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Serratia sp. strain DD3 was isolated from homogenized gut
samples of cultured Daphnia magna, grown in filtered oligo-

trophic water of Lake Constance and fed with the green alga
Scenedesmus obliquus (1). Like most Serratia spp., strain DD3 is a
psychrotolerant facultative lithothroph, exhibiting an anaerobic
lifestyle. Serratia spp. are found in a variety of environments such
as freshwater, insects, and vertebrates, including humans, and on
plant surfaces where they act as opportunistic pathogens (2). A
driver for Serratia pathogenicity may be phosphate starvation (3–
5). The phosphorus requirements are usually covered by phos-
phate and phosphate esters. Under phosphate starvation some
bacterial species assimilate alternatively reduced inorganic and
organic P compounds (organophosphonates) (6, 7). The latter
group are utilized from bacteria as P, C, and N sources (8–14).

For sequencing, genomic DNA of Serratia sp. DD3 was isolated
with the Purgene core kit B (Qiagen, Hilden, Germany). Extracted
DNA was used to prepare shotgun libraries for Illumina sequenc-
ing as recommended by the manufacturer (Illumina, San Diego,
CA, USA). Sequencing resulted in 4,000,318 paired-end Illumina
reads (112 bp) and a coverage of 79.94. The initial hybrid de novo
assembly was performed with Ray (15) software and resulted in
123 contigs. The genome of Serratia sp. strain DD3 consists of a
single circular chromosome. The overall G�C content was
49.16 mol%. YACOP and GLIMMER (16) software tools were
used for automatic gene prediction, while RNAmmer and
tRNAscan were used for identification of rRNA and tRNA genes,
respectively (17, 18). The functional annotation of the protein-
coding genes was carried out with the Intergrated Microbial Ge-
nomes/Expert Review (IMG/ER) system (19). A total of 4,666 pu-
tative genes were identified, of which 4,595 were protein encoding.
Overall, 3,958 (84.83%) of the open reading frames were assigned
to functions. One complete rRNA cluster out of 23 rRNA genes
and 62 tRNAs, including those for selenocysteine incorporation,
were identified.

Most probably, the phosphate level regulation in strain DD3
proceeds via phoU, located in the genome of the strain. Phosphate
is delivered into the cells through a low-affinity phosphate: sulfate

intake permease, a high-affinity Pst system (pstSABC), and a phos-
phate ester uptake systems (PTS), all found in the genome of the
strain (20). Under phosphate starvation, strain DD3 assimilates
phosphite or organophosphonates, but not hypophosphite or
other reduced P compounds. It lacks the gene coding for phos-
phonate dehydrogenase (ptxD); therefore, phosphite presumably
is oxidized from membrane-spanning alkaline phosphatase cou-
pled to an [NiFe] hydrogenase, a process analogous to what occurs
in Escherichia coli (13). The ability of DD3 to grow with phosphite
as the single phosphorus source was proven with physiological
experiments (D. D. Simeonova, unpublished data). Organophos-
phonate uptake and assimilation pathways identified were the
2-aminoethylphosphonate (2AEP) assimilation phosphonoacet-
aldehyde hydrolase-dependent (PhnWX) pathway (11), the phos-
phonoacetate hydrolase (PhnA) pathway (21, 22), and a complete
C-P lyase operon (23), which allows the utilization of the broadest
spectrum of organophosphonates, and phosphite.

Nucleotide sequence accession numbers. This whole-genome
shotgun project has been deposited at DDBJ/EMBL/GenBank un-
der the accession number AYKS00000000. The version described
in this paper is the second version, AYKS20000000.
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