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A B S T R A C T   

The potential of Light Detection and Ranging (LiDAR) on expanding the horizon of forest ecology has been 
realized, but this does not mean that the related interdisciplinary branches, often considered as attractive in-
dependent fields as well, can readily step into their 3D stages. To go along with this, the core task confronted by 
the community now is to explore solutions aiming at the cornerstones of their 3D upgrading. In the common 
cases of forest structural and spatial ecology, tree spatial pattern is such a cornerstone-like theme, which is of 
fundamental significance on reflecting their various aspects. However, the mainstream methods of spatial point 
pattern analysis that are rooted in the traditional tools of forest inventory, as our review indicated, cannot 
directly take the advantage of LiDAR remote sensing in 3D characterization of trees. To break this bottleneck, we 
proposed 3D tree spatial pattern analysis, as a theoretical reconstruction from top firstly. We further proposed 3D 
data forms and 3D spatial statistics models to comprise a general principle framework for supporting future 
developments of 3D methods. These foundational outlooks at the level of transiting potential to practice are of 
referencing implication on, in a broader sense, boosting 3D plant spatial pattern analysis for setting the 
cornerstone of LiDAR advancing 3D structural and spatial ecology.   

1. Introduction 

People have been increasingly aware to the potential of Light 
Detection and Ranging (LiDAR) on expanding the horizon of forest 
ecology in a 3D way (Calders et al., 2020). However, this does not mean 
that the related interdisciplinary branches, also often deemed as inde-
pendent fields of wide interest, can readily enter their 3D eras (Jackson 
et al., 2020). To fill such gaps, the core task confronted by the com-
munity now is to seek solutions that are aimed at the cornerstones of 
their 3D upgrading (Malhi et al., 2018). Setting up the cornerstones, no 
doubt, can facilitate efficiently advancing more of the interdisciplinary 
branches together. In the common cases of forest structural and spatial 
ecology (Janik et al., 2016; Staver et al., 2019), tree spatial pattern is 
such a cornerstone-like theme, which is of fundamental significance on 
characterizing their various aspects (Wiegand and Moloney, 2014). 

Tree spatial pattern, i.e., the specific arrangement of individual trees 
in a forest space, has long been a highlighted subject in both forest 
structural ecology (Krebs, 1978; Larson and Churchill, 2008; Janik et al., 
2016) and forest spatial ecology (Staver et al., 2019). Earlier, this 
concept was specified as a quantitative indicator of generalizing 

complex spatial distributions of tree species into aggregated, random, or 
regular patterns (Condit et al., 2000). Such derived information is useful 
for scientifically guiding forest managements such as how to make tree 
thinning (Jiménez et al., 2014). Further, the detected rules about tree 
spatial pattern proved to be able to not only characterize the layouts of 
tree community structures (Hai et al., 2014) and species coexistences 
(Song et al., 2017) but also expose the attributions of their formations to 
forest-inside interactions (Bruno et al., 2003) or environmental effects 
(Kane et al., 2015). As a macroscopic measure of those intricate con-
nections between forest components, tree spatial pattern, intuitively, 
can give an overlooking view of forest structure (Fig. 1), and quantita-
tive derivation of this explicit feature is of fundamental potential on 
supporting forest biophysical (Anfodillo et al., 2013), biochemical 
(Otieno et al., 2017), and ecological (Majumdar et al., 2016) studies. 

Tree spatial pattern can indicate the biophysical characteristics of 
forests in structure and composition (Fig. 1). This reasoning is rooted in 
the fact that the general allometric theory is widespread in forestry 
(Anfodillo et al., 2013). In accordance to this basic theory, tree spatial 
pattern can be characterized, in terms of tree location (typically referred 
to as tree distribution) (Gupta and Pinno, 2018), crown pattern (Getzin 
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and Wiegand, 2007), or canopy openness (Rodríguez-Ramírez et al., 
2018) instead, for characterizing the performance of tree seedling 
recruitment (Rodríguez-Ramírez et al., 2018) and wood growth (Getzin 
and Wiegand, 2007). With its causes such as tree competition (Fraver 
et al., 2014) explored further, this feature can be used for projecting, e. 
g., population dynamics in forest reclaiming (Gupta and Pinno, 2018) 
and mortality rates in forest regeneration (Silver et al., 2013). In all, 
analysis of tree spatial pattern facilitates holistically grasping forest 
biophysics. 

Tree spatial pattern can reflect forest biochemical performance 
(Fig. 1), as its organisms serve as the concrete carriers of various 
biochemical flows (Osada et al., 2014). Namely, this feature can reflect 
the complicated processes of forest metabolism, involving photosyn-
thesis, transpiration, and nutrient adaptation. This point is verified by 
the observation that forest plot structure is related to crown reflectance 
and is indicative for deriving the vertical profiles of light use efficiency 
(Coops et al., 2017). Such knowledge can help people to precisely derive 
the layering mode of photosynthesis for estimating the carbon gains of 
forest ecosystems (Muraoka and Koizumi, 2005) and improving the 
designs of agroforestry stands (Leroy et al., 2009). The change and 
heterogeneity of tree distribution can also adapt the mode of forest 
water use (Otieno et al., 2017) and tree transpiration (Sun et al., 2014), 
and conversely, such energy-water balance situations can affect forest 
compositions in species (Saiter et al., 2016). Besides, the spatial pattern 
of the mixed tree plantations can influence the nutrition of single tree 
species (Richards et al., 2010), and the other way round, soil nutrients 
can alter the spatial pattern of the emergent tree density (Paoli et al., 
2008). In sum, exploring tree spatial pattern is useful for obtaining in-
sights into forest biochemical mechanisms. 

Analyzing tree spatial pattern is also equivalent to opening a way for 
characterizing the spatial attributes of forest-dwelling species (Fig. 1), 
ranging from microbes, understory plants, to animals, since forests 

provide the habitats for them (Getzin et al., 2012; Davies et al., 2017). 
For animal ecology, quantifying this feature can help understand the 
spatial distributions of browsing and tree damage by moose, with the 
effect of advancing forest industry (Wallgren et al., 2013). Deriving this 
feature can also facilitate recognizing rodent to the level of its spatial 
population structure and gene flows (Garrido-Garduño et al., 2016) and 
further revealing the ecological principles of orangutan habitat selection 
(Davies et al., 2017) and global primate distribution (Gouveia et al., 
2014). For bat ecology, tree spatial structure is key in discovering the 
natural rules of cross-taxon congruence in the distributions of tree, bird, 
and bat species at moderate spatial scales (van Weerd and de Haes, 
2010) and the composition, structure and distribution modes of the trees 
preferred by bats (Majumdar et al., 2016). For bird ecology, tree spatial 
structure is useful for revealing the rules underlying the species-specific 
responses of woodland birds to stand-level habitat characteristics 
(Hewson et al., 2011) and the modes of convergence in foraging guild 
structures of forest breeding bird assemblages (Korňan et al., 2013). 
Another application of tree spatial structure is to help elucidate the 
distribution patterns of different insect species such as soil-dwelling 
spiders (Ziesche and Roth, 2008), saproxylic beetles (Parisi et al., 
2016), and coleoptera assemblages (Sandoval-Becerra et al., 2018) in 
forests. In general, examining tree spatial pattern is conducive to 
learning from forest habitat ecology to forest ecosystem ecology. 

