
Physics Letters B 710 (2012) 569–577
Contents lists available at SciVerse ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Search for Higgs bosons of the minimal supersymmetric standard model in pp̄
collisions at

√
s = 1.96 TeV

D0 Collaboration

V.M. Abazov ah, B. Abbott bt, B.S. Acharya ab, M. Adams av, T. Adams at, G.D. Alexeev ah, G. Alkhazov al,
A. Alton bh,1, G. Alverson bg, M. Aoki au, A. Askew at, B. Åsman an, S. Atkins be, O. Atramentov bl,
K. Augsten i, C. Avila g, J. BackusMayes ca, F. Badaud l, L. Bagby au, B. Baldin au, D.V. Bandurin at,
S. Banerjee ab, E. Barberis bg, P. Baringer bc, J. Barreto c, J.F. Bartlett au, U. Bassler q, V. Bazterra av,
A. Bean bc, M. Begalli c, C. Belanger-Champagne an, L. Bellantoni au, S.B. Beri z, G. Bernardi p, R. Bernhard u,
I. Bertram ao, M. Besançon q, R. Beuselinck ap, V.A. Bezzubov ak, P.C. Bhat au, S. Bhatia bj, V. Bhatnagar z,
G. Blazey aw, S. Blessing at, K. Bloom bk, A. Boehnlein au, D. Boline bq, E.E. Boos aj, G. Borissov ao, T. Bose bf,
A. Brandt bw, O. Brandt v, R. Brock bi, G. Brooijmans bo, A. Bross au, D. Brown p, J. Brown p, X.B. Bu au,
M. Buehler au, V. Buescher w, V. Bunichev aj, S. Burdin ao,2, T.H. Burnett ca, C.P. Buszello an, B. Calpas n,
E. Camacho-Pérez ae, M.A. Carrasco-Lizarraga bc, B.C.K. Casey au, H. Castilla-Valdez ae, S. Chakrabarti bq,
D. Chakraborty aw, K.M. Chan ba, A. Chandra by, E. Chapon q, G. Chen bc, S. Chevalier-Théry q, D.K. Cho bv,
S.W. Cho ad, S. Choi ad, B. Choudhary aa, S. Cihangir au, D. Claes bk, J. Clutter bc, M. Cooke au, W.E. Cooper au,
M. Corcoran by, F. Couderc q, M.-C. Cousinou n, A. Croc q, D. Cutts bv, A. Das ar, G. Davies ap, S.J. de Jong ag,
E. De La Cruz-Burelo ae, F. Déliot q, R. Demina bp, D. Denisov au, S.P. Denisov ak, S. Desai au, C. Deterre q,
K. DeVaughan bk, H.T. Diehl au, M. Diesburg au, P.F. Ding aq, A. Dominguez bk, T. Dorland ca, A. Dubey aa,
L.V. Dudko aj, D. Duggan bl, A. Duperrin n, S. Dutt z, A. Dyshkant aw, M. Eads bk, D. Edmunds bi, J. Ellison as,
V.D. Elvira au, Y. Enari p, H. Evans ay, A. Evdokimov br, V.N. Evdokimov ak, G. Facini bg, T. Ferbel bp,
F. Fiedler w, F. Filthaut ag, W. Fisher bi, H.E. Fisk au, M. Fortner aw, H. Fox ao, S. Fuess au, A. Garcia-Bellido bp,
G.A. García-Guerra ae,3, V. Gavrilov ai, P. Gay l, W. Geng n,bi, D. Gerbaudo bm, C.E. Gerber av, Y. Gershtein bl,
G. Ginther au,bp, G. Golovanov ah, A. Goussiou ca, P.D. Grannis bq, S. Greder r, H. Greenlee au,
Z.D. Greenwood be, E.M. Gregores d, G. Grenier s, Ph. Gris l, J.-F. Grivaz o, A. Grohsjean q,9, S. Grünendahl au,
M.W. Grünewald ac, T. Guillemin o, G. Gutierrez au, P. Gutierrez bt, A. Haas bo,4, S. Hagopian at, J. Haley bg,
L. Han f, K. Harder aq, A. Harel bp, J.M. Hauptman bb, J. Hays ap, T. Head aq, T. Hebbeker t, D. Hedin aw,
H. Hegab bu, A.P. Heinson as, U. Heintz bv, C. Hensel v, I. Heredia-De La Cruz ae, K. Herner bh,
G. Hesketh aq,5, M.D. Hildreth ba, R. Hirosky bz, T. Hoang at, J.D. Hobbs bq, B. Hoeneisen k, M. Hohlfeld w,
Z. Hubacek i,q, V. Hynek i, I. Iashvili bn, Y. Ilchenko bx, R. Illingworth au, A.S. Ito au, S. Jabeen bv, M. Jaffré o,
D. Jamin n, A. Jayasinghe bt, R. Jesik ap, K. Johns ar, M. Johnson au, A. Jonckheere au, P. Jonsson ap, J. Joshi z,
A.W. Jung au, A. Juste am, K. Kaadze bd, E. Kajfasz n, D. Karmanov aj, P.A. Kasper au, I. Katsanos bk,
R. Kehoe bx, S. Kermiche n, N. Khalatyan au, A. Khanov bu, A. Kharchilava bn, Y.N. Kharzheev ah, J.M. Kohli z,
A.V. Kozelov ak, J. Kraus bi, S. Kulikov ak, A. Kumar bn, A. Kupco j, T. Kurča s, V.A. Kuzmin aj, S. Lammers ay,
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We report results from searches for neutral Higgs bosons produced in pp̄ collisions recorded by the D0
experiment at the Fermilab Tevatron Collider. We study the production of inclusive neutral Higgs boson
in the ττ final state and in association with a b quark in the bττ and bbb final states. These results
are combined to improve the sensitivity to the production of neutral Higgs bosons in the context of the
minimal supersymmetric standard model (MSSM). The data are found to be consistent with expectation
from background processes. Upper limits on MSSM Higgs boson production are set for Higgs boson
masses ranging from 90 to 300 GeV. We exclude tan β > 20–30 for Higgs boson masses below 180 GeV.
These are the most stringent constraints on MSSM Higgs boson production in pp̄ collisions.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

