Kotowska et al. - Supplementary Material

Table S1 (1/3): List of selected tree traits for the sampled tree species. Given are average values of the traits and Sulawesi (Sul.), Sumatra (Sum.) and total (Tot.) observation counts. Shown are diameter at breast height (DBH), tree height and wood density (WD). The complete dataset including aboveground net primary production (ABI), hydraulically weighted vessel diameter (D_h), vessel density (VD), potential hydraulic conductivity (K_p), sap flux density (I_s) and daily water use per tree (I_s) will be uploaded to the TRY database (Kattge et al. 2020).

Family	Species	Sul.	Sum.	Tot.	DBH (cm)	Height (m)	WD (g cm ⁻³)
Anacardiaceae	Campnosperma auriculatum	0	1	1	21.0	17.3	0.40
Anacardiaceae	Mangifera caesia	0	1	1	56.0	36.6	0.69
Anacardiaceae	Mangifera foetida	0	2	2	33.2	25.8	0.61
Anacardiaceae	Mangifera torquenda	0	1	1	79.5	38.8	0.56
Anacardiaceae	Melanochyla beccariana	0	1	1	28.4	27.1	0.52
Annonaceae	Drepananthus biovulatus	0	1	1	21.8	23.8	0.38
Annonaceae	Drepananthus ramuliflorus	0	1	1	15.6	21.7	0.55
Annonaceae	Maasia glauca	0	1	1	17.3	22.1	0.63
Annonaceae	Mezzettia parviflora	0	1	1	55.8	44.5	0.63
Annonaceae	Polyalthia lateriflora	1	0	1	25.2	22.3	0.48
Apocynaceae	Alstonia angustifolia	0	2	2	28.7	18.5	0.47
Apocynaceae	Alstonia pneumatophora	0	1	1	17.2	7.5	0.19
Burseraceae	Burseraceae sp. 27	0	1	1	22.4	24.6	0.60
Burseraceae	Burseraceae sp. 28	0	1	1	86.6	40.2	0.66
Burseraceae	Canarium megalanthum	0	1	1	30.2	27.3	0.62
Burseraceae	Santiria apiculata	13	0	13	29.2	23.5	0.49
Burseraceae	Santiria griffithii	0	3	3	21.5	18.4	0.58
Burseraceae	Santiria laevigata	0	2	2	47.2	26.4	0.52
Cannabaceae	Gironniera nervosa	0	2	2	32.3	26.4	0.51
Combretaceae	Terminalia subspathulata	0	1	1	28.2	17.7	0.45
Compositae	Strobocalyx arboreus	10	0	10	23.3	23.3	0.31
Dilleniaceae	Dillenia eximia	0	1	1	18.2	21.1	0.50
Dipterocarpaceae	Hopea sangal	0	1	1	25.3	25.0	0.45
Dipterocarpaceae	Shorea acuminata	0	1	1	55.5	42.3	0.49
Dipterocarpaceae	Shorea bracteolata	0	1	1	21.8	19.2	0.48
Dipterocarpaceae	Shorea ovalis	0	6	6	44.5	30.5	0.47
Dipterocarpaceae	Shorea parvifolia	0	4	4	49.9	34.7	0.43
Dipterocarpaceae	Shorea singkawang	0	2	2	49.0	28.3	0.46
Ebenaceae	Diospyros coriacea	0	1	1	19.5	26.9	0.78
Escalloniaceae	Polyosma integrifolia	1	0	1	14.2	27.1	0.39
Euphorbiaceae	Endospermum diadenum	0	7	7	35.9	22.8	0.45
Euphorbiaceae	Macaranga gigantea	0	2	2	15.3	15.2	0.40
Euphorbiaceae	Macaranga hosei	0	3	3	20.3	15.6	0.36
Euphorbiaceae	Macaranga hypoleuca	0	2	2	27.0	16.7	0.42
Euphorbiaceae	Macaranga sumatrana	0	4	4	25.4	19.4	0.44
Euphorbiaceae	Neoscortechinia kingii	0	1	1	12.9	17.8	0.63
Fabaceae	Archidendron fagifolium	0	1	1	22.9	18.2	0.41
Fabaceae	Callerya atropurpurea	0	3	3	23.8	18.6	0.67
Fabaceae	Koompassia malaccensis	0	3	3	56.6	37.4	0.75
Fabaceae	Parkia speciosa	0	2	2	50.5	29.7	0.50

