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Abstract: The EU Water Framework Directive foresees the ecological assessment of surface waters
against identified pressures. Nutrient loading is the main pressure impairing the ecological quality
of lake ecosystems, and aquatic macrophytes are considered good indicators of ecological response.
In this study, we statistically assessed different aspects of aquatic plant (macrophyte) diversity in
response to different trophic levels in Mediterranean lakes. We used 5690 relevés of aquatic vegetation,
distributed over 305 transects, sampled in 18 freshwater lake ecosystems during 2013–2016. Our
results show a significant decrease in taxonomic alpha diversity in lakes with a total phosphorus
content above 100 µg/L. Syntaxonomic diversity followed the species richness pattern as well.
Functional richness decreased along the trophic gradient, while functional dispersion was higher
in lakes with high trophic levels. Taxonomic and functional beta partitioning presented changes in
assembly processes leading to greater community homogeneity in lakes with higher trophic levels.
In summary, we found no redundancy between taxonomic and functional diversity indices. These
results provide novel insights into aquatic plant assembly processes of impacted freshwater lakes
needed to forward conservation and restoration practices.

Keywords: eutrophication; lakes; aquatic macrophytes; ecological response; alpha diversity; beta
diversity; functional diversity; syntaxonomic diversity; functional assessment

1. Introduction

The importance of freshwater ecosystems as biodiversity hotspots around the globe
is well established [1,2]. However, human-induced changes have been impacting the
integrity and biodiversity of these ecosystems through increasing nutrient, sediment and
contaminant loads, water abstraction, and biotic exchanges [1,3,4]. Effective conservation
and restoration measures to address biodiversity decline are needed, and, in this respect, in-
creased efforts have been made to identify ecosystem diversity changes in order to allow for
ecological predictions [5,6]. In Europe, the Water Framework Directive (WFD; [7]) necessi-
tates the ecological assessment of the structure and functioning of surface water ecosystems,
and therefore holistic ecosystem assessment approaches are required [8,9]. However, most
WFD compliant monitoring and assessment methods focus on the taxonomic aspect of
freshwater ecosystems [10]. Metrics taking into consideration all attributes of diversity,
including its functional component, failed to find a place in most biomonitoring protocols
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of freshwater ecosystems [11–13]. It has been emphasized that in order to evaluate and
quantify ecosystem functioning, new assessment tools should be developed [10].

Following Noss [14], who proposed the exploration of biodiversity’s three main facets
(compositional, structural, and functional), research started to focus on multiple-facet
diversity approaches [15,16]. These approaches aim to evaluate biodiversity changes by
using various diversity indices. Taxonomic diversity (TD), the local or regional species
pool [15,17], constitutes the most commonly used. TD is further divided into taxonomic
alpha diversity, i.e., species richness in a specific site, and taxonomic beta diversity, i.e.,
variation in species composition among sites [18,19]. Changes in taxonomic beta diversity
reflect two different phenomena: one is the species turnover from one site to another,
and the other is species absence when comparing sites, known as nestedness [17,18,20,21].
Another important component of biodiversity is functional diversity (FD), which suggests
that the species are not equivalent regarding ecosystem processes [16,22]. Likewise, FD
consists of an alpha component, which contains the functional richness in a site, and
a beta one, which stands for the variation in functional trait composition among sites
of a region, further divided into functional turnover (i.e., functional replacement) and
functional nestedness (i.e., functional loss) [20,23,24]. Finally, another level of biodiversity
is community or syntaxonomic diversity (SD), using plant communities (syntaxa) [25,26].

Aquatic macrophyte diversity, especially species richness, and its relation with en-
vironmental conditions in freshwater ecosystems has been previously examined in sev-
eral lake ecosystems [27–29]). Studies proved that they respond well to eutrophication
pressure [30–32], which had, as a consequence, to classify them as bioindicators in WFD-
compliant assessment systems. However, there was not enough focus on multi-scale
patterns and community diversity in relation to eutrophication pressure [11–13,33]. Further-
more, aquatic macrophyte diversity has not received proper attention in the Mediterranean
region, and research gaps reflecting different monitoring traditions in southern, central
and northern European countries, in the context of WFD, are still profound [11,33–36].

In this study, we aimed to identify and describe different aspects of aquatic plant
diversity in Mediterranean lakes in response to different trophic levels. More specifically,
our first objective was to explore the patterns of the taxonomic, syntaxonomic and func-
tional diversity of aquatic vegetation along the trophic gradient, by means of calculating
a number of diversity indices for lakes in different trophic levels. Then, the resulting
diversity patterns were used for our second objective, which was to infer the changes in
aquatic plant assembly rules among the different lake trophic levels.