In the minimal supersymmetric standard model (MSSM) [1], the
SU(2) symmetry is broken via two Higgs doublets; the first dou-
blet couples to down-type fermions only while the second couples
to up-type fermions. This leads to five physical Higgs bosons: two
neutral CP-even bosons, h and H , one neutral CP-odd boson A,
and two charged bosons H± . The neutral Higgs bosons are col-
lectively denoted as φ. At leading order the mass spectrum and
the couplings of the Higgs bosons are determined by only two pa-
rameters, conventionally chosen to be tan β , the ratio of the two
Higgs doublet vacuum expectation values, and M A , the mass of the
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pseudoscalar Higgs boson. Radiative corrections introduce addi-
tional dependencies on other model parameters. Although tan β is
a free parameter in the MSSM, some indications suggest it should
be large (tanβ � 20). A value of tan β ≈ 35 [2] would naturally ex-
plain the top to bottom quark mass ratio. The observed density of
dark matter also points towards high tan β values [3].

At large tanβ , one of the CP-even Higgs bosons (h or H) is
approximately degenerate in mass with the A boson. In addi-
tion, they have similar couplings to fermions, which are enhanced
(suppressed) by tanβ compared to the standard model (SM) for
down-type (up-type) fermions. This enhancement has several con-
sequences. First, the main decay modes become φ → bb̄ and
φ → τ+τ− with respective branching ratios B(φ → bb̄) ≈ 90% and
B(φ → τ+τ−) ≈ 10%. Secondly, the main production processes at a
hadron collider involve b quarks originating from the sea. Inclusive
Higgs boson production is dominated by gluon fusion (ggφ) and
bb̄ annihilation (bbφ), as shown in Fig. 1. The latter process may
produce a b quark in the acceptance of the detector in addition
to the Higgs boson. This associated production gb → φb (bgbφ) is
shown in Fig. 1(c). In this case, the detection of the associated b
quark is a powerful experimental handle for reducing backgrounds.

MSSM Higgs boson masses below 93 GeV have been excluded
by experiments at the CERN e+e− collider (LEP) [4]. The CDF and
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Fig. 1. Main Higgs boson production mechanisms in the MSSM in the 5-flavor scheme where c and b quarks are included in parton density functions. The gluon fusion (a)
and bb̄ annihilation (b) processes dominate the inclusive production, while (c) is the dominant process for associated bφ production.
Table 1
Searches combined in this Letter.

