Nanoscale 2018, 10, 19799–19809.

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2021. ; https://doi.org/10.1101/2021.05.20.444971doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.20.444971
http://creativecommons.org/licenses/by-nc-nd/4.0/


(12) Garcia, P. D.; Guerrero, C. R.; Garcia, R. Nanorheology of living cells measured by

AFM-based force–distance curves. Nanoscale 2020, 12, 9133–9143.

(13) Lorenz, B.; Mey, I.; Steltenkamp, S.; Fine, T.; Rommel, C.; Müller, M. M.; Maiwald, A.;

Wegener, J.; Steinem, C.; Janshoff, A. Elasticity Mapping of Pore-Suspending Native

Cell Membranes. Small 2009, 5, 832–838.

(14) Gudzenko, T.; Franz, C. M. Inverting adherent cells for visualizing ECM interactions

at the basal cell side. Ultramicroscopy 2013, 128, 1–9.

(15) Kim, J. H.; Riehemann, K.; Fuchs, H. Force Spectroscopy on a Cell Drum: AFM

Measurements on the Basolateral Side of Cells via Inverted Cell Cultures. ACS Applied

Materials & Interfaces 2018, 10, 12485–12490.

(16) Fischer-Friedrich, E.; Toyoda, Y.; Cattin, C. J.; Müller, D. J.; Hyman, A. A.;

Jülicher, F. Rheology of the Active Cell Cortex in Mitosis. Biophys. J. 2016, 111,

589–600.

(17) Chugh, P.; Clark, A. G.; Smith, M. B.; Cassani, D. A. D.; Dierkes, K.; Ragab, A.;

Roux, P. P.; Charras, G.; Salbreux, G.; Paluch, E. K. Actin cortex architecture regulates

cell surface tension. Nat. Cell Biol. 2017, 19, 689–697.

(18) Chugh, P.; Paluch, E. K. The actin cortex at a glance. J. Cell Sci. 2018, 131, jcs186254.

(19) Cordes, A.; Witt, H.; Gallemí-Pérez, A.; Brückner, B.; Grimm, F.; Vache, M.; Os-

wald, T.; Bodenschatz, J.; Flormann, D.; Lautenschläger, F.; Tarantola, M.; Jan-

shoff, A. Prestress and Area Compressibility of Actin Cortices Determine the Viscoelas-

tic Response of Living Cells. Phys. Rev. Lett. 2020, 125, 068101.

(20) Salbreux, G.; Charras, G.; Paluch, E. Actin cortex mechanics and cellular morphogen-

esis. Trends Cell Biol. 2012, 22, 536–545.

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2021. ; https://doi.org/10.1101/2021.05.20.444971doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.20.444971
http://creativecommons.org/licenses/by-nc-nd/4.0/


(21) Fritzsche, M.; Erlenkämper, C.; Moeendarbary, E.; Charras, G.; Kruse, K. Actin ki-

netics shapes cortical network structure and mechanics. Science Advances 2016, 2,

e1501337.

(22) Fabry, B.; Maksym, G. N.; Butler, J. P.; Glogauer, M.; Navajas, D.; Fredberg, J. J.

Scaling the Microrheology of Living Cells. Phys. Rev. Lett. 2001, 87, 148102.

(23) Kollmannsberger, P.; Fabry, B. Linear and Nonlinear Rheology of Living Cells. Annual

Review of Materials Research 2011, 41, 75–97.

(24) Kollmannsberger, P.; Mierke, C. T.; Fabry, B. Nonlinear viscoelasticity of adherent cells

is controlled by cytoskeletal tension. Soft Matter 2011, 7, 3127–3132.

(25) Zhou, E. H.; Martinez, F. D.; Fredberg, J. J. Mush rather than machine. Nature Ma-

terials 2013, 12, 184–185.

(26) Sollich, P.; Lequeux, F.; Hébraud, P.; Cates, M. E. Rheology of Soft Glassy Materials.

Physical Review Letters 1997, 78, 2020–2023.

(27) Mulla, Y.; MacKintosh, F. C.; Koenderink, G. H. Origin of Slow Stress Relaxation in

the Cytoskeleton. Phys. Rev. Lett. 2019, 122, 218102.

(28) Hubrich, H.; Mey, I. P.; Brückner, B. R.; Mühlenbrock, P.; Nehls, S.; Grabenhorst, L.;

Oswald, T.; Steinem, C.; Janshoff, A. Viscoelasticity of Native and Artificial Actin

Cortices Assessed by Nanoindentation Experiments. Nano Letters 2020, 20, 6329–6335,

PMID: 32786944.

(29) Norouzi, D.; Müller, M. M.; Deserno, M. How to determine local elastic properties

of lipid bilayer membranes from atomic-force-microscope measurements: A theoretical

analysis. Physical Review E 2006, 74 .

(30) Steltenkamp, S.; Müller, M. M.; Deserno, M.; Hennesthal, C.; Steinem, C.; Janshoff, A.

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2021. ; https://doi.org/10.1101/2021.05.20.444971doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.20.444971
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mechanical Properties of Pore-Spanning Lipid Bilayers Probed by Atomic Force Mi-

croscopy. Biophysical Journal 2006, 91, 217–226.

(31) Mey, I.; Stephan, M.; Schmitt, E. K.; Müller, M. M.; Amar, M. B.; Steinem, C.;

Janshoff, A. Local Membrane Mechanics of Pore-Spanning Bilayers. Journal of the

American Chemical Society 2009, 131, 7031–7039.

(32) Mey, I.; Steinem, C.; Janshoff, A. Biomimetic functionalization of porous substrates:

towards model systems for cellular membranes. Journal of Materials Chemistry 2012,

22, 19348.

(33) Powers, T. R.; Huber, G.; Goldstein, R. E. Fluid-membrane tethers: Minimal surfaces

and elastic boundary layers. Physical Review E 2002, 65, 041901.

(34) Canham, P. The minimum energy of bending as a possible explanation of the biconcave

shape of the human red blood cell. Journal of Theoretical Biology 1970, 26, 61–81.

(35) Helfrich, W. Elastic Properties of Lipid Bilayers: Theory and Possible Experiments.

Zeitschrift für Naturforschung C 1973, 28, 693–703.

(36) Zhong-can, O.-Y.; Helfrich, W. Bending energy of vesicle membranes: General expres-

sions for the first, second, and third variation of the shape energy and applications to

spheres and cylinders. Phys. Rev. A 1989, 39, 5280–5288.

(37) In the limit of small forces eq. (19) reduces to z̃ = K̃ ln ã−1 + ã tan(θ), identical to the
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