2. Materials and Methods
2.1. Study Area and Vegetation Data

Aquatic and littoral vegetation data were collected from 18 lakes (Figure 1 and Table 1)
belonging to the Greek National Water Monitoring Network (GNWMN) [37].Water 2021, 13, 2281 3 of 17 
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Table 1. Overview of the geographical, morphological and climatic characteristics of the studied lakes, their survey period and number of records. Asterisks (*) mark transboundary
lakes, for which the characteristics refer to their part on Greek territory. Climatic characteristics have been collected by the European Climate Assessment & Dataset [38]. Average annual
temperature and annual precipitation values have been calculated on the basis of available data during the period 1995–2005. Climate zone codes according to Köppen-Geiger climate
classification system: Csa, Mediterranean hot summer climate; Csb, Mediterranean warm/cool summer climate; Cfa, Warm temperate humid hot summer climate; Cfb, Warm temperate
humid warm/cool summer climate.

No Lake Code Centroid
Longitude

Centroid
Latitude

Mean
Altitude

(masl)
Area (km2)

Mean-Max
Depth (m)

Aver.
Annual

Temp. (◦C)

Annual
Precipita-

tion
(mm)

Climate
Zone

Survey
Period

No of Tran-
sects/Relevés

Recorded

1 Volvi VOL 23.47368 40.67740 37 75.5 13–28 15.6 458 Csa August
2016 20/317

2 Doirani * DOI 22.76487 21.23853 146 30.7 4–8 14.3 453 Cfa August
2016 10/173

3 Vegoritida VEG 21.78442 40.74464 517 46.5 25–52 11.5 530 Cfb June 2016 20/509
4 Petres PET 21.69612 40.72604 573 12 3–6 11.5 562 Cfb June 2016 16/227
5 Zazari ZAZ 21.54690 4062507 600 3 5–8 11.5 595 Cfb July 2016 12/124
6 Chimaditida CHI 21.56585 40.59258 592 9.1 1–5 11.5 595 Cfb July 2016 16/239

7 Kastoria KAS 21.30080 40.52269 627 31.2 4–9 11.4 697 Cfb August
2014 20/312

8 Megali
Prespa * MEP 20.98875 40.85057 845 39.4 ~16–26 10.2 750 Cfb August

2015 12/206

9 Mikri
Prespa * MIP 21.10128 40.77031 850 46.7 4–10 10.2 728 Cfb August

2015 15/294

10 Pamvotida PAM 20.88518 39.66270 469 22.6 5–12 13.2 1081 Csa September
2013 20/74

11 Amvrakia AMV 21.17941 38.75113 20 13.5 22–54 17.3 930 Csa June 2014 20/331
12 Ozeros OZE 21.22294 38.65358 24 10.5 4–7 17.2 931 Csa June 2014 20/178
13 Lysimachia LYS 21.37665 38.56234 15 13 4–8 17.1 909 Csa June 2014 20/215
14 Trichonida TRI 21.54813 38.57309 16 93.4 30–56 17.1 902 Csa July 2015 20/792
15 Paralimni PAR 23.35285 38.45862 37 10.6 5–8 17.5 527 Csa July 2014 20/503
16 Yliki YLI 23.27973 38.39764 75 22.5 22–34 17.5 527 Csa July 2014 20/29

17 Feneos FEN 22.28513 37.92861 872 0.5 10–29 11.5 862 Csb August
2014 10/373

18 Kourna KOU 24.27776 35.33180 16 0.6 ~15–22 18.2 831 Csa May 2014 14/794
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All 18 lakes belong to Mediterranean lake types [39] and are distributed throughout
Greece. They are subject to a wide range of pressures, including different nutrient loads
and land use in the catchment areas [40,41]. Each lake was surveyed once in May to
September 2013–2016 during the main growing season of aquatic and riparian plants
(Table 1), by applying the belt transect-mapping method (for more details see [37]). We
collected 5690 vegetation relevés of 4 m2, distributed among 305 transects along lake
depth gradients (Table 1). All macrophytes (angiosperms, pteridophytes, bryophytes,
charophytes and filamentous green algae) were recorded and determined to (sub-)species
level (except filamentous green algae). Their abundance at plot level was estimated using
the semi-quantitative five-point DAFOR scale [42], transformed to percentage cover values
as follows: Dominant = 87.5%, Abundant = 50%, Frequent = 17.5%, Occasional = 5.5% and
Rare = 0.5%.