Table S1 (2/3): (continued)

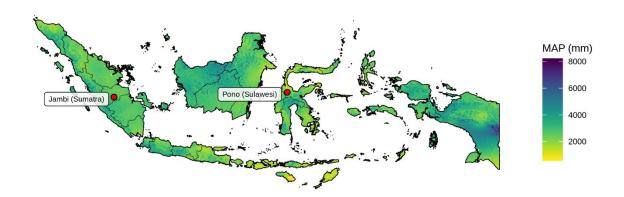

Family	Species	Sul.	Sum.	Tot.	DBH (cm)	Height (m)	WD (g cm ⁻³)
Fabaceae	Parkia timoriana	0	1	1	40.0	23.1	0.48
Fabaceae	Peltophorum pterocarpum	0	1	1	19.5	17.9	0.59
Fagaceae	Castanopsis buruana	21	0	21	47.2	34.6	0.50
Fagaceae	Castanopsis inermis	0	2	2	37.7	21.4	0.46
Fagaceae	Castanopsis javanica	0	1	1	79.3	38.7	0.59
Hypericaceae	Cratoxylum sumatranum	0	2	2	13.1	12.9	0.63
Icacinaceae	Platea excelsa	14	0	14	25.1	22.3	0.34
Ixonanthaceae	Ixonanthes petiolaris	0	2	2	27.4	28.3	0.49
Lauraceae	Cinnamomum porrectum	0	1	1	20.7	16.7	0.52
Lauraceae	Cryptocarya laevigata	13	0	13	18.0	18.0	0.43
Lauraceae	Dehaasia incrassata	0	1	1	56.3	26.6	0.52
Lauraceae	Litsea firma	0	1	1	64.8	46.7	0.47
Lauraceae	Persea rimosa	0	2	2	23.0	16.8	0.55
Malvaceae	Durio zibethinus	0	2	2	34.0	24.0	0.49
Malvaceae	Pterocymbium tubulatum	0	1	1	42.5	34.6	0.50
Malvaceae	Scaphium affine	0	3	3	49.1	34.1	0.58
Melastomataceae	Pternandra caerulescens	0	1	1	41.9	25.5	0.52
Meliaceae	Aglaia malaccensis	0	2	2	47.2	33.8	0.61
Meliaceae	Dysoxylum densiflorum	0	1	1	36.2	16.9	0.60
Moraceae	Artocarpus elasticus	0	5	5	27.1	17.7	0.44
Moraceae	Artocarpus integer	0	3	3	34.1	21.3	0.55
Moraceae	Artocarpus nitidus	0	1	1	26.1	17.4	0.57
Moraceae	Artocarpus rigidus	0	1	1	35.2	21.2	0.61
Moraceae	Ficus variegata	0	1	1	31.3	27.4	0.27
Myristicaceae	Gymnacranthera farquhariana	0	2	2	39.8	29.7	0.52
Myrtaceae	Myrtaceae sp. 10	2	0	2	17.8	29.2	0.68
Myrtaceae	Myrtaceae sp. 2	1	0	1	14.0	17.4	0.64
Myrtaceae	Myrtaceae sp. 3	2	0	2	17.8	21.1	0.49
Myrtaceae	Myrtaceae sp. 5	5	0	5	23.9	20.4	0.60
Myrtaceae	Myrtaceae sp. 8	2	0	2	13.3	12.2	0.64
Myrtaceae	Syzygium cf. borneense	0	1	1	68.1	26.6	0.69
Myrtaceae	Syzygium sp. 02	0	1	1	115.9	38.6	0.59
Myrtaceae	Syzygium sp. 03	0	1	1	69.4	36.8	0.67
Myrtaceae	Syzygium sp. 08	0	1	1	27.2	25.0	0.67
Olacaceae	Ochanostachys amentacea	0	8	8	35.3	23.0	0.69
Olacaceae	Strombosia ceylanica	0	1	1	31.8	22.6	0.76
Oxalidaceae	Sarcotheca diversifolia	0	2	2	88.5	36.5	0.60
Pandaceae	Galearia maingayi	0	2	2	35.9	22.1	0.59
Passifloraceae	Paropsia varecifomis	0	1	1	23.5	19.3	0.65
Phyllantaceae	Baccaurea macrocarpa	0	2	2	18.7	13.7	0.48
Phyllanthaceae	Aporosa nervosa	0	1	1	25.2	23.8	0.52
Phyllanthaceae	Baccaurea dulcis	0	2	2	29.7	13.2	0.56
Polygalaceae	Xanthophyllum eurhynchum	0	1	1	32.0	27.5	0.60
Polygalaceae	Xanthophyllum stipitatum	0	1	1	51.0	34.1	0.72
Putranjivaceae	Drypetes longifolia	0	1	1	48.0	36.5	0.75
Rosaceae	Prunus polystachya	0	2	2	29.6	23.3	0.41
Rubiaceae	Porterandia anisophylla	0	1	1	10.2	12.7	0.63