Probing tree spatial pattern can draw the combination effects of the 
above-listed factors. Kane et al. (2015) realized that water balance and 
topography can collectively control forest structure patterns. de Sá 
Arruda et al. (2016) noticed that fire and inundation can shape the 
structures of riparian forests. Zachmann et al. (2018) found that the 
natural recovery after some special fires can generate the long-term 
patterns of change in forest structure. Sasaki et al. (2019) discovered 
the role of mycorrhizal associations in affecting tree spatial distribution 
patterns. On the other hand, the effect of forest structure on small 

Fig. 1. Illustration of the significance of studying tree spatial pattern (as illustrated by the top-right panel), i.e., supplying an overlooking indicator of forest structure 
and composition (top-left) for more explicitly understanding of the various aspects of forest sciences such as those biophysical (bottom-left), biochemical (bottom- 
middle), and ecological (bottom-right) characteristics. 

Y. Lin and K. Wiegand                                                                                                                                                                                                                        



International Journal of Applied Earth Observation and Geoinformation 103 (2021) 102506

3

mammal communities was detected in the frequent-fire coniferous for-
ests (Sollmann et al., 2014). It was also spotted that the ecological re-
sponses of reptiles to fires are affected by forest types and structures 
(Chergui et al., 2019). In a nutshell, more comprehensively exploring 
tree spatial pattern, no doubt, can mean acquiring more compound 
knowledge about forest sciences. 

In addition to indicating the explicit and implicit ecological functions 
as reviewed above, tree spatial pattern can shed light on the dynamic 
characteristics of forest development such as the expanding of tree 
communities (Lin et al., 2011) and the strategies of forest ecosystem 
evolutions such as self-thinning (Murrell, 2009). In the former case, the 
spatial distribution of trees is decided by the spatial mode of seed 
dispersal. It has since been shown that the spatial pattern of trees 
rendered by animals is less aggregated than that by wind or gravity 
(Condit et al., 2000; Li et al., 2009). For the latter case, the natural laws 
have been used as the references for adding the substitute silviculture 
practices such as tree-thinning from below (Barrette and Tremblay, 
2015). Overall, analyzing tree spatial pattern and deriving its ecological 
indicators (De Clercq et al., 2006) is of fundamental implications for 
investigating various aspects about the biophysical, biochemical, 
ecological, and other kinds of properties of diverse forests at the scales of 
forest stands and beyond, even extensively for ecosystems comprising 
trees as their essential components (Staver et al., 2019). 

2. Literature review: Tree spatial pattern analysis 

For the scientific theme of tree spatial pattern analysis, the above- 
elucidated significance has inspired a large number of studies on 
developing its efficient methods and expanding its application ranges. 
From such a massive literature, this Section is dedicated to, first, 
deriving the common principles of the mainstream methods, inducing 
their functional limitations, and figuring out the related underlying 
causes, for the purpose of helping to find any new or, even, innovative- 
sense cutting-point and then to propose new efficient solution plans of 
potential on advancing this field. 

2.1. Methodological system 

A comprehensive compilation of the representative methods for 
efficient analysis of tree spatial pattern has been made by Wiegand and 
Moloney (2014), who gave a detailed overview of the basic theories and 
methods under the mainstream methodological framework of spatial 
point pattern analysis. These methods compare the summary statistics of 
data and null models (ecological hypotheses) to decode the processes 
and mechanisms that may cause the observed spatial patterns (Wiegand 
and Moloney, 2014). Given that this study was aimed at seeking the 
potential ways to advance the field to its next stage, we considered the 

common principles for the most cutting-edge modes of the relatively 
mature methods. Here, we focused on the two higher-level data types – 
the univariate and bivariate quantitatively marked patterns (the right 
two boxes in Fig. 2). This strategy of skipping the intermediate-level 
types (indicated by the dash line arrow in Fig. 2) but directly aiming 
at the up-to-date ones, which can reflect both the basic capability of 
spatial point pattern analysis (Illian et al., 2008) (the left box in Fig. 2) 
and the potential for function expansions, is reasonable for pushing 
forward this direction. 

First, spatial point pattern analysis is the major proven solution 
framework that has been widely applied to investigate the spatial dis-
tribution of trees (e.g., Atkinson et al., 2007). Its basic principle proceeds 
in three steps. First, the trunk position of each tree is considered as a 
point in space, as marked by the equal-sized black dots in Fig. 2 (left 
box); next, the statistical features of the distributions for all of the points, 
e.g., in terms of local point density, are generated on a continuum of 
varying spatial scales (Velázquez et al., 2016); then, deriving patterns – 
e.g., in the simplest case, classifying them to be random, clustered/ 
associated, or regular/segregated (or hyperdispersion) (Ripley, 1976) – 
is operated to test whether the null hypotheses can hold, so as to decode 
the intrinsic ecological mechanisms that likely cause the observed pat-
terns. At this point, we just briefly mentioned the most basic summary 
statistics functions. That is, the intensity function λ(x) is a first-order 
statistics describing the mean number of points per unit area, and the 
pair-correlation function g(r) in its simple form is a normalized second- 
order statistics for describing the probability to find points within a 
certain distance (scale) r around a typical point of the pattern. A large 
variety of methods have been proposed and validated for delineating 
such point patterns (Wiegand and Moloney, 2014). This brief retrospect 
told that a solid theoretical and algorithmic foundation of this field has 
been established for supporting its further functional expansions. 

As to the two kinds of higher-level patterns (Fig. 2), their represen-
tative methods under the framework of spatial point pattern analysis are 
listed in Table 1, in which a more complex mode relating to objects with 
finite sizes and irregular shapes is also regarded. As exemplified in 
Table 1, mark-correlation functions can be used to characterize the 
spatial relations among circles that contain quantitative marks, and the 
core objective is to identify whether the joint relationships of the marks 
for any two circles depend on the distance separating them (Suzuki 
et al., 2008). Specifically, for the univariate quantitatively marked 
pattern, there is a typical algorithm based on multiplicatively weighted 
pair-correlation function (Law et al., 2009); for the bivariate quantita-
tively marked pattern, specifically comprising the univariate pattern 
with two quantitative marks, the univariate pattern with one quantita-
tive mark and one qualitative mark, and bivariate pattern with one 
quantitative mark, the solutions include a method based on the null 
model of shuffling the vector of marks of the individual trees randomly 

Fig. 2. Schematic diagram of how the methods of tree spatial pattern analysis have developed (indicated by arrows) under the methodological framework of spatial 
point pattern analysis (Wiegand and Moloney, 2014): From points indicating tree trunk positions (left), to circles each with one mark (quantitative feature – circle 
size; middle) and circles each with more than one marks (quantitative feature – circle size and qualitative feature – circle type; right). The two boxes (left and middle) 
show univariate patterns, while the box (right) displays a bivariate pattern (comprising two types of circles, e.g., representing two species). 
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over the trees of univariate pattern (Wiegand et al., 2013), a method of 
mixture between a univariate, mark-correlation function and a mark- 
connection function (e.g., Raventós et al., 2011), and a method of 
characterizing the bivariate pattern by defining two types of circles (e.g., 
Ledo et al., 2011), respectively. Their algorithmic details can refer to 
Table 1. 