2.2. Lake Trophic Status Parameters

Environmental data (e.g., seasonal total phosphorus concentration in the water col-
umn) were collected from each lake in the context of GNWMN (see Zervas et al. [41] for
more details). Based on these data, we calculated annual mean total phosphorus (TP) con-
centration in the water column of each lake. We considered TP concentration as proxy to
eutrophication pressure [43,44], and we used it in order to assess the relationships between
aquatic vegetation and lake trophic level.

Various trophic status classification schemes have been developed in order to connect
the eutrophication levels of water bodies and nutrient concentrations [45]. In the context
of this study, the lakes were grouped into four categories according to their TP content
as follows: low trophic group, with TP < 20 µg/L, which is considered a threshold value
for reference lakes [43,46]; moderate trophic group, with TP 20–50 µg/L, which is the
range used to derive the good/moderate boundaries for Mediterranean lakes in WFD
assessment systems [47,48]; very high trophic group, TP > 100 µg/L, which responds to
hyper-eutrophic lakes according to the OECD classification scheme [49]; and the in-between
range, of the high trophic group, with TP 50–100 µg/L.

2.3. Diversity Analysis

Several diversity indices (i.e., taxonomic alpha and beta diversity, syntaxonomic di-
versity, functional alpha and beta diversity) were calculated for the aquatic and littoral
vegetation recorded in each lake. For the purpose of visualizing the diversity patterns
and turning points, these indices were plotted against the lake trophic gradient. In order
to acquire diversity values with respect to different lake sizes, calculations of diversity
indices (besides rarefaction curves) were performed on a transect level. This approach
was also favored in order to overcome species number restrictions when calculating func-
tional diversity indices [50,51]. Same-transect relevés were integrated, transect sizes were
standardized in order to equalize the number of their relevés, and macrophyte taxa cover
values were calculated for each lake transect.

For taxonomic alpha diversity, rarefaction curves and diversity profiles based on the
accumulation of relevés (sampling-unit-based incidence data) for each lake were created
with interpolation/extrapolation analysis in the iNEXT package for R [52] using Hill
numbers, as proposed by Chao et al. [53]. Species richness, the Shannon diversity index,
and the Simpson diversity index were also calculated for each transect using the vegan
package for R [54].

In order to calculate syntaxonomic diversity, i.e., the richness of plant communities
in each transect, we used the results of the phytosociological analysis in Zervas et al. [55].
Each relevé was coded according to its community affiliation, and syntaxa richness in each
transect was calculated using vegan package for R [54].

For functional alpha diversity, we calculated the multidimensional Functional Rich-
ness index (FRic: amount of niche space occupied by taxa) of Villéger et al. [51] and Rao’s
quadratic entropy (FDQ: dispersion of taxa in trait niche space) [56], as proposed by Lal-
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iberté and Legendre [57]. Calculations were based on a multiple-trait dataset with traits
covering life forms, growth morphology, survival characteristics, ecological preferences,
reproduction and dispersal attributes (for more details, see Zervas et al. [41]). The trait
dataset was transformed into a species distance matrix using Gower dissimilarity [58] for
categorical and ordinal trait values, and was analyzed by principal coordinates analysis
(PCoA) in order to reduce the trait dimensions to two axes. The resulting PCoA axes
were used in calculating FRic and FDQ diversity indices for each transect of the study. All
above-mentioned analysis was executed using the FD package for R [59].

Taxonomic beta diversity in each lake was computed by applying the multiple-site
extension to pairwise partitioned beta diversity, as proposed by Ensing and Pither [60].
Abundance community data of all transects in each lake were analyzed by using the betapart
package for R [61]. This process calculates the variation in species composition among
those transects and partitions the variation in species replacement (turnover) and species
loss (nestedness) from transect to transect in each lake.

Functional beta diversity in each lake was computed accordingly, by applying the
multiple-site beta diversity extension on the abundance community data of all transects in
each lake. For the required trait input, we used the same minimized dimension matrix we
received from the PCoA analysis of the trait data in the functional diversity calculations.
Transect functional beta diversity values, and their partitioning to functional turnover and
functional nestedness, were calculated by using the betapart package for R [61].