Final state L (fb−1) Reference

φ → τμτh (b-jet veto) 7.3
bφ → bτμτh 7.3 [7]
bφ → bb̄b 5.2 [8]

D0 Collaborations have searched for MSSM neutral Higgs bosons
decaying to tau pairs both inclusively [5,6] and in association with
a b quark [7]. They have also searched for bφ → bbb production
[8,9], which is challenging due to the high rate of multijet (MJ)
production. Since these results have comparable sensitivities, com-
bining them further enhances the potential reach. Recently, similar
searches were performed at the LHC [10,11]. In this Letter, we
present a combination of three searches performed by the D0 Col-
laboration in the φ → ττ , bφ → bττ , and bφ → bbb final states.
Since the inclusive and bgbφ production signal samples in the di-
tau final states are not mutually exclusive, the D0 result presented
in [6] cannot be directly combined with [7]. Hence, we re-analyse
here the inclusive φ → ττ production: we require that there are
no b jets, we extend the dataset to 7.3 fb−1 of integrated lumi-
nosity, and we increase the trigger acceptance and refine the treat-
ment of systematic uncertainties. The di-tau channels are restricted
to final states where one τ lepton (τμ) decays via τ → μνμντ and
the other (τh) decays hadronically.

2. Detector and event reconstruction

The data analysed in the different studies presented here have
been recorded by the D0 detector [12]. It has a central-tracking
system, consisting of a silicon microstrip tracker and a central fi-
bre tracker, both located within a 2 T superconducting solenoidal
magnet, with designs optimised for tracking and vertexing at pseu-
dorapidities [13] |η| < 3 and |η| < 2.5, respectively. A liquid-argon
and uranium calorimeter has a central section covering pseudora-
pidities |η| up to ≈ 1.1, and two end calorimeters that extend cov-
erage to |η| ≈ 4.2, with all three housed in separate cryostats [14].
An outer muon system, at |η| < 2, consists of a layer of tracking
detectors and scintillation trigger counters in front of 1.8 T toroids,
followed by two similar layers after the toroids.

The integrated luminosities (L) [15] associated with each
search are summarised in Table 1. Di-tau events were recorded
using a mixture of single high-pT muon, jet, tau, muon plus jet,
and muon plus tau triggers. The efficiency of this inclusive trigger
condition is measured in a Z → τμτh data sample with respect to
single muon triggers. We also verify this measurement in a sample
of Z(→ τμτh) + jets events. Depending on the kinematics and on
the decay topology of the τh , the trigger efficiency ranges from 80%
to 95%. For the bbb analysis, we employ triggers selecting events
with at least three jets. In addition, 95% of the bbb data sam-
ple was recorded with b-tagging requirements at the trigger level.
The trigger efficiency for mφ = 150 GeV is approximately 60% for
events passing the analysis requirements.
Muons are reconstructed from track segments in the muon sys-
tem. They are matched to tracks in the inner tracking system. The
timing of associated hits in the scintillators must be consistent
with the beam crossing to veto cosmic muons.

Hadronic tau decays are characterised by narrow jets that are
reconstructed using a jet cone algorithm with a radius of 0.3 [16]
in the calorimeter and by low track multiplicity [17]. We split the
τh candidates into three different categories that approximately
correspond to one-prong τ decays with no π0 meson (τh type 1),
one-prong decay with π0 mesons (τh type 2), and multi-prong
decay (τh type 3). In addition, a neural-network-based τh identi-
fication (NNτ ) has been trained to discriminate light parton jets
(u, d, s quarks or gluon) from hadronic τ decays [17]. We select
τh candidates requiring NNτ > 0.9 (0.95 for τh type 3). This condi-
tion has an efficiency of approximately 65% while rejecting ∼ 99%
of quark/gluon jets.

Jets are reconstructed from energy deposits in the calorime-
ter [18] using the midpoint cone algorithm [16] with a radius
of 0.5. All jets are required to have at least two reconstructed
tracks originating from the pp̄ interaction vertex matched within
�R(track, jet-axis) = √

(�η)2 + (�ϕ)2 < 0.5 (where ϕ is the az-
imuthal angle). To identify jets originating from b quark decay, a
neural network b-tagging algorithm (NNb) [19] has been devel-
oped. It uses lifetime-based information involving the track impact
parameters and secondary vertices as inputs.

The presence of neutrinos is inferred from the missing trans-
verse energy, /E T , which is reconstructed as the negative of the
vector sum of the transverse energy of calorimeter cells with
|η| < 3.2, corrected for the energy scales of all reconstructed ob-
jects and for muons.