The purpose of also including the last mode in Table 1 in this review 
is to transcend the simple baseline null hypotheses in the framework of 
spatial point pattern analysis (Wiegand and Moloney, 2004). The reason 
is that although the currently-available solutions to analyze the spatial 
distribution of objects of finite sizes and irregular shapes (Wiegand et al., 
2006) mostly follow the conventional theoretical system of spatial point 
pattern analysis, explicit consideration of real-world structures (finite 
sizes and irregular shapes) prevents an analytical treatment; analysis of 
objects with finite sizes and irregular shapes now generally relies on 
simulation-based methods for testing the specific hypotheses about the 
spatial dependencies of trees in forests under consideration (Wiegand 
and Moloney, 2014). This, somehow, implies that some kinds of func-
tional limitations exist in the methods already available for analyzing 
tree spatial patterns. 

2.2. Functional limitation 

As illustrated in Table 1, the definition of tree spatial pattern analysis 
relates to different modes for different scenarios of tree variable col-
lections. The fundamental strategy of spatial point pattern analysis 
(Illian et al., 2008) commonly based on the feature of tree trunk loca-
tion, substantially, is just aimed at the traditional scenario of measuring 
the trunk-dominated forest layer, as shown by the lowest-height 

horizontal layering in Fig. 3. Since there is no theoretical restriction to 
the number of different marks that a given spatial pattern may carry 
(Uria-Diez and Pommerening, 2017), the other layers as drawn in Fig. 3, 
in principle, have no problem in characterizing the spatial pattern of the 
same trees. The modes of the layering-across-canopy scenarios even can 

Table 1 
A summary of the currently-available methods of tree point pattern analysis with the feasibility of considering the other kinds of quantitative feature parameters than 
stem location.   

Univariate quantitatively 
marked pattern 

Bivariate quantitatively 
marked pattern 

Objects of finite size 
and real shape 

Scenario 
definition 

A univariate pattern with 
one quantitative mark 

A univariate pattern with two 
quantitative marks 

A univariate pattern with one 
quantitative mark and one 
qualitative mark 

A bivariate pattern with one 
quantitative mark 

A univariate or 
bivariate pattern with 
various quantitative 
marks 

Related 
ecological 
question 

Explore issues concerning 
distance-dependent 
correlations in the marks 

Consider distance-dependent 
correlations between the two 
types of marks 

Consider the distance-dependent 
correlation between the marks of 
the two types of points 

Ask about distance- 
dependent correlations 
between the marks of the two 
types of points 

Consider size and 
measures of shape of 
an ecological object as 
quantitative marks 

Basic principle An estimator of mark 
correlation function 
(formula 2) by enhancing 
(1), where mi and mj mean 
the mark for any two trees 

An estimator of the 
nonnormalized mark- 
correlation function (3) by 
enhancing (1), where mi1 and 
mj2 mean the different two 
marks for any two trees 

An estimator of the 
nonnormalizedmark-correlation 
function (4) by enhancing (1), 
where Clm(xi, xj) indicates a 
mixture of the two situations 

An estimator of the 
nonnormalized mark- 
correlation function (5) by 
enhancing (1), where l() 
marks the difference between 
the conspecific pairs 

In development 

Representative 
method 

A method based on 
multiplicatively weighted 
pair-correlation function 
ĝmm(r)(Law et al., 2009)  

A method based on the null 
model of shuffling the vector of 
marks of the individual trees 
randomly over the trees of the 
univariate pattern(Wiegand 
et al., 2013) 

A method of mixture between a 
univariate, mark-correlation 
function and a mark-connection 
function(Wiegand and Moloney, 
2014) 

A method of characterizing 
the bivariate pattern by 
defining two types of points( 
Wiegand and Moloney, 
2014) 

An approach by 
extending a grid-based 
estimator of second- 
order summary 
statistics(Wiegand 
et al., 2006) 

formula K̂(r) =
1
l̂2

1
A
∑n

i=1

∑n,∕=
j=1

l
(
‖xi − xj‖, r

)
× ωi,j(1)ĝmm(r) =

1
l̂2

1
ct

1
2prA

∑n
i=1

∑n,∕=
j=1

k
(
‖xi − xj‖ − r

)
×
(
mimj

)
× ωi,j 

(2)ĉt(r) =
∑n

i=1
∑n,∕=

j=1t
(
mi1,mj2

)
× k

(
‖xi − xj‖ − r

)
× ωi,j

∑n
i=1

∑n,∕=
j=1k

(
‖xi − xj‖ − r

)
× ωi,j 

(3)ĉlm,t(r) =
∑n

i=1
∑n,∕=

j=1t
(
mil ,mjm

)
× Clm

(
xi, xj

)
× k

(
‖xi − xj‖ − r

)
× ωi,j

∑n
i=1

∑n,∕=
j=1Clm

(
xi, xj

)
× k

(
‖xi − xj‖ − r

)
× ωi,j 

(4)k̂d(r) =
1
ĉd

∑∕=

i,jd
(

spi, spj

)
l
(

spi ∕= spj

)
k
(
‖xi − xj‖ − r

)

∑
i,j l
(

spi ∕= spj

)
k
(
‖xi − xj‖ − r

) (5)where in (1), the indicator function l(d, r) plays the role of the kernel function used in estimating the 

product density and has a value of 1 if point j is located within distance r or less of point i and 0 otherwise, A is the area of the rectangle that draws the extent under 
consideration, and ωi,j is the edge correction. In (2), the mark-correlation function k() is the kernel function that defines which points are located approximately at 
distance r, and the test function t

(
mi,mj

)
= mimj. In (3), t

(
mi1,mj2

)
is the test function that uses the first mark mi1 of point i and the second mark mj2 of point j. In 

(4), the indicator function Clm
(
xi, xj

)
evaluates to a value of 1, if point i is a type l point and point j is a type m point, and 0 otherwise (note that the indicator 

function Clm
(
xi, xj

)
selects only point pairs i, j of type l and m, respectively). In (5), the indicator function l

(
spi ∕= spj

)
selects only heterospecific pairs and results in 

a value of 1, if the individuals i and j belong to different species, and 0 otherwise, and distance matrix d
(

spi, spj

)
represents the phylogenetic or functional distance 

between species spi and spj.   

Fig. 3. Illustration of the collections of tree structure features in different layers 
in height for characterization of tree spatial pattern. The upper three image 
rows of top views correspond to the three horizontal layers in the bottom image 
from a side view, and traditional point pattern analysis is routinely restricted to 
the lowest layer. 
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further disclose the reasons of why the distribution of the aimed trees is 
so generated, from the aspects such as light interception optimizing 
photosynthesis (Sarlikioti et al, 2011). However, traditional point 
pattern analysis-based methods cannot effectively handle such complex 
scenarios, as evidenced by the typical case that Wiegand and Moloney 
(2014) decided to leave the theories involving multivariate marks for 
future study. This explains the functional limitation for most of the 
available methods as listed in Table 1. 