For each diversity index, one-way ANOVA (analysis of variance, [62]) was applied on
the average diversity values of transects belonging to lakes in the different trophic groups,
in order to evaluate the diversity differences along the trophic gradient. The Tukey Honest
Significant Differences post-hoc test (TukeyHSD; [63]), with a 95% family-wise confidence
level, was used to explore significant differences of diversity values between different lake
trophic levels. ANOVAs and TukeyHSD tests were made using the stats core-package for
R [64]. Furthermore, correlations among all diversity metrics and TP were assessed in order
to (i) investigate the strength of the relation of each diversity metric independently with TP
as an indicator of lake trophic level and (ii) explore the redundancy in calculating different
diversity metrics. Taking into consideration the nonlinearity of diversity responses to
environmental gradients, a non-linear correlation analysis [65] was applied among all the
estimated transect diversity values and the lake TP values by using the nlcor function for
R [64].

All calculations were performed in R environment version 3.5.3 [64].

3. Results

Regarding the lake classification in trophic groups, six out of the 18 lakes (Amvrakia,
Kourna, Trichonida, Feneos, Paralimni, and Yliki) were grouped into the low trophic group
(<20 µg/L TP). Another six lakes (Doirani, Megali Prespa, Ozeros, Kastoria, Mikri Prespa,
and Vegoritida) were assigned to the moderate trophic level (20–50 µg/L TP). Three lakes
(Chimaditida, Petres, and Volvi) were placed in the high trophic group (50–100 µg/L TP),
and the remaining three (Lysimachia, Pamvotida, and Zazari) in the very high trophic
group (>100 µg/L TP). The mean depth of low trophic group lakes fluctuated between 5
and 29 m, between 4 and 26 m for moderate trophic group lakes, between 1 and 13 m for
high trophic group lakes, and between 4 and 5 m for very high trophic group lakes.

Rarefaction curves (Figure 2) provided a diversity profile for each lake, as well as the
four trophic groups they belong to. Diversity indices for most lakes reached a plateau
during the interpolation of their relevés sampled, except for Yliki (low trophic) in all three
indices, and Paralimni (low trophic), Lysimachia (very high trophic), Pamvotida (very high
trophic) and Zazari (very high trophic) for species richness. Variance in the diversity values
of lakes in the low and moderate trophic groups was greater than that observed in lakes in
the high and very high trophic groups. Paralimni in the low trophic group was the most
species-rich lake, followed by Megali Prespa and Doirani in the moderate trophic group,
and Trichonida also in the low trophic one. Despite the great variation, lakes belonging
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to low and moderate trophic groups combined had higher species richness than those in
the high and very high trophic groups. Shannon and Simpson diversity indices showed a
clearer image of the diversity differences between the lakes representing different trophic
groups. Doirani, Vegoritida and Megali Prespa of the moderate trophic group were the
most diverse lakes, followed by lakes in the low and high trophic groups. Lakes belonging
in the very high trophic group presented the lowest diversity values.
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Figure 2. Rarefaction curves of species richness (SpR), Shannon index values (Shan), and Simpson index values (Simp)
for the 18 lakes (see Table 1 for lake codes) divided into four trophic groups (low: low trophic group; mod: moderate
trophic group; high: high trophic group; v. high: very high trophic group). The solid part of the lines predicts the rate of
accumulation of the diversity metric values in each lake with increasing number of sampling units (relevés) by interpolation
of data, while the dashed part of the lines continues the same predictions by extrapolation. The curve of the Yliki lake (low
trophic group) is hardly visible because of its small length (small number of relevés) and its overlap with the curves of
other lakes.

Alpha diversity patterns along the lake trophic gradient are summarized in Figure 3.
Each bar represents the mean diversity value of all transects belonging to lakes within the
same trophic group. One-way ANOVA showed that there were statistically significant
(p < 0.001) differences among all three alpha diversity values of transects belonging to
the different trophic lake groups. Greater values of species richness were calculated
in lakes with a moderate trophic level, while greater values of Shannon and Simpson
diversity values were calculated in lakes with a high trophic level. Lower values for all
three alpha diversity metrics were found in very high trophic level lakes. However, the
TukeyHSD test showed significant differences only between the lakes in the very high
trophic group and the rest of them for the species richness and Shannon indices, while
it showed significant differences between the lakes in the very high trophic group and
those in the high trophic group, as well as those in the moderate and low trophic groups
combined for the Simpson index.
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Figure 3. Mean species richness, Shannon index values, Simpson index values, syntaxonomic richness, functional richness,
and Rao’s quadratic entropy in lake transects, grouped according to annual mean total phosphorus (TP) content in each
lake’s water column (low, moderate, high and very high trophic groups). Standard error bars for all mean values are
given. One-way ANOVA results (degrees of freedom, F statistic, and p-value) for each diversity metric are presented in
each graph’s headline. Statistically significant differences of diversity means in consecutive trophic levels, according to
TukeyHSD multiple comparison for 95% family-wise confidence level, are indicated by different alphabet letters among a, b,
c and d.

