Four- and Eight-membered Cyclic Phosphazene Derivatives of Zirconium, Titanium and Vanadium. Crystal Structures of the Complexes $\left[\mathrm{ZrCl}_{3}\left(\mathrm{Me}_{3} \mathrm{SiNPPh}_{2} \mathrm{NSiMe}_{3}\right)\right] \cdot \mathrm{MeCN}$ and $\left[\left\{\mathrm{TiCl}_{2}\left(\mathrm{OPPh}_{2} \mathrm{~N}\right)\right\}_{2}\right] \cdot 4 \mathrm{MeCN} \dagger$

Michael Witt, Dietmar Stalke, Thomas Henkel, Herbert W. Roesky* and George M. Sheldrick*
Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-3400 Göttingen, FRG

Abstract

The reaction of ZrCl_{4} with $\left(\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{NPPh}_{2} \mathrm{NSiMe}_{3} 1\right.$ yields the four-membered heterocycle [$\mathrm{ZrCl}_{3}\left(\mathrm{Me}_{3} \mathrm{SiNPPh}_{2} \mathrm{NSiMe}_{3}\right)$]. An improved synthesis of the aminoiminophosphorane 1 is described. The compound TiCl_{4} reacts with $\mathrm{Me}_{3} \mathrm{SiOPPh}_{2} \mathrm{NSiMe}_{3}$ unexpectedly with elimination of all $\mathrm{Me}_{3} \mathrm{Si}$ groups to yield the eight-membered heterocycle $\left[\left\{\mathrm{TiCl}_{2}\left(\mathrm{OPPh}_{2} \mathrm{~N}\right)\right\}_{2}\right]$. A vanadium-containing dimetallacyclophosphazene $\left[\left\{\mathrm{VCl}_{2}\left(\mathrm{NPPh}_{2} \mathrm{~N}\right)\right\}_{2}\right]$ has been synthesised from $\left[\mathrm{VCl}_{3}\left(\mathrm{NSiMe}_{3}\right)\right]$ and $\mathrm{ClPPh}_{2} \mathrm{NSiMe}_{3}$. The X-ray structures of $\left[\mathrm{ZrCl}_{3}\left(\mathrm{Me}_{3} \mathrm{SiNPPh}_{2} \mathrm{NSiMe}_{3}\right)\right] \cdot \mathrm{MeCN}$ and $\left[\left\{\mathrm{TiCl}_{2}-\right.\right.$ $\left.\left.\left(\mathrm{OPPh}_{2} \mathrm{~N}\right)\right\}_{2}\right] \cdot 4 \mathrm{MeCN}$ have been determined. While the cyclic $\mathrm{Zr}-\mathrm{N}$ distances in the former have to be considered as single bonds, the short $\mathrm{Ti}-\mathrm{N}$ of the latter (almost planar) suggest double-bond character.

The incorporation of transition metals as building blocks of cyclic $^{1-6}$ and acyclic ${ }^{5-7}$ phosphazene systems has found increasing interest over the past few years. For example, phosphazene polymers with metals in the skeleton have been synthesised. ${ }^{8}$ In the course of our investigations we were interested in including other transition metals and other building units, e.g. oxygen instead of nitrogen.

Results and Discussion

In 1989 we reported on the reaction of TiCl_{4} with $\left(\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{NPPh}_{2} \mathrm{NSiMe}_{3} \mathbf{1}\right.$, which under different reaction conditions yields three different products 2-4 all of which possess a planar, cyclic, $\mathrm{PN}_{2} \mathrm{Ti}$ unit as the common feature. ${ }^{4}$ Analogous reactions of silylated benzamidinates with other halides of Group 4 lead, depending on the stoichiometry, to the formation of four-membered cyclic (molar ratio $1: 1$) or spirocyclic compounds (molar ratio $1: 2$). ${ }^{9}$ In the aminoiminophosphorane case, a $1: 2$ molar ratio led to double addition, 3, but only one ring was closed. Since the steric requirement of the aminoiminophosphorane chelate is greater than of the benzamidine ligand, a second ring closure to form the spirocyclic isomer of $\mathbf{3}$ might be unfavourable. We have investigated the analogous reaction with the slightly bigger zirconium $\left[r_{\mathrm{cov}} \approx 136(\mathrm{Ti}), \approx 148 \mathrm{pm}(\mathrm{Zr})^{10}\right]$. Independent of the molar ratio, a $1: 1$ reaction product 5 is formed in up to 80% yield, which after recrystallisation from MeCN has been isolated and characterised by means of X-ray analysis as the MeCN adduct 5 a [equation (1)]. Compounds of type 5 are of interest as potential catalysts in organic chemistry. ${ }^{11}$

During the course of our investigations we found a straightforward two-step synthesis of compound 1 [equation (2)], which so far was only accessible via two independent multistep procedures; ${ }^{12}$ a total yield up to 80% was achieved.