3. Signal and background Monte Carlo simulation

Signal samples are generated with the LO event generator
pythia [20]. The inclusive production is simulated with the SM
ggφ process. We checked that the kinematic differences between
bbφ and ggφ do not have any impact on our final result. The
associated production with a b-quark is generated with the SM
gb → φb process. The contributions to the bφ cross section and
event kinematics from next-to-leading order (NLO) diagrams are
taken into account by using mcfm [21] to calculate correction fac-
tors for the pythia generator as a function of the leading b quark
pT and η in the range pb

T > 12 GeV and |ηb| < 5.
In the final states with a tau pair, the dominant backgrounds

are due to Z → ττ (+ jets), diboson (WW , WZ and ZZ), W + jets, tt̄
pair and MJ production, the latter being estimated from data. Dibo-
son events are simulated with pythia while the Z + jets, W + jets,
and tt̄ samples are generated using alpgen [22]. In the bbb chan-
nel, the dominant background is due to MJ production. We simu-
late MJ background events from the bb̄ j, bb̄ j j, cc̄ j, cc̄ j j, bb̄cc̄, and
bb̄bb̄ processes, where j denotes a light parton, with the alpgen

event generator. The small contribution from tt̄ production to the
background is also simulated with alpgen. The contribution from
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other processes, such as Z + bb̄ and single top quark production, is
negligible.

The alpgen samples are processed through pythia for show-
ering and hadronisation. tauola [23] is used to decay τ leptons
and evtgen [24] to model b hadron decays. All samples are fur-
ther processed through a detailed geant [25]-based simulation of
the D0 detector. The output is then combined with data events
recorded during random beam crossings to model the effects of
detector noise and pile-up energy from multiple interactions and
different beam crossings. Finally, the same reconstruction algo-
rithms as for data are applied to the simulated events. Data control
samples are used to correct the simulation for object identifi-
cation efficiencies, energy scales and resolutions, trigger efficien-
cies, and the longitudinal pp̄ vertex distribution. Signal, tt̄ pair,
and diboson yields are normalised to the product of their accep-
tance and detector efficiency (both determined from the simula-
tion), their corresponding theoretical cross section and the lumi-
nosity.

In the bbb final state, the relative contribution of the different
MJ backgrounds is determined from data; its overall normalisa-
tion is constrained by a fit done in the final limit-setting pro-
cedure which exploits the dijet-mass shape differences between
signal and background. In the di-tau channels, a dedicated treat-
ment of the dominant Z → ττ background has been developed to
reduce its systematic uncertainties. The simulation of the Z boson
kinematics is corrected by comparing a large sample of Z → μμ
events in data and in the simulation. We measure correction fac-
tors in each jet multiplicity bin as a function of the Φ∗ quantity
introduced in Ref. [26], leading jet η, and leading b-tagged jet
NNb . This affects both the normalisation and the kinematic dis-
tributions. For the W + jets background, the muon predominantly
arises from the W boson decay while the τh candidate is a mis-
reconstructed jet. The W + jets simulation is normalised to data,
for each jet multiplicity bin, using a W (→ μν) + jets data control
sample.

4. Analysis strategy

In this section, we describe the search strategy as well as the
selection of the final signal samples. Further details of the bττ and
bbb analyses can be found in Refs. [7] and [8], respectively.

4.1. Di-tau final states

The ττ and bττ searches follow a similar strategy. We first
define a common selection by retaining events with one recon-
structed pp̄ interaction vertex with at least three tracks, exactly
one isolated muon and exactly one reconstructed τh . We require
the muon to have a transverse momentum p

τμ

T > 15 GeV, |ημ| <

1.6, and to be isolated in the calorimeter and in the central track-
ing system, i.e., �R(μ, jet) > 0.5 relative to any reconstructed jet.
The τh candidate must have a transverse momentum, as measured
in the calorimeter with appropriate energy corrections, pτh

T >

10 GeV, |ητh | < 2.0, �R(τh,μ) > 0.5 relative to any muon, and
τh tracks must not be shared with any reconstructed muons in
the event. The sum of the transverse momenta, ptrk