Syntaxonomic diversity (number of distinct plant communities) followed the same
pattern with species richness (Figure 3), peaking in the moderate trophic group. One-way
ANOVA showed that there was also a statistically significant (p < 0.001) difference among
the values belonging to lakes of different trophic levels, but TukeyHSD differentiated
statistically only the very high trophic group from the others.

Functional diversity indices, Functional Richness and Rao’s quadratic entropy re-
vealed a different pattern (Figure 3). According to one-way ANOVA, there were statistically
significant (p < 0.001) differences among the functional diversity values of lakes belonging
to different trophic groups. Significant higher values of functional richness were calculated
for lakes belonging to the low trophic group, moderate values were calculated for moderate
and high trophic groups, and lower values were calculated for those in the very high
trophic group. The TukeyHSD test verified this differentiation among the trophic groups
(low, moderate and high combined, and very high groups). On the other hand, Rao’s
quadratic entropy was found to receive higher values for lakes in the high trophic group
and lower ones for the lakes in the low and very high trophic groups. The TukeyHSD test
revealed significant differences in Rao’s values for all trophic groups.
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The summary of the results regarding taxonomic and functional beta diversity and
their partitions, turnover and nestedness, are shown in Figure 4. Both one-way ANOVAs
for taxonomic and functional beta values showed that there were statistically significant
(p < 0.001) differences among the mean beta diversity values of lakes belonging to different
trophic groups. For taxonomic beta diversity, TukeyHSD showed that differences between
low and moderate trophic groups, and moderate and high–very high trophic groups
were statistically significant. For functional beta diversity, TukeyHSD showed significant
differences among all consecutive trophic groups. Beta partitioning showed more clear
patterns along the trophic gradient. Taxonomic beta turnover received higher values in
lakes with moderate and high trophic levels, and lower ones in those of low and very
high trophic levels, while taxonomic beta nestedness followed the reverse pattern. For
both partitions, ANOVA showed statistically significant (p < 0.001) differences among
the mean diversity values, and TukeyHSD recognized significant differences between the
values of low and moderate–high trophic groups and between those of moderate–high
and very high trophic groups. Moreover, taxonomic beta turnover values were higher
(>0.5) than those of taxonomic beta nestedness (<0.3) for all trophic groups. Functional
beta turnover was significantly lower in the high trophic group, where functional beta
nestedness peaked. ANOVA showed statistically significant (p < 0.001) differences among
the mean index values for both functional beta partitions along the trophic gradient, and
TukeyHSD recognized significant differences among the diversity values in lakes with
low–moderate trophic levels together, as compared to those in the high trophic group,
and to those in the very high trophic group. Moreover, functional beta turnover values
were found to be lower (<0.35) than those of functional beta nestedness (>0.35) for all
trophic groups.
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With respect to the relationships between all diversity metrics and TP (Table 2), all
paired-metric correlations were statistically significant according to non-linear correlation
analysis (adjusted p < 0.05). However, low (<0.8) correlation coefficients were calculated
for most relationships. None of the individual diversity metrics showed a high correlation
with TP. Between the different diversity metrics, species richness was highly correlated
with the Shannon index and syntaxonomic richness, while the Shannon index was also
highly correlated with the Simpson index and syntaxonomic richness. Furthermore, high
correlations were also found between the different beta diversity metrics. On the other
hand, no high correlations were found between taxonomic and functional diversity metrics.

Table 2. Overview of the non-linear correlation analysis results among all diversity metrics (SpeRich: Species richness; Shan:
Shannon index; Simp: Simpson index; Syntax: Syntaxonomic richness; FunRich: Functional richness; Rao: Rao’s quadratic
entropy; BetOver: Overall taxonomic beta diversity index; BetTurn: Taxonomic beta turnover; BetNest: Taxonomic beta
nestedness; FunBeta: Overall functional beta diversity index; FunTurn: Functional beta turnover; FunNest: Functional beta
nestedness) and total phosphorus content (TP) in lakes. All paired-metric correlations were found statistically significant
(adjusted p < 0.05). Table cells contain the nonlinear correlation coefficient (R) of each metric-pair and gray cells indicate
pair-relations with estimated correlations above 0.8.