This point has been increasingly realized by the community (e.g., 
Raventós et al., 2010). After all, canopy plays an important role in 
deciding forest structure and composition, namely, tree spatial pattern. 
Specifically, the structure of forest canopy affects the related wind field 
and, further, the spatial mode of seed dispersal (Lin et al., 2011); canopy 
structure also proved to influence forest growth and its biochemical 
processes (Osada et al., 2014); specific canopy structures are often 
preferred by animals and birds, which, under a viewpoint of evolution, 
can further adapt the spatial patterns of the same forest ecosystems 
(Korňan et al., 2013). On the other hand, many environmental factors 
and topography can affect forest structure via its canopy (Kane et al., 
2015). In all, a consideration of these underlying ecological interactions 
suggests that canopy morphology shall be more regarded in the analysis 
of tree spatial pattern, and accordingly, the specific analysis methods 
shall be upgraded to a new level. 

In fact, the traditional methods of point pattern analysis that have 
been upgraded to being adaptive to other quantitative feature parame-
ters have been directed towards approaching this new level. As sum-
marized by Wiegand and Moloney (2014), one assumption of point- 
pattern analysis is that its concerned objects (e.g., trees) are dimen-
sionless points. This assumption is valid when the size of the object is 
small in comparison with the concerned spatial scale. However, when 
the size of the object is the similar order of magnitude as the scale of 
interest, this assumption may obscure the real spatial relationships 
(Prentice and Werger, 1985). For ecologists this can be a real problem as 
the relationships occur at distances not greater than the areal extent of 
the single objects being regarded (Purves and Law, 2002). When ecol-
ogists are interested in exploring the relationships among shrubs to 
determine whether facilitation or competition is a more important 
process (Wiegand et al., 2006), they may be more interested in checking 
if canopies touch more or less than expected to randomly placed, 
nonoverlapping shrubs. In such circumstances, it is necessary to analyze 
the spatial patterns of trees, in terms of various cases of combinations 
between their structural feature parameters. 

2.3. Principle bottleneck 

The basic principle leading to the functional limitation as outlined 
above (Fig. 3) is that analysis of tree spatial pattern is inevitably rooted 
in the available forest inventory data. That is, the existing analysis 
methods (Wiegand and Moloney, 2014) tend to be restricted to the 
relatively low efficiency of traditional field inventory tools, which were 
available during the development of the corresponding analysis 
methods, and, consequently, to the limited data on tree structure vari-
ables. The traditional techniques based on tapes and theodolites (Moran 
and Williams, 2002; Sun et al., 2006) are exclusively suitable for map-
ping tree structural variables of diameter at breast height (DBH) and 
trunk location, which can only mirror the scenario of the lowest-height 
forest layer in Fig. 3. This also explains why the mainstream methods for 
tree spatial pattern analyses are under the methodological framework of 
point pattern analysis (Illian et al., 2008), which has not been broken 
though after the heavy use of high-resolution remote sensing imagery 
and LiDAR data (Getzin et al., 2011) these years. Therefore, the un-
availability of other kinds of feature parameters that can more fully 
characterize 3D tree structures, as illustrated by the upper two hori-
zontal layers in Fig. 3, is the basic principle bottleneck for developing 
more efficient methods for tree spatial pattern analyses. 

3. LiDAR: Potential of breaking the bottleneck 

For the identified technical bottleneck, the state-of-the-art remote 
sensing technology of Light Detection And Ranging (LiDAR) can serve as 
a solution, as it proved to be efficient for mapping 3D structures of trees 
(Lefsky, 1997; Lin and Herold, 2016). LiDAR can also collect data on 
environmental heterogeneity, which has always been emphasized as a 
critical factor in forest spatial pattern analysis (Baddeley et al., 2000). 
Collectively, LiDAR seems to provide a feasible way to handle the 
functional limitation as explained in sub-Section 2.2. 

3.1. Technical potential − 3D mapping of forest structure 

LiDAR can not only derive the variables such as tree location and 
DBH commonly used in traditional tree spatial pattern analyses (Wie-
gand and Moloney, 2014) but also obtain more details about other kinds 
of tree structural properties, as exemplified in Table 2. Specifically, 
satellite-based laser scanning can map Lorey’s height (Pourrahmati 
et al., 2018), airborne laser scanning can survey sub-canopy layouts 
(Jarron et al., 2020), drone-based laser scanning can retrieve crown 
structure (du Toit et al., 2020), crane-based laser scanning can measure 
canopy volume (Schneider et al., 2019), mobile laser scanning can 
obtain the parameter of DBH (Lin and Jiang, 2018), wearable laser 
scanning can output tree height (Cabo et al., 2018), and static terrestrial 
laser scanning (TLS) can resolve leaf area index (Indirabai et al., 2019). 
All of such structure variables can serve as quantitative marks in the 
traditional theoretical framework of tree point pattern analysis (Fig. 2) 
(Wiegand and Moloney, 2014). Even in a sense, LiDAR data collections 
can reconstruct forest structures in a 3D manner (Morsdorf et al., 2004) 
and, thus, can reveal more about the ecological spatial relationships in 
forests that typically show complex morphologies (Davies and Asner, 
2014; Getzin et al., 2011). Compared to the other kinds of 3D imaging 
techniques available for tree mapping (Calders et al., 2020), LiDAR that 
is adaptive to diverse platforms as reviewed above can supply a more 
systematic solution of real-sense 3D mapping for comprehensively 
exploring the effect of 3D tree structure on tree spatial pattern. 

Table 2 
Exemplification of the state-of-the-art LiDAR-based techniques of deriving tree 
structural feature parameters.  

Feature LiDAR mode Principle Reference 

Leaf area 
index (LAI) 

Static 
terrestrial 
laser scanning 

Super voxel clustering 
method and multivariate 
regression technique 

Indirabai et al., 
2019 

Diameter at 
breast 
height 
(DBH) 

Mobile laser 
scanning 

Cone-based geometric 
modeling and ASCF method 

Lin and Jiang, 
2018 

Total tree 
height 

Wearable 
laser scanning 

Clustering-isolation-iterative 
fitting-computation-based 
approach 

Cabo et al., 
2018 

Canopy 
volume 

Crane-based 
laser scanning 

Detailed 3D structure 
measurements and 
assessment of their spatial 
sampling in terms of 
occlusion 

Schneider 
et al., 2019 

Crown shape Drone-based 
laser scanning 

Metrics of Weibull 
probability density 
functions, vertical 
complexity index, and the 
fraction of euphotic voxels 

Du Toit et al., 
2020 

Sub-canopy 
structure 

Airborne laser 
scanning 

Segmentation based on 
Lorey’s mean height and 
predictive models of sub- 
canopy components 

Jarron et al., 
2020 

Lorey’s height Satellite- 
based laser 
scanning 

Two nonparametric data 
mining methods of random 
forest and artificial neural 
network 

Pourrahmati 
et al., 2018  
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3.2. Scientific potential − 3D understanding of forest structure 