T , of all tracks
associated with the τh candidate must satisfy ptrk

T > 7/5/10 GeV,
respectively, for τh types 1/2/3. We require the distance along the
beam axis between the τh and the muon, at their point of closest
approach to the pp̄ interaction vertex, �z(τh,μ) < 2 cm. In addi-
tion, the τh and the muon must have an opposite electric charge
(OS) and a transverse mass MT (μ,/E T ) < 60 GeV (100 GeV for τh

type 2) where MT (μ,/E T ) =
√

2 · p
τμ · /E T · [1 − cos�ϕ(μ,/E T )].
T
4.1.1. Inclusive ττ selection
For the inclusive ττ selection, we tighten the requirements

on the τh transverse momentum to suppress the MJ background:
pτh

T > 12.5 GeV (15 GeV for τh type 3) and ptrk
T > 12.5/7/15 GeV

respectively for τh type 1/2/3. We further reduce the W + jets
background by requiring MT (μ,/E T ) < 40 GeV. We define Mhat,
which represents the minimum centre-of-mass energy consistent
with the decay of a di-tau resonance, by

Mhat ≡
√(

Eμτh − pμτh
z + /E T

)2 − ∣∣�pτh
T + �pτμ

T + �/E T

∣∣2
,

where Eμτh is the energy of the μτh system and pμτh
z is its

momentum component along the beam axis. We require Mhat >

40 GeV to suppress the MJ background. Finally, to prevent any
overlap with the bττ sample, we select only events for which no
jet has NNb > 0.25.

4.1.2. bττ selection
The complementary sample with at least one b-tagged jet with

NNb > 0.25 constitutes the bττ sample. This b-tagged sample suf-
fers from large Z + jets, tt̄ and MJ backgrounds. We build separate
multivariate discriminants, DMJ and Dtt̄ , to discriminate against
the MJ and tt̄ processes. We require DMJ > 0.1 and Dtt̄ > 0.1, then
we combine NNb , DMJ, and Dtt̄ , to form a set of final discriminat-
ing variables D f (one for each τh type and mφ ) to be used in the
limit-setting procedure. Further details can be found in Ref. [7].

4.1.3. MJ background estimation
In both di-tau channels, the MJ background is estimated from

data control samples applying two different methods. The first
is based on the small correlation between the electric charge of
muon and τh in MJ events. For each analysis, we select a data
sample with identical criteria as the signal sample but with the
two leptons having the same electric charge (SS). We subtract the
residual contribution from other SM backgrounds from this MJ-
dominated SS sample. We measure the ratio of the number of
OS to SS events to be 1.09 ± 0.01 and 1.07 ± 0.01, respectively,
in the ττ and bττ channels. We then multiply the SS sample
yields by this ratio. This method is used in the inclusive ττ chan-
nel but it suffers from large statistical uncertainties of the bττ
SS sample. Therefore, we develop an alternate method that uses a
MJ-enriched control sample with identical requirements as applied
to the signal samples but reversing the muon isolation criteria.
In a MJ-dominated SS sample, obtained without any requirement
on the number of jets (Njets), the ratio of the probabilities for a
muon of a MJ-event to appear isolated or not isolated, R iso/iso ≡
P(μiso|MJ)/P(μiso|MJ), is measured as function of ητh , pτh

T , and
leading-jet pT (if Njets > 0). The ratio R iso/iso is then applied to
the distributions of the non-isolated-muon sample, predicting the
MJ background in the two signal samples. This method is used in
the bττ study. In each analysis, the alternate method is used to
determine the systematic uncertainty on the MJ-background nor-
malisation.

The distributions of Mhat for the ττ study and two different
D f discriminants for the bττ analysis are presented in Fig. 2. The
observed data, expected signal and background yields are given in
Table 2 for the two di-tau event selections.

4.2. bbb final state

In the bbb analysis, at least three jets, each satisfying pT >

15 GeV, |η| < 2.5 and NNb > 0.775, are required. The two lead-
ing jets must have pT > 25 GeV. To improve the signal sensitivity,
the events are separated into two channels, containing exactly 3 or
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Fig. 2. Distribution of Mhat in the inclusive ττ sample on (a) linear and (b) logarithmic scale. (c) D f in the bττ sample trained for mφ = 100 GeV, and (d) for mφ = 190 GeV
adding the final requirements on DMJ and Dtt̄ . All τh types are combined. The predicted signal is shown in the case of the mmax

h scenario (μ = +200 GeV and tanβ = 40)
for mφ = 100 GeV in (a) and (c), and mφ = 190 GeV in (b) and (d).
Table 2
Expected background yield, observed data yield, and expected signal yields for the
di-tau selections with their total systematic uncertainties. The signal yields are
given for the mmax

h scenario (μ = +200 GeV and tanβ = 40).