TP SpeRich Shan Simp Syntax FunRich Rao BetOver BetTurn BetNest FunBeta FunTurn FunNest

TP 1
SpeRich 0.33 1

Shan 0.38 0.86 1
Simp 0.41 0.73 0.96 1

Syntax 0.34 0.80 0.81 0.74 1
FunRich 0.39 0.73 0.63 0.5 0.54 1

Rao 0.58 0.49 0.70 0.78 0.43 0.33 1
BetOver 0.52 0.12 0.26 0.29 0.24 0.21 0.31 1
BetTurn 0.71 0.29 0.44 0.44 0.37 0.33 0.39 0.87 1
BetNest 0.79 0.34 0.44 0.45 0.36 0.36 0.46 0.73 0.96 1
FunBeta 0.71 0.23 0.34 0.40 0.29 0.17 0.31 0.72 0.75 0.63 1
FunTurn 0.79 0.27 0.32 0.28 0.41 0.15 0.38 0.82 0.68 0.58 0.72 1
FunNest 0.75 0.13 0.31 0.33 0.30 0.18 0.39 0.65 0.76 0.68 0.71 0.77 1

4. Discussion
4.1. Taxonomic Alpha Diversity Patterns

Grime [66] described the “hump-back” model of diversity, in which high biodiversity
is observed at intermediate intensities of disturbance due to the retardation of competi-
tive exclusion. This “hump-back” model was also discovered governing the relationship
between aquatic plant species richness and trophic level, recording higher species rich-
ness in mesotrophic lakes, and lower in nutrient-poor and nutrient-rich ones [27,29,67].
In this intermediate range of nutrient loads, an increase in emergent macrophyte rich-
ness and abundance due to lower levels of competitive exclusion overcompensates for
the decrease in submerged macrophyte richness and abundance due to elevated water
turbidity [67–69]. Jeppesen et al. [70] placed this intermediate range of nutrient loads
between 50 and 150 µg/L TP for northern temperate lakes, while Romo et al. [71] sug-
gested 50 µg/L TP as a critical threshold for Mediterranean lakes to avoid the shift to a
turbid-water phase and preserve macrophyte dominance.

Our results indicate that there is a similar but less obvious pattern for the taxonomic
alpha diversity of aquatic plant species in Mediterranean lakes, with higher species richness
in lakes with moderate trophic levels (20–50 µg/L TP) and higher Shannon and Simpson
index values for lakes with high trophic levels (50–100 µg/L TP). However, only the
Simpson index was able to reveal a statistically significant peak of diversity in lakes with
a high trophic level, while species richness and the Shannon index revealed significant
diversity changes only between lakes below and above the 100 µg/L TP threshold (high–
very high lake trophic boundary). The “hump-back” pattern might have been more
profound in our study if data concerning very low trophic level lakes (<10 µg/L TP), which
are commonly used in other studies (e.g., [30,69]), were available in our dataset. Parts of
the “hump-back” diversity pattern were described recently by García-Girón et al. [36] for
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macrophytes in Mediterranean ponds, as well as in studies of other aquatic organisms,
such as phytoplankton, zooplankton, fish and macroinvertebrates [72–74].

Penning et al. [30] and Kolada et al. [69] were also able to find the same “hump-back”
response, with macrophyte species richness peaking at 20–50 µg/L TP, when testing its
indicator value for a great number of northern and central European lakes. However, great
variation in their dataset and the resulting weak relation to TP content led to the conclusion
that species richness alone is of limited explanatory power. Similarly, we found great varia-
tion in the values of species richness, Shannon and Simpson indices, especially for low and
moderate trophic level lakes, leading to uncertainty in the assessment results. Moreover,
neither of these three alpha diversity metrics independently showed a high correlation
with TP lake content. Similar results presented by García-Girón et al. [36] strengthened
their suggestions for the complementary use of several diversity metrics. Diversity metrics
for aquatic vegetation are considered sensitive to environmental “noise” associated with
a number of different environmental drivers related to habitat conditions, habitat hetero-
geneity and other water physico-chemical characteristics [29,33–35]. Therefore, our results
concerning alpha diversity metrics can be attributed to two different scenarios. The first
scenario is that perhaps nutrient loading was not the most important driver of the spatial
variation of macrophyte communities within a lake, and other drivers such as habitat het-
erogeneity or other local disturbance factors should be taken into consideration [75,76]. The
second scenario is that nutrient loading could be the most important driver of macrophyte
spatial variation but it does not affect the whole lake body homogenously, having in mind
that many lakes may be impacted by point-source nutrient loadings and diverse water
quality conditions prevail among distant shoreline habitats [76–78].