Since the primary reactions to form compounds 5 and 3 involve only the cleavage of one $\mathrm{Me}_{3} \mathrm{Si}$ unit per molecule, it was interesting to replace the amino-function by a trimethylsilyloxy group. Surprisingly, in the solid residue of the reaction (3) of TiCl_{4} with $\mathrm{Me}_{3} \mathrm{SiOPPh}_{2} \mathrm{NSiMe}_{3} \mathbf{6},{ }^{13}$ no $\mathrm{Me}_{3} \mathrm{Si}$ groups could

[^0]
be detected spectroscopically. The structure of compound 7 has been determined by means of a low-temperature single-crystal X-ray analysis of the MeCN adduct 7a, which forms yellow blocks after recrystallisation from MeCN . The structure analysis reveals the presence of an almost planar, eightmembered heterocycle with very short $\mathrm{Ti}-\mathrm{N}$ bonds and $\mathrm{P}-\mathrm{N}-\mathrm{Ti}$ units close to linearity. Thus, 7 is valence isoelectronic with a

6

Fig. 1 The molecule of compound 5a in the crystal, with non-hydrogen atoms labelled

Table 1 Selected bond lengths (pm) and angles (${ }^{\circ}$) for compound 5a

$\mathrm{Zr}-\mathrm{N}(1)$	$217.2(4)$	$\mathrm{Zr}-\mathrm{Cl}(1)$	$243.7(1)$
$\mathrm{Zr}-\mathrm{N}(2)$	$218.4(4)$	$\mathrm{Zr}-\mathrm{Cl}(2)$	$241.1(1)$
$\mathrm{Zr}-\mathrm{N}(3)$	$236.4(4)$	$\mathrm{Zr}-\mathrm{Cl}(3)$	$244.0(2)$
$\mathrm{P}-\mathrm{N}(1)$	$161.5(5)$	$\mathrm{Si}(1)-\mathrm{N}(1)$	$175.7(4)$
$\mathrm{P}-\mathrm{N}(2)$	$160.0(5)$	$\mathrm{Si}(2)-\mathrm{N}(2)$	$176.4(4)$
$\mathrm{Zr}-\mathrm{N}(1)-\mathrm{P}$	$95.0(2)$	$\mathrm{N}(1)-\mathrm{P}-\mathrm{N}(2)$	$100.5(2)$
$\mathrm{Zr}-\mathrm{N}(1)-\mathrm{Si}(1)$	$132.9(2)$	$\mathrm{P}-\mathrm{N}(1)-\mathrm{Si}(1)$	$131.3(2)$
$\mathrm{Zr}-\mathrm{N}(2)-\mathrm{P}$	$94.9(2)$	$\mathrm{P}-\mathrm{N}(2)-\mathrm{Si}(2)$	$132.9(2)$
$\mathrm{Zr}-\mathrm{N}(2)-\mathrm{Si}(2)$	$132.2(2)$	$\mathrm{C}(1)-\mathrm{P}-\mathrm{C}(11)$	$107.6(2)$
$\mathrm{Zr}-\mathrm{N}(3)-\mathrm{C}(41)$	$166.8(5)$	$\mathrm{N}-\mathrm{P}-\mathrm{C}($ average $)$	112.2
$\mathrm{~N}(1)-\mathrm{Zr}-\mathrm{N}(2)$	$69.4(1)$	sum ring	359.8

previously synthesised tetraazadiphosphadivanadocine 8, ${ }^{3}$ accessible by treating VOCl_{3} with $\mathbf{1}$. Attempts to exchange the $\mathrm{Me}_{3} \mathrm{SiO}$ groups in $\mathbf{8}$ with chlorine by means of $\mathrm{SOCl}_{2}, \mathrm{PCl}_{5}$, etc. led to a total cleavage of the ring skeleton. Nevertheless, the tetrachlorinated derivative 9 can be synthesised by a double

Scheme 1 Resonance forms of compound 5a, outer ring atoms being omitted

Table 2 Comparison of the cell constants of compounds 5a and 3

	$\mathbf{5 a}$	$\mathbf{3}$	Difference (\%)
a / pm	$941.7(2)$	$953.0(2)$	-1.2
b / pm	$1827.5(2)$	$1778.5(3)$	2.7
c / pm	$1638.2(2)$	$1608.0(2)$	1.8
$\beta /^{\circ}$	$97.65(2)$	$96.70(3)$	1.0
U / nm^{3}	2.794	2.707	3.1

$[2+2]$ cycloaddition from $\left[\mathrm{VCl}_{3}\left(\mathrm{NSiMe}_{3}\right)\right]^{14}$ and the chlorophosphazene 10^{15} in high yield [equation (4)].