After the technical applications of LiDAR in forest mapping, some 
scientific attempts occurred on understanding of 3D forest structure. For 
example, as an important kind of forces driving tree spatial pattern, 
competition between trees has been explored based on TLS point clouds 
– taking the integral architectures of individual trees into account (Metz 
et al., 2013). As illustrated in Fig. 4a, a double cone-bounded search 
space that is centered on the tree trunk and reaches up to the treetop 
proved to be able to simultaneously characterize the competition and 
facilitation between trees (Yu and Lin, 2019). When competition was 
solely concerned, the upper cone-based search space can quantify its 
effect (Yu and Lin, 2019), as illustrated by the analysis results in Fig. 4b. 
That is, with more settings of the search space in terms of cone angle (θ) 
and the ratio between search height (i.e., cone tip height, HS) and tree 
height (HT), the full representations of tree crowns by point clouds can 
reveal more information on their competitive situations (marked by the 
colored curves in Fig. 4b). This is an important advance, beyond the 
common plans of tree competition analyses that were based on the 
limited types of traditional forest inventory data (Davies and Pommer-
ening, 2008). 

LiDAR can also support more nuanced analyses of tree clustering. 
Theory suggests that scale-free patterns in vegetation structure can be 
reflected not just in power law distributions of cluster sizes but also in 
the geometry of clusters (Halley et al., 2004; Staver et al., 2019). For the 
data collections at the latter level, LiDAR, no doubt, supplies a more 
powerful solving strategy. As exemplified in revealing hitherto unknown 
scaling properties of patch size and shape across several large landscapes 
(Staver et al., 2019), LiDAR was a powerful means for the data collec-
tions at the cluster level. People recently even began to be aware to the 
trend in forest ecological applications of various 3D remote sensing 
technologies, of course including LiDAR, showing transitions from 
experimental to operational solutions (Latifi and Valbuena, 2019). 
These are inspiring perspectives to advance the research on tree spatial 
pattern analysis as LiDAR-collected forest data become increasingly 
available. 

By now, a few attempts on LiDAR-based analyses of forest structures 
or tree spatial patterns in a literal sense have emerged. Data collected by 
different LiDAR modes have been applied for assessing forest density 

and spatial configuration (Richardson and Moskal, 2011; Hartling et al., 
2021)), evaluating the similarity in tree community composition (Ioki 
et al., 2016), managing structurally diverse forest landscapes (Jeronimo 
et al., 2018), deriving spatial patterns of tree and shrub biomass (Bru-
baker et al., 2018), creating high-resolution reference models of forest 
structure and spatial pattern (Wiggins et al., 2019), and reflecting tree 
spatial distribution patterns (Wang et al., 2020). However, these studies, 
substantially, were rooted in the spatial statistical viewpoint instead of 
the spatial ecological viewpoint. Nevertheless, this trend serves as a sign 
that realistic LiDAR-based analyses of tree spatial pattern are ahead. 

Further, quantitative description of tree structure enabled by LiDAR 
allows to reexamine and, even, revise long-standing theories on why 
trees present the shapes and distributions they exhibit (Dai et al., 2020). 
A tree can be viewed as a result of optimizing its growth, survival, and 
reproduction under a variety of requirements and constraints (Muller- 
Landau et al., 2006). The effective solutions to these optimizations lead 
to the sizes and forms (allometries) of trees, which, ultimately, strongly 
affect the structure and habitats of woody ecosystems, the amounts of 
biomass and carbon storage, and the material flows of water and energy 
within the systems (Malhi et al., 2018). Collectively, LiDAR has the great 
potential on expanding the horizon of forest ecology (Calders et al., 
2020). In such a systematic viewpoint, LiDAR-based 3D tree character-
ization can support to achieve new insights into forest spatial patterns, 
far more than supplying more structure feature parameters for better 
realizing the potential of those modern spatial point pattern analysis 
methodologies (Velázquez et al., 2016). Instead, LiDAR-based 3D tree 
characterization can support to further refine the traditional schemes of 
tree spatial point pattern analysis and to breed completely novel solu-
tion schemes for tree spatial pattern analyses. In other words, for the 
scientific discipline of tree spatial pattern analysis, now it is approaching 
a “turning-point” from the data-limited to data-rich situation, beyond 
the typical data types (Wiegand and Moloney, 2014), and eventually, 
from 2D to 3D. 

4. Advance to 3D tree spatial pattern analysis 

The above-reviewed technical strengths of LiDAR mean the possi-
bility of upgrading tree spatial pattern analysis to its new 3D stage. 
However, advancing the application of LiDAR on this task is a challenge, 

Fig. 4. Illustration of the fundamental break-through of 3D tree competition and facilitation analysis, which comprises a theoretical basis of advancing 3D tree 
spatial pattern analysis (adapted from Yu and Lin, 2019). (a) double cone-bounded search space with properties cone angle (θ), tree height (HT), and cone tip height / 
search height, (HS). (b) Competition index as a function of HT/HS for a range of cone angles, analyzed for characterization of the effect of tree competition. 
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as those established methods of spatial point pattern analysis (Illian 
et al., 2008) cannot directly handle its collected 3D feature parameters. 
After all, the traditional statistical analyses of spatial pattern come into 
three major modes, corresponding to their data forms – quantitative, 
categorical, and spatial point-pattern data (Wiegand and Moloney, 
2014). Now, LiDAR can give these three kinds of data forms, even far 
beyond them – 3D variables, but the models and methods available for 
3D spatial pattern analyses are still void. 

4.1. Theoretical demand 

As exemplified in Table 1, Wiegand et al. (2006) discussed an 
extension of conventional point-pattern analysis, where objects are 
approximated as point sets in categorical raster maps that can represent 
objects of finite sizes and irregular shapes. This simplified means facil-
itates incorporation of real-world structure into point pattern analysis. 
This plan can further provide a powerful tool for statistical analysis of 
objects, for which the common point approximation mode would not be 
capable of revealing important information. However, mapping trees 
and characterizing them in terms of their whole shapes, rather than 
treating them as dimensionless points, may require considerably more 
efforts. Yet, this is necessary if we want to consider the effects of real 
sizes and shapes, rather than employ crude point approximations 
(Wiegand and Moloney, 2014). Consequently, the 3D-oriented scheme 
and methods are in demand. 

This gap between the existing methods of tree spatial pattern analysis 
and the demand of taking the effects of real sizes and shapes into account 
recently has been increasingly realized by the community. For instance, 
Staver et al. (2019) used LiDAR to probe the tree-clustering patterns of 
savanna trees, which differ from the closed-canopy forests. Their find-
ings suggest that it is positively needed to upgrade the solution frame-
work for the aimed task into the 3D level. This point can also be 
discovered when investigating tree competition, which serves as one of 
the basic factors affecting tree spatial patterns (Khan et al., 2013). As 
illustrated in Fig. 5, there is a gap for transiting from 3D tree competition 

analysis to 3D tree spatial pattern analysis, since the latter needs to 
additionally consider factors such as extent of canopy cover and 
topography (often indicated by digital terrain model, DTM) variation (as 
marked by the background with grey gradients in Fig. 5). In other words, 
based on various 3D data provided by LiDAR, it is time to develop new 
theoretical frameworks and specific methods of 3D tree spatial pattern 
analysis. 