Table S1 (3/3): (continued)

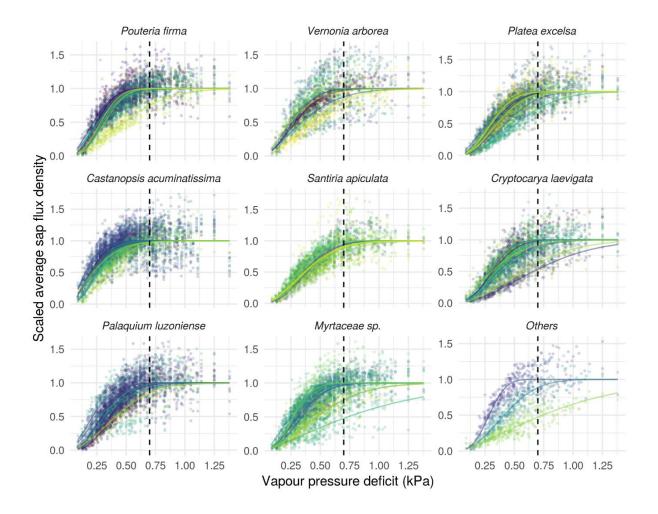

Family	Species	Sul.	Sum.	Tot.	DBH (cm)	Height (m)	WD (g cm ⁻³)
Rubiaceae	Timonius wallichianus	0	1	1	15.7	15.9	0.67
Rutaceae	Acronychia pedunculata	1	0	1	14.0	13.9	0.49
Rutaceae	Tetractomia tetrandra	0	1	1	29.5	19.3	0.51
Sapindaceae	Pometia pinnata	0	2	2	23.6	24.4	0.65
Sapindaceae	Xerospermum laevigatum	0	1	1	44.2	21.6	0.60
Sapindaceae	Xerospermum noronhianum	0	1	1	33.1	19.0	0.71
Sapotaceae	Palaquium gutta	0	5	5	48.9	36.0	0.54
Sapotaceae	Palaquium hexandrum	0	1	1	76.2	38.6	0.52
Sapotaceae	Palaquium luzoniense	11	0	11	32.1	25.6	0.40
Sapotaceae	Palaquium obovatum	0	1	1	33.4	25.8	0.41
Sapotaceae	Pleioluma firma	17	0	17	29.7	27.8	0.47
Simaroubaceae	Ailanthus integrifolia	0	3	3	38.6	24.0	0.51

Table S2: Results of the SMA regressions. Given are the estimates and 95% confidence intervals of the elevation and slope parameters of the common relationship, as well as the p-value for the null hypothesis that there is no association and the proportion of variance explained by the relationship (R^2) .