4.2. Taxonomic Beta Diversity Patterns

Another important aspect when analyzing diversity patterns for conservation pur-
poses is the spatial variation of species composition among different communities, known
as taxonomic beta diversity [18,19,79]. Its two components, species turnover (or species
replacement) and nestedness (species loss), can reflect the drivers behind spatial variation,
such as the natural and life history of species (e.g., distribution dynamics, dispersal strate-
gies and evolution), species interactions (e.g., competition, mutualism and parasitism),
and other ecological factors (e.g., environmental conditions, habitat heterogeneity and
disturbance) [79–81].

According to our results, the spatial variation of species composition (total beta diver-
sity), calculated among multiple sites within each lake, remains high at all trophic levels,
following the results of similar studies [36,82,83]). Partitioning beta diversity revealed two
distinct patterns of species turnover and nestedness along the trophic gradient. Species
turnover among sites in lakes with moderate and high trophic levels was higher than
that in lakes with low and very high trophic levels, where nestedness increased. This
indicates that spatial variation in moderate and high trophic level lakes is attributed mainly
to species replacement from site to site, maintaining high species richness in those lakes.
On the other hand, spatial variation in lakes with a low trophic level with slightly lower
species richness, and in lakes with a very high trophic level with significantly lower species
richness, is attributed to a mix of species replacement and species loss from site to site.
Taking into consideration that species turnover is often connected with environmental
filtering and competition, while nestedness indicates other ecological processes, such as
human disturbance [21,79,81,84], we conclude that ecological factors other than nutrient
enrichment are also playing a significant role in macrophyte spatial distribution patterns
within lakes (scenario 1), and local site nutrient profiles are important (scenario 2) in order
to disentangle and quantify the relative contribution of each ecological process to these
spatial distribution patterns.
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4.3. Syntaxonomic Diversity Patterns

Syntaxonomic (or community) diversity is another way to express vegetation diversity
by presenting at the same time plant diversity and their specific habitat features, thus acting
as an indicator for ecological heterogeneity [25,26]. Plant species are the basis for describing
syntaxonomic (phytosociological) units; therefore, syntaxonomic richness may be greatly
affected by species richness. However, the number of plant communities in a habitat does
not always imply the same number of species (species richness), since plant species are not
equally distributed in communities, and disturbance may result in an increase/decrease in
companion taxa without affecting the number of their communities [25,26].

In our results, however, we found that syntaxonomic richness followed a similar
pattern to that of species richness (highly correlated), i.e., slightly higher numbers of
plant communities were observed in lakes with moderate trophic levels, slightly lower
numbers in lakes with low and high trophic levels, and significantly lower numbers in lakes
with very high trophic levels. This result may be attributed to the fact that macrophyte
communities contain a small number of taxa [55] and reinforces the “hump-back” model
of diversity of macrophyte communities in lakes in the middle of the trophic gradient.
However, variation in syntaxonomic richness values was also an issue for lakes with low
and moderate trophic levels, reinforcing the need for the identification of parameters other
than nutrient loading.

4.4. Functional Alpha Diversity Patterns

It has been extensively discussed that ecosystem functioning often depends on the
richness and distribution of species, taking into consideration their functional role in the
ecosystem [6,85,86]). High species richness does not always imply high ecosystem resilience
(e.g., nuisance species) and it is not always the most desired target for conservation and
restoration purposes [5,87,88]. Functional diversity is another facet of biodiversity adopted
in order to evaluate diversity responses to ecosystem disturbance [87–89].

A number of different indices have emerged in order to quantify functional diversity,
by assessing the value and range of organismal traits in ecosystems [50,51,90]. Functional
richness, i.e., the functional niche space occupied by a species assemblage, and functional
divergence, i.e., the distance of high species abundances from the center of the functional
niche space, have been suggested as the best solution in analyzing community assembly
processes under stress gradients [90]. Functional richness is increasing when present
species occupy a larger functional niche space [50,51,90]. Therefore, functional richness is
usually positively correlated with species richness (having more species leads to a bigger
functional space) but not always, as the functional traits of some community assemblies
may be more closely clustered than others [50]. Functional divergence is increasing when
the majority of the community (species present and their abundance) is occupying the edges
of the functional niche space [50,90,91]. Rao’s quadratic entropy is an index that measures
both functional richness and divergence (conceptually similar to functional dispersion),
increasing when either the functional niche space occupied by species increases and/or
when these species are displaced further from the functional niche center [57,90,91].