4.2. 3D analysis scheme 

Aiming at the goal of upgrading to 3D tree spatial pattern analysis, 
future studies in this direction should be dedicated to exploring more 
appropriate data forms and analysis methods. First, our proposed con-
ceptual scheme framework is based on feature vectors (Fn, illustrated in 
Fig. 6), which, for each individual tree, can theoretically characterize 
the factors possibly affecting the spatial pattern of their integration 
(shown in Fig. 5). Specifically, the proposed new 3D scheme can be 
designed by using the procedural technologies of classic point pattern 
analysis, i.e., ecological hypothesis, null modeling, summary statistics, 
and comparison of data and null models (Wiegand and Moloney, 2014; 
Wiegand et al., 2016) but adapted into a “completely” 3D way. Further, 
the 3D scheme can deal with the cases of univariate (e.g., the same tree 
species) with one to two parameters describing structural features and 
bivariate (e.g., different tree species) with one to two such parameters, 
and it can do so both in homogeneous and heterogeneous forest envi-
ronments. Note that the proposed solution plan of this principle can be 
readily extended to the cases of more than two structural feature 
parameters. 

Next, the key work is to develop efficient 3D models and 3D methods 
for quantitatively fulfilling 3D tree spatial pattern analysis. However, so 
far there have been almost no mature models or methods reported, and 
hence, the present work made no review on this aspect but proposed a 
couple of potential solutions instead. That is, the 3D models for sup-
porting future development of new 3D methods can be sought by 
adapting the existing scalar variable-based ones (Table 1) or by directly 
proposing new vector variable-based ones. 

For the strategy of adapting existing scalar variable-based models, 
the development can start with adapting the established mark- 
correlation functions (Illian et al., 2008), with their underlying mod-
ules of test functions such as Moran’s I and Ripley’s K-functions con-
verted, and further, with the basic components such as the cluster 
detection algorithms (Wiegand and Moloney, 2014) adapted for 
enabling the whole routine to work. Next, the summary statistics can be 
modified for 3D analysis of data structures, in which 3D feature vari-
ables are attached to the univariate pattern (e.g., in Table 1) (Velázquez 
et al. 2016). Then, based on the existing methods of 3D homogeneous 
forest spatial pattern analysis, environmental covariates derived from 
topography can be added as another kind of marks. The resulting 
methods can examine the effect of abiotic heterogeneity on the spatial 
distribution of the concerned tree species. In such a way, those already- 

Fig. 5. Illustration of the gap between 3D tree competition analysis and 3D tree 
spatial pattern analysis, caused by diverse factors such as inconsistencies in the 
positions of tree trunks and the competition centers of trees, extent of canopy 
cover, and topographic relief. The gray gradients in the background symbolize 
topography, as elucidated by a digital terrain model (DTM). 3D tree spatial 
pattern analysis needs to be able to coordinate with the performance of 3D tree 
competition analysis but suffers from more complex circumstances (top view). 

Fig. 6. The conceptual scheme framework of 3D tree spatial pattern analysis: 
Feature vectors (F) represent the potentially directional effects of different in-
fluence factors. Note that the scheme is also capable of covering the charac-
terization of traditional scalar factors. 
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established methods of tree spatial pattern analysis can be adapted to the 
3D level. 

These proposals need to be examined in future. In fact, attempts have 
been made to adapt the scalar variable-based models such as K-function 
(as Formula (1) in Table 1) (Ripley, 1976; Baddeley et al., 2000) to 
vector variables, but with some limitations (Wiegand and Moloney, 
2014). As illustrated in Fig. 7, our case study based on the LiDAR- 
collected dataset of forest structure (Zhang et al., 2012) suggested that 
such preliminary solution plans can characterize something new about 
tree spatial patterns, albeit far from enough for fully revealing their 3D 
secrets. Consequently, in order to fully exploit the role of LiDAR in the 
representation of 3D tree structures, it is highly recommended to 
develop purely vector variable-based principles, 3D models, and 3D 
methods for performing 3D tree spatial pattern analysis in a real sense, 
as the latter strategy proposed. This recommendation projects an almost 
totally new field, which also highlights the importance of conducting 
this review at this stage. 

4.3. General principle framework 

After proposing the new 3D scheme of tree spatial pattern analysis, 
we concentrated on devising its general principle framework, which is 
aimed at basically supporting scientists to develop various concrete 
methods. Specifically, examining the common challenges and then 
proposing their common solution plans as follows can inspire more 
future studies focusing on this field to quickly design their specific 
algorithms. 

4.3.1. Derivation of 3D feature parameters on tree structure and 
topography 

The premise for running 3D tree spatial pattern analysis is to first 
parameterize structure attributes of both the crown and trunk from the 
LiDAR data of each focal tree, the same for its neighbors. To do so, the 
point cloud of a single tree can typically be transformed into a “voxel 
model”. Assigning 3D points into voxels is a key step in airborne LiDAR 
data processing, as it is needed to tackle the heterogeneity of the spatial 
density of laser points in the data (Jarron et al., 2020). This step tends to 
suffer from the varying distances of the objects in the scene to the laser 
scanner (Morsdorf et al., 2004). Next, extraction of forest heterogeneity 
(topography, in terms of DTM) from point clouds can be achieved by 

using the mature methods such as the specific DTM extraction algo-
rithms proposed by Maguya et al. (2014). However, the existing 
methods cannot cope with this kind of problems in all situations, and the 
increased challenges posed by forests with complex morphologies need 
to be handled. These examples indicate the potential challenges in 
deriving the basic 3D feature parameters. 

4.3.2. 3D homogeneous and heterogeneous forest spatial pattern analysis 
Achieving 3D tree spatial pattern analysis needs to deal with complex 

scenarios such as homogeneous and heterogeneous forests. Although the 
methods for LiDAR-based tree species classification as technical bases 
for such analyses kept being reported (e.g., Lin and Herold, 2016), the 
specific classification methods on the aimed task are in shortage. 
Regardless of the strategy of adapting existing scalar variable-based 
models or directly proposing new vector variable-based 3D models, 
developing their related methods is challenging. For homogeneous for-
ests, the potential solution plans for conducting 3D tree spatial pattern 
analyses can start by modifying the summary statistics function for the 
univariate case from the traditional mode “univariate + one quantitative 
mark” (Wiegand and Moloney, 2014) to a new “univariate + two 
quantitative marks” mode as listed in Table 1. This would support the 
analysis of data types in which two 3D structural variables are attached 
to a univariate pattern (Velázquez et al. 2016). Next, for heterogeneous 
forests, more powerful summary statistics for the bivariate case can be 
modified to make the analysis of data structures in which in a first step 
one, and later in a second step two, 3D structure parameters “bivariate 
+ one/two quantitative marks” are attached (Wiegand and Moloney, 
2014), which can pave the way for implementation of the related 3D 
analyses. These sound scheme frameworks, however, do not mean that 
the related methods can be easily established, and this is the most 
difficult point for the following studies. 