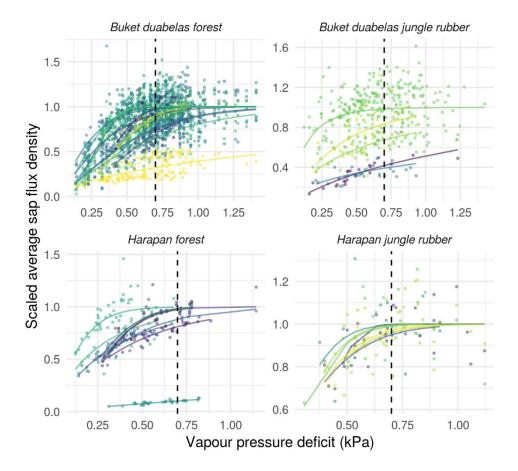

		Elevation							
Response	Predictor	Estimate	lower CI	upper CI	Estimate	lower CI	upper CI	p-Value	R ²
log(DWU)	WD	8.164	6.784	9.544	-10.382	-13.170	-8.184	0.867	0.000
$log(J_s)$	WD	4.689	4.059	5.320	-5.008	-6.285	-3.991	0.011	0.090
log(ABI)	WD	-2.887	-4.256	-1.517	10.321	8.191	13.004	0.842	0.001
log(Height)	WD	1.511	1.170	1.853	3.048	2.498	3.720	0.164	0.020
log(DWU)	$log(D_h)$	-13.120	-16.440	-9.799	3.131	2.543	3.857	< 0.001	0.317
$log(J_s)$	$log(D_h)$	-5.307	-7.025	-3.589	1.449	1.148	1.828	0.002	0.146
log(ABI)	$log(D_h)$	-12.761	-16.203	-9.320	3.067	2.466	3.816	< 0.001	0.148
log(Height)	$log(D_h)$	-1.265	-2.131	-0.399	0.879	0.725	1.066	< 0.001	0.151
log(ABI)	log(DWU)	-0.762	-1.531	0.006	1.271	1.028	1.572	< 0.001	0.397

Figure S1: Map of the Indonesia showing the location of the two research areas overlaid with long-term mean annual precipitation based on data from the CHELSA climatologies (Karger et al. 2017).

Figure S2: Harmonized daily mean sap flux density (J_s) in relation to daily mean vapour pressure deficit (VPD) for all trees from Sulawesi for 2008. The dashed line indicates a VPD of 0.7 kPa. To model the relationship between J_s and VPD, a cumulative distribution function of a Weibull function has been used separately for each tree (colours indicate tree individuals).

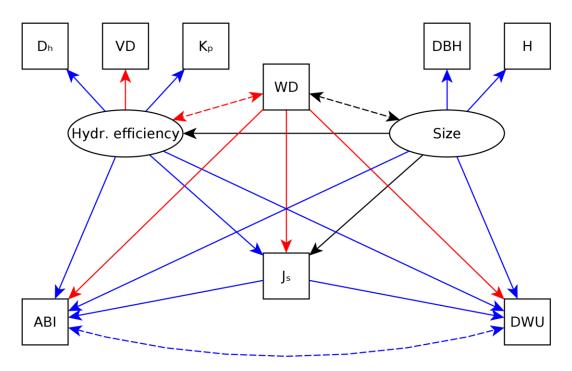


Figure S3: Harmonized daily mean sap flux density (J_s) in relation to daily mean vapour pressure deficit (VPD) for all trees from Sumatra. The dashed line indicates a VPD of 0.7 kPa. To model the relationship between J_s and VPD, a cumulative distribution function of a Weibull function has been used separately for each tree (colours indicate tree individuals).

Figure S4: Logarithmized sapwood area (A_s) identified by dye injection in relationship to logarithmized diameter at breast height (DBH) for 13 tropical tree species from Indonesia (n = 66 mature trees).

Figure S5: Causal diagram of the measured variables. Assumed positive links are displayed in blue, negative links in red, and links of unclear direction as dashed black arrows. See Table 1 for abbreviations.