In our results, we witnessed a drop in functional richness in the lakes of the moderate
and high trophic groups, in relation to those in the low trophic group, while maintaining
similar levels of species richness. This indicates that macrophyte species found in low
trophic level lakes are being replaced in moderate and high trophic level ones by species
that occupy a smaller functional niche space; thus, such species are defined by more ho-
mogenous trait patterns. Lakes with very high trophic levels present simultaneously lower
functional and lower species richness, indicating both species and functional loss. This
result of ours only partly follows the findings of previous studies [92–94]) that suggested
species loss as the primal driver for functional changes along trophic gradients. On the
other hand, Rao’s quadratic entropy revealed the similar “hump-back” response, much like
the taxonomic indices, concurring with the results of García-Girón et al. [36]. This indicates
that functional richness in low trophic level lakes is inflated by rare species with extreme
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trait values, while the majority of the community occupies a much smaller functional
niche space. The highest Rao index values in high trophic level lakes show that their
macrophyte communities are more dispersed in the functional niche space, following the
evenness pattern presented by the Simpson index. Therefore, while low trophic level lakes
present a greater amount of functional richness, they are characterized by lower functional
differentiation than needed to ensure ecosystem resilience to changing environmental
conditions [88,89,95].

4.5. Functional Beta Diversity Patterns

Much like taxonomic beta diversity, the spatial variation of functional trait compo-
sitions can be analyzed by functional beta diversity and its two analogous components,
functional turnover (i.e., functional replacement) and functional nestedness (i.e., functional
loss) [20,23,24]. Functional beta diversity metrics attempt to detect patterns in niche-based
assembly processes, reflecting the responses of traits rather than species to the same ecolog-
ical drivers that taxonomic beta diversity attempts to investigate [20,96].

According to our results, there were changes in spatial variation in trait composition
(total functional beta diversity) along the trophic gradient, but we were not able to detect
the profound downgrading pattern presented by Fu et al. [97]. The same factors that
were suggested for taxonomic beta diversity, i.e., factors other than nutrient loading
environmental drivers of macrophyte assemblages’ variation (scenario 1), and differentiated
local trophic conditions inside the lakes (scenario 2), should be taken into consideration
in order to quantify beta diversities. Partitioning functional beta diversity showed that
there is an increase in spatial variation due to functional loss in high trophic level lakes,
indicating that species-rich macrophyte communities in some sites (transects) of those lakes
are losing parts of their functional niche space. Concurring with the results of Fu et al. [97],
the overall functional beta diversity in all trophic levels was primarily attributed to the
functional nestedness component (functional loss), while taxonomic beta diversity was
mostly attributed to species turnover (species replacement). This indicates that along the
trophic gradient, regardless of changes in species richness, species replacement among sites
is the dominating factor of spatial variation, accompanied at the same time by functional
loss. This concept agrees with a number of previous studies [98–100]) suggesting that
nutrient loads lead to increased homogeneity in freshwater biotic assemblages.

5. Conclusions

The response of different aspects of aquatic plant diversity along a trophic gradient
found in 18 Mediterranean lakes was assessed. A number of different taxonomic, syntaxo-
nomic, and functional indices were applied and their patterns of change along different
trophic levels were investigated. Higher values of species richness and the Shannon and
Simpson diversity indices were recorded in lakes with TP levels up to 100 µg/L TP, and
significantly lower values were recorded in lakes with TP levels higher than 100 µg/L.
The “hump-back” diversity pattern was identified statistically only for the Simpson diver-
sity index, perhaps due to the lack of lakes with very low trophic levels. Syntaxonomic
richness followed the species richness pattern. Great variations in diversity values were
found probably due to environmental drivers other than nutrient loading. Functional rich-
ness followed a decreasing pattern along the trophic gradient, while Rao’s index showed
a “hump-back” pattern peaking in lakes with high trophic levels, indicating that low
trophic level lakes contain rare species with extreme trait values, while the majority of the
community abundance occupies a much smaller functional niche space. The partitions
of taxonomic and functional beta diversity, turnover and nestedness described changes
in assembly processes leading to greater community homogeneity in lakes with higher
trophic levels. None of the diversity indices independently were highly correlated with
lake trophic content, and no high correlation (redundancy) was found among taxonomic
alpha or beta diversity indices and functional alpha or beta diversity indices. In conclusion,
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the complementary use of several diversity metrics is recommended in order to identify
changes in community assembly processes as a response to eutrophication pressure.
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