ττ bττ

Z(+jets) 11 547 ± 634 218 ± 17
tt̄ 25 ± 4 183 ± 32
MJ 1343 ± 236 36 ± 6
Other 560 ± 25 40 ± 2

Total background 13 474 ± 684 476 ± 40
Data 13 344 488

Signal mφ = 100 GeV 1165 81
Signal mφ = 190 GeV 70 12

4 jets. The data and signal yields are given in Table 3. In addition,
a likelihood discriminant, Dbbb , based on six kinematic variables
is employed. Two separate likelihoods, one for the mass region
90 � M A < 140 GeV and the other for 140 � M A < 300 GeV, are
used. The dominant heavy flavor multijet backgrounds are esti-
mated using a data driven technique. The background in the triple
b-tagged sample is estimated by applying a 2D-transformation in
Mbb̄ and Dbbb , derived from the ratio of the number of MC events
in the triple and double b-tagged samples, to the double b-tagged
data sample. The method significantly reduces the sensitivity of
the background model to the underlying kinematics of the simu-
lated events and the modelling of the geometric acceptance of the
detector. The appropriate composition of the simulated samples
is determined by comparing the sum of the transverse momenta
of the jets in each event in simulation and data for various b-
tagging criteria. The invariant mass distribution of the jet pairing
with the highest Dbbb value is used as the final discriminant. The
distribution for the dominant 3-jet channel is shown in Fig. 3(a).
In Fig. 3(b), good agreement is observed between the data and
Table 3
Observed data yield and expected signal yields in the bbb channel. The signal yields
are given for the scenario described in Table 2.

Njets

3 4

Data 15 214 10 417

Signal mφ = 100 GeV 335 166
Signal mφ = 190 GeV 70 36

background model in a control sample selected using an inverted
likelihood criterion Dbbb < 0.12.

4.3. Systematic uncertainties

Depending on the source, we consider the effect of systematic
uncertainties on the normalisation and/or on the shape of the dif-
ferential distributions of the final discriminants.

In the di-tau channels, the Z(+ jets) background uncertainties
are estimated using Z/γ ∗ → μ+μ− data control samples, resulting
in normalisation uncertainties of 3.2% (5%) for Z (+b-tagged jets)
boson production, an inclusive trigger efficiency uncertainty of 3%
(common to all simulated backgrounds) and a shape-dependent
uncertainty of ∼ 1% from the modelling of the Z boson kinemat-
ics. The MJ-background uncertainty ranges from 10% to 40% on
the bττ channel yields while it is found to be shape dependent
in the ττ channel (up to 100% at high Mhat). For the remaining
backgrounds and for signal, we consider uncertainties affecting the
normalisation: luminosity (6.1%), muon reconstruction efficiency
(2.9%), τh reconstruction efficiency (4–10%), single muon trigger
efficiency (1.3%), tt̄ (11%) and diboson (7%) production cross sec-
tions. Further sources of uncertainty affecting the shape of the final
discriminant are considered: the jet energy scale (10%) and the
modelling of the b-tagging efficiency (∼ 4%) mostly affect the bττ
signal modelling but are negligible in the ττ channel, while the τh
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Fig. 3. Distributions of the dijet invariant mass, taken from Ref. [8], in the signal
region defined by Dbbb > 0.65 (a) and in a control region defined by Dbbb < 0.12
(b) for the dominant bbb 3-jet channel is shown. The line shows the background
model, the solid histogram the component coming from bbb, the points with error
bars show the data. The background is normalised to the data yield for illustration
purposes. The difference between data and the background model is shown at the
bottom of each panel.

energy scale (∼ 10%) only impacts significantly the ττ search for
both Z boson background and signal Mhat distribution. With the
exception of the τh reconstruction efficiency, τh energy scale and
MJ estimation, which are evaluated for each τh type, these un-
certainties are assumed to be 100% correlated across both di-tau
channels.

In the bbb channel, for the dominant MJ background, only sys-
tematic variations in the shape of the Mbb̄ distribution are con-
sidered, as only the shape, and not the normalisation, is used to
distinguish signal from background [8]. The dominant sources arise
from the measurement of the rate at which light partons fake a
heavy flavor jet and the b-tagging efficiency. For the signal model,
the b-tagging efficiency (11–18%), the luminosity (6.1%) and the jet
energy scale (2–10%) dominate the experimental uncertainties.