4.3.3. 3D spatial pattern modeling 
Another challenge lies at the core of 3D spatial pattern analysis, i.e., 

how to implement spatial pattern modeling. In combination with the 
traditional strategical framework, it can be proposed to use multiple 
point process models to predict local tree density. Such models shall be 
able to handle abiotic heterogeneity. In order to find the most parsi-
monious model, people can use backward and forward variable selection 
in comprising the point process models. For example, to create more 
appropriate point process models, scientists can use the point process 
functions such as the related modules inbuilt in R 3.3.0 {spatstat 1.4.2}. 
These functions can be used to develop linear additive models with the 
spatial covariates explained above and using the spatial distribution of 
trees as the response variable. These new spatial models can estimate the 
number of the expected points per unit area, i.e., the expected intensity 
at the location of the study area for the aimed tree species (Baddeley 
et al., 2000; Wiegand et al., 2000). The Akaike Information Criterion 
(AIC) can be used to assess the performance of the models, with lower 
AIC values marking better performance (Wiegand and Moloney, 2014). 
This can mean better ability to predict the observed intensity for the 
species of interest, but how this traditional solution plan can be adapted 
to 3D scenarios is not easy. 

4.3.4. Effect validation 
Finally, how to validate the success of the proposed solution plans is 

a critical challenge, especially for the scale-dependent performance of 
the designed 3D models. To this end, future studies can simulate the 
model selected by AIC and compare these simulated patterns to the 
observed tree point patterns, typically at a species-specific level. 
Repeated simulations of the selected point process model can be used to 
construct a simulation envelope approximating a 95% confidence en-
velope (Wiegand et al., 2016). If the selected models can describe the 
processes that make the formations of the real tree spatial patterns well, 
the summary statistics (e.g., the inhomogeneous pair-correlation func-
tion) (Stoyan and Stoyan, 1994) calculated based on the observed tree 

Fig. 7. Illustration of the LiDAR-based 3D analyses of tree spatial patterns in 
the study area of Dayekou (Zhang et al., 2012), in terms of the horizontal po-
sition of the geometrical center for each tree crown. This feature parameter is in 
a 3D sense to some extent, in contrast to the traditional tree stem location, and 
its consideration is rooted in the null ecological hypothesis that tree crowns are 
distributed in a hyperdispersion way as much as possible for capturing more 
sunlight. As demonstrated by the pair-correlation function g(r) (Wiegand and 
Moloney, 2014) (yellow line) compared to the simulation envelopes (gray lines) 
and its performance compared to the null model (i.e., for small distances r, g(r) 
< 1; then, g(r) = 1), the proposal on LiDAR-based 3D analysis of tree spatial 
pattern has been preliminarily validated. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 
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distribution data shall fall into the (global) simulation envelope (Wie-
gand et al., 2016). This case proposal of methods for success validation, 
however, cannot cover all of the scenarios, and efficient methods for 
those particular scenarios still need to be pursued in the future. 

5. Towards 3D forest structural and spatial ecology 

The future studies as indicated above are of potential for imple-
menting 3D tree spatial pattern analysis, which can act as the method-
ological foundation to upgrade 3D tree structural ecology (Malhi et al., 
2018) to 3D forest structural ecology. After all, its local tendencies may 
not be obvious through 3D casual inspection (e.g., Dai et al., 2020), 
while an appropriately designed 3D analysis may reflect a link between 
the observable 3D pattern and the ecological processes resulting in or 
from that pattern. In a way, 3D tree spatial pattern analysis can serve as 
another pillar of supporting 3D forest structural ecology. 

Moreover, many other necessities for advancing 3D forest structural 
ecology can also be fulfilled by using LiDAR. LiDAR can measure various 
biotic traits for yielding fine-scale 3D spaces of tree species abundances 
(van Ewijk et al., 2014) and 3D maps of forest structural diversities 
(Mura et al., 2015), and their ecological interactions with topography 
and other environmental factors can be further 3D explored (Robinson 
et al., 2018). LiDAR facilitates assessing the solar direct beam trans-
mittance through conifer tree canopies (Musselman et al., 2013) and 
comprising a 3D method for modeling energy and carbon fluxes in 
heterogeneous forests (Kobayashi et al., 2012). How wind fields are 3D 
distributed in heterogeneous forests proved to be able to be efficiently 
modeled by referring to the LiDAR-based canopy structure representa-
tions (Boudreault et al., 2015), and LiDAR can also help to better reflect 
the 3D influences of wind fields on forest carbon storages (Coomes et al., 
2018). LiDAR can be used to 3D map snags and understory shrubs in 
forests for the purpose of assessing wildlife habitat suitability (Marti-
nuzzi et al., 2009) and analyzing the effects of structural complexity on 
the occurrence and activities of insectivorous bats in managed forest 
stands (Jung et al., 2012), leading to the coming of 3D animal ecology 
(Davies and Asner, 2014). All these endeavors, along with our proposal 
of 3D tree spatial pattern analysis, can effectively promote 3D forest 
structural ecology. 

In addition to turning the new theoretical concept of 3D forest 
structural ecology to come true, the contribution of this study facilitates 
further laying the methodological foundation for the disciplinary ex-
tensions to 3D forest spatial ecology (Jackson et al., 2020) and, further 
on, 3D spatial ecology in a broad sense. This reasoning is evidenced by 
the following conceptive analyses from different perspectives. 

Theoretically, extending 3D ecology to 3D spatial ecology is feasible. 
After all, ecology concerns various processes that are inherently spatial 
by nature, and spatial ecology focuses on ecological processes that may 
influence the patterns of organisms varying in space (Krebs, 1978). How 

to exploit more spatial attributes has kept being highlighted in the 
developmental process of ecology. Since the 1970 s, there has been a 
fundamental shift in the ecological field towards an explicit consider-
ation of spatial relationships (Krebs, 1978; Galiano, 1982; Stoyan and 
Stoyan, 1994). This progress was stimulated by such assets as the 
availability of desktop computers, aerial photographs, and images from 
satellites, giving ecologists a new view of spatial pattern never before 
available. Based on these technologies, people have progressed from 
previous nonspatial thinking to current spatial thinking when regarding 
ecology (Law et al., 2009; Ratcliffe et al., 2015; Barbosa and Asner, 
2017). Now, LiDAR can, again, upgrade spatial ecology to its next stage 
– with the basic definition conceptualized as a specialization of ecology 
and geography that are concerned with the identification of spatial 
patterns and their relationships to ecological events in a 3D way, i.e., 3D 
spatial ecology. 

Technically, the applicability of LiDAR for mapping of 3D structures 
is not limited to trees. Multifarious LiDAR modes (Fig. 8) have been 
validated for 3D mapping of snags and shrubs (Martinuzzi et al., 2009), 
wildland grasses (Morsdorf et al., 2004), and many other kinds of plants 
(Davies and Asner, 2014). The accumulations of their methods on 3D 
structure characterizations can help expand the applicability of the 
future methods proposed for 3D tree spatial patterns analysis to many 
other categories of plants – 3D plant spatial pattern analysis. This, 
together with the theoretical feasibility as verified above, can render 3D 
spatial ecology to be a viable concept. 