Most of the experimental uncertainties are uncorrelated be-
tween the di-tau and the bbb analyses with the exceptions of
Fig. 4. Comparison of the expected limits in the (tan β, M A) plane for the three
channels separately, and their combination for the mmax

h scenario with (a) μ < 0
and (b) μ > 0.

the b-quark efficiency, luminosity, and jet energy scale, which are
assumed to be 100% correlated. The theoretical uncertainties on
the signal are other sources of correlated systematic uncertainty
among all channels. They are dominated by parton density func-
tion uncertainties, renormalisation and factorisation scales. We as-
sign an uncertainty of 15% on the theoretical cross sections that is
correlated across all processes.

5. Results

We combine the ττ , bττ and bbb channels using the modified
frequentist approach [27]. The test statistic is a negative log-ratio
of profiled likelihoods [28]:

LLR = −2 ln
p(data|H1)

p(data|H0)
,

where H1 is the test (background + signal) hypothesis, H0 is the
null (background only) hypothesis and p are the profile likelihoods
based on Poisson probabilities for obtaining the observed number
of events under each hypothesis. We define CLs by CLs ≡ CLs+b/CLb ,
where CLs+b and CLb are the confidence levels for the test and null
hypothesis respectively. We exclude signal yields with CLs < 0.05.

The LLR quantity is computed from the Mhat distribution for
the ττ channel, the D f distributions for the bττ channel and the
Mbb̄ distribution for the bbb channel. The NNLO SM cross sections
σggφ and σbbφ are taken from [29–36] and [37], respectively, while
the NLO SM cross section σbgbφ is taken from mcfm. The model-
dependent MSSM to SM cross section ratios are computed with
feynhiggs [38]. To avoid double counting between the bbφ and
bgbφ processes, we obtain the expected signal yield Nexp

ττ+X in the
di-tau channels by



576 D0 Collaboration / Physics Letters B 710 (2012) 569–577
Fig. 5. Constraints in the (tanβ, M A) plane from the di-tau combination in the mmax
h

scenario. These limits very weakly depend on the other MSSM parameters.

Nexp
ττ+X

L
= Aggφ × σ model

ggφ +Abbφ × (
σ model

bbφ − σ model
bgbφ

)

+Abgbφ × σ model
bgbφ ,

where the acceptances A are computed using the simulation and
include the experimental efficiency. The two first terms of this
equation refers to Higgs boson production without any b quark
within the acceptance, while the third term is used for bgbφ pro-
duction. There is no difference in the experimental acceptance
for the ggφ and bbφ processes with no outgoing b quark within
the acceptance. Therefore, we set Abbφ ≡ Aggφ . The Higgs boson
width, calculated with feynhiggs, is also taken into account [8].

We test two MSSM benchmark scenarios [39], no-mixing and
mmax

h , and we vary the sign of the Higgsino mass parameter, μ.
The expected sensitivities for two mmax

h scenarios are shown in
Fig. 4 for the three different searches and for their combination. At
low M A , the bττ channel dominates the sensitivity. For intermedi-
ate M A , the ττ and bττ channels have similar sensitivities, while
at high M A , the bbb sensitivity becomes appreciable especially in
μ < 0 scenarios. While the sensitivity in the ττ + X channels are
barely sensitive to other MSSM parameters than M A and tanβ , the
bbb signal yields is much more model dependent. Therefore we
also provide a combination of the ττ and bττ searches only. We
do not observe any significant excess in data above the expected
background fluctuations and we proceed to set limits. The limit
from the ττ + X combination is shown in Fig. 5 and the full com-
bination limits in different MSSM scenarios are shown in Fig. 6.

In summary, we present MSSM Higgs boson searches in three
final states: ττ , bττ and bbb. These different searches are com-
bined to set limits in the (tan β, M A) plane in four different MSSM
scenarios. Furthermore, we combine the ττ and bττ channels to
obtain MSSM-scenario-independent limits. We exclude a substan-
tial region of the MSSM parameter space, especially for M A <

180 GeV where we exclude tanβ > 20–30. These are the tightest
constraints from the Tevatron on the production of neutral Higgs
bosons in the MSSM and are comparable to the published LHC lim-
its [10,11], especially at low M A .
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