The new concept of 3D spatial ecology can upgrade our under-
standing of spatial pattern from a traditional 2D distribution mode 
(Fig. 2) to a variety of 3D thematic spaces in terms of vector thematic 
features, as illustrated in Fig. 8. This new field, definitely, will bring a lot 
of new knowledge and, even, critical changes to spatial ecology. 

Overall, the present study was dedicated to innovatively taking the 
technical strength of LiDAR for setting the cornerstone of promoting 
forest structural and spatial ecology into their 3D eras. Our specific 
contribution is on proposing the corresponding theoretical and principle 
framework of 3D tree spatial pattern analysis, instead of struggling to 
consecutively improve the algorithms within the traditional methodo-
logical system of spatial point pattern analysis. This endeavor at the 
level of transiting potential to practice is critical for technically tackling 
the interdisciplinary field-level upgrading issue of tree spatial pattern 
analysis that is currently being confronted by the whole ecological and 
remote sensing communities, and the related foundational outlooks are 
of referencing implication on, in a viewpoint of subject expansion, 
boosting 3D plant spatial pattern analysis for emplacing the cornerstone 
of LiDAR advancing 3D structural and spatial ecology. 
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Korňan, M., Holmes, R.T., Recher, H.F., Adamík, P., Kropil, R., 2013. Convergence in 
foraging guild structure of forest breeding bird assemblages across three continents 
is related to habitat structure and foraging opportunities. Community Ecol. 14 (1), 
89–100. 

Y. Lin and K. Wiegand                                                                                                                                                                                                                        

http://refhub.elsevier.com/S0303-2434(21)00213-0/h0005
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0005
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0005
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0010
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0010
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0010
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0015
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0015
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0015
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0020
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0020
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0020
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0025
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0025
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0025
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0030
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0030
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0030
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0035
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0035
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0035
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0040
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0040
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0045
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0045
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0045
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0050
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0050
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0050
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0055
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0055
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0055
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0060
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0060
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0060
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0065
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0065
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0065
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0070
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0070
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0070
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0075
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0075
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0075
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0080
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0080
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0080
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0085
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0085
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0090
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0090
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0090
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0095
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0095
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0095
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0100
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0100
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0100
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0105
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0105
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0105
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0105
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0110
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0110
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0110
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0115
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0115
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0120
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0120
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0120
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0120
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0125
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0125
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0130
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0130
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0130
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0135
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0135
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0135
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0140
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0140
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0145
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0145
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0150
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0150
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0150
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0155
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0155
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0160
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0160
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0160
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0165
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0165
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0165
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0170
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0170
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0175
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0175
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0175
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0180
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0180
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0180
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0180
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0185
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0185
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0185
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0190
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0190
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0190
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0195
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0195
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0200
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0200
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0200
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0205
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0205
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0205
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0205
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0210
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0210
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0210
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0215
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0215
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0215
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0220
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0220
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0220
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0225
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0225
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0225
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0230
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0230
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0230
http://refhub.elsevier.com/S0303-2434(21)00213-0/h0230


International Journal of Applied Earth Observation and Geoinformation 103 (2021) 102506

11

Krebs, C., 1978. Ecology: The experimental analysis of distribution and abundance. 
Harper & Row, NY.  

Larson, A.J., Churchill, D., 2008. Spatial patterns of overstory trees in late-successional 
conifer forests. Can. J. For. Res. 38 (11), 2814–2825. 

Latifi, H., Valbuena, R., 2019. Current trends in forest ecological applications of three- 
dimensional remote sensing: Transition from experimental to operational solutions? 
Forests 10, 891. 

Law, R., Illian, J., Burslem, D.F.R.P., Gratzer, G., Gunatilleke, C.V.S., Gunatilleke, I.A.U. 
N., 2009. Ecological information from spatial point patterns of plants, insights from 
point process theory. J. Ecol. 97, 616–628. 

Ledo, A., Condes, S., Montes, F., 2011. Intertype mark correlation function: A new tool 
for the analysis of species interactions. Ecol. Modell. 222, 580–587. 

Lefsky, M.A., 1997. Application of LiDAR remote sensing to the estimation of forest 
canopy and stand structure. Ph.D. dissertation. University of Virginia, 
Charlottesville, VA.  

Leroy, C., Sabatier, S., Wahyuni, N.S., Barczi, J.-F., Dauzat, J., Laurans, M., Auclair, D., 
2009. Virtual trees and light capture: a method for optimizing agroforestry stand 
design. Agroforest. Syst. 77, 37–47. 

Li, L., Huang, Z., Ye, W., Cao, H., Wei, S., Wang, Z., Lian, J., Sun, I.-F., Ma, K., He, F., 
2009. Spatial distributions of tree species in a subtropical forest of China. Oikos 118, 
495–502. 

Lin, Y., Herold, M., 2016. Tree species classification based on explicit tree structure 
feature parameters derived from static terrestrial laser scanning data. Agric. For. 
Meteorol. 216, 105–114. 

Lin, Y., Jiang, M., 2018. A new algorithm for MLS-based DBH mensuration and its 
preliminary validation in an urban boreal forest: Aiming at one cornerstone of 
allometry-based forest biometrics. Remote Sens. 10 (5), 749. 

Lin, Y.C., Chang, L.W., Yang, K.C., Wang, H.H., Sun, I.F., 2011. Point patterns of tree 
distribution determined by habitat heterogeneity and dispersal limitation. Oecologia 
165, 175–184. 

Maguya, A.S., Junttila, V., Kauranne, T., 2014. Algorithm for extracting digital terrain 
models under forest canopy from airborne LiDAR data. Remote Sens. 6 (7), 
6524–6548. 

Majumdar, K., Majumder, J., Datta, B.K., 2016. Vegetation composition, structure and 
distribution status of trees used by two tropical fruit bat species in degraded habitats 
of Northeast India. Zool. Ecol. 26 (2), 63–76. 

Malhi, Y., Jackson, T., Bentley, L.P., Lau, A., Shenkin, A., Herold, M., Calders, K., 
Bartholomeus, H., Disney, M.I., 2018. New perspectives on the ecology of tree 
structure and tree communities through terrestrial laser scanning. Interface Focus 8 
(2), 20170052. 

Martinuzzi, S., Vierling, L.A., Gould, W.A., Falkowski, M.J., Evans, J.S., Hudak, A.T., 
Vierling, K.T., 2009. Mapping snags and understory shrubs for a LiDAR-based 
assessment of wildlife habitat suitability. Remote Sens. Environ. 113, 2533–2546. 

Metz, J., Seidel, D., Schall, P., Scheffer, D., Schulze, E.-D., Ammer, C., 2013. Crown 
modeling by terrestrial laser scanning as an approach to assess the effect of 
aboveground intra- and interspecific competition on tree growth. For. Ecol. Manag. 
310, 275–288. 

Moran, L.A., Williams, R.A., 2002. Comparison of three dendrometers in measuring 
diameter at breast height. North. J. Appl. For. 19, 28–33. 
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