Compound 9, a brick-red microcrystalline solid, is moderately stable in air, but suffers immediate decomposition in solution. An analogous eight-membered heterocycle bearing $\mathrm{C}_{2} \mathrm{~F}_{5}$ groups on phosphorus has recently been synthesised by the same route and characterised by an X-ray structure analysis. ${ }^{16}$ Unfortunately we were not able to grow single crystals of 9 , but the mass spectrum ($m / z=670, M, 23 \%$) clearly supports the proposed structure. The formation of 9 sharply contrasts with the reactions of $\left[\mathrm{VCl}_{3}\left(\mathrm{NSiMe}_{3}\right)\right]$ with $\mathrm{ClP}\left(\mathrm{CF}_{3}\right)_{2} \mathrm{NSiMe}_{3}$ and of nitride halides of Group 6 with $\mathrm{ClPPh}_{2} \mathrm{NSiMe}_{3} 10$ which lead to $\mathrm{six}^{-}{ }^{2}$ and eight-membered ${ }^{6}$ rings with only one metal atom in the skeleton. So far the eightmembered rings have only been characterised by ${ }^{31} \mathrm{P}$ NMR and mass spectroscopy.
The molecular structure of compound 5a (Fig. 1, Table 1) is composed of an almost planar four-membered ring (standard deviation 2.32 pm) with both silicon atoms lying also close to this plane [$\mathrm{Si}(1)$ and $\mathrm{Si}(2)$ deviate 2.8 and 9.0 pm from this plane respectively]. The phosphorus atom has an almost tetrahedral environment, while the geometry at zirconium consists of a distorted octahedron due to the small cyclic $\mathrm{N}-\mathrm{Zr}-\mathrm{N}$ angle of 69.4(1) ${ }^{\circ}$. The $\mathrm{Zr}-\mathrm{N}-\mathrm{C}$ angle of the co-ordinated MeCN is about 13° from linearity, the $\mathrm{N} \equiv \mathrm{C}-\mathrm{C}$ unit being tilted towards the ring. Similar deviations from 180° have also been found in the titanium compounds 3a, 4 and 7a. ${ }^{4}$ While the $\mathrm{Zr}-\mathrm{N}(3)$ bond has dative character, the $\mathrm{Zr}-\mathrm{N}$ bonds in the ring have to be considered single bonds. ${ }^{10}$ With the $\mathrm{P}-\mathrm{N}$ bonds resembling those of cyclic phosphazenes, ${ }^{17}$ and sp^{2}-hybridised nitrogen atoms, the resonance forms in Scheme 1 can be drawn.

Compound 5 a is isomorphous with its titanium homologue 3, ${ }^{4}$ a comparison of the cell constants being given in Table 2. The unit-cell volume of $\mathbf{5 a}$ is somewhat bigger due to the size of the metal atoms.
The single-crystal X-ray structure of compound 7a (Fig. 2, Table 3) exhibits an almost planar eight-membered ring with two alternating Ti-N-P-O sequences. Compound 7a is valence isoelectronic with its vanadium analogues 9 and 8 , the structure of the latter having been described earlier. ${ }^{3}$ The molecule contains an inversion centre. The most striking feature in the structure of 7a is the very short Ti-N bonds of 174.1(2) pm and the large $\mathrm{P}-\mathrm{N}-\mathrm{Ti}$ angles of $175.9(1)^{\circ}$, so that sp hybridisation can be attributed to the nitrogen atoms. The resonance forms in Scheme 2 can be assigned. From these it is clear that the Ti-N bonds have appreciable double-bond character. Thus, resonance form IV can be regarded as dominant. The Ti-N bond in $\left[\mathrm{TiCl}_{2}\left(\mathrm{NPPh}_{2} \mathrm{~S}\right)\right] \cdot 3 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, 172.0(2) \mathrm{pm}\left[\mathrm{Ti}-\mathrm{N}-\mathrm{P} 172.5(2)^{\circ}\right]$, is probably best described as a double bond. ${ }^{18}$ Similar bonding features have been observed ${ }^{19}$ in some phosphoraneiminato

Fig. 2 The molecule of compound $7 \mathbf{7 a}$ in the crystal, with independent non-hydrogen atoms labelled

Table 3 Selected bond lengths (pm) and angles (${ }^{\circ}$) for compound 7a

$\mathrm{Ti}(1)-\mathrm{N}(1)$	$174.1(2)$	$\mathrm{Ti}(1)-\mathrm{Cl}(1)$	$237.2(1)$
$\mathrm{Ti}(1)-\mathrm{O}(1)$	$197.9(2)$	$\mathrm{Ti}(1)-\mathrm{Cl}(2)$	$233.7(1)$
$\mathrm{Ti}(1)-\mathrm{N}(2)$	$234.4(2)$	$\mathrm{P}(1)-\mathrm{O}(1)$	$151.7(2)$
$\mathrm{Ti}(1)-\mathrm{N}(3)$	$221.9(2)$	$\mathrm{P}(1)-\mathrm{N}(1 \mathrm{~A})$	$160.5(2)$
$\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{P}(1 \mathrm{~A})$	$175.9(1)$	$\mathrm{O}(1)-\mathrm{Ti}(1)-\mathrm{N}(1)$	$98.7(1)$
$\mathrm{Ti}(1)-\mathrm{O}(1)-\mathrm{P}(1)$	$141.7(1)$	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{N}(1 \mathrm{~A})$	$117.3(1)$
$\mathrm{Ti}(1)-\mathrm{N}(2)-\mathrm{C}(13)$	$177.1(2)$	$\mathrm{O}-\mathrm{P}-\mathrm{C}($ average $)$	107.7
$\mathrm{Ti}(1)-\mathrm{N}(3)-\mathrm{C}(15)$	$171.7(2)$	$\mathrm{N}-\mathrm{P}-\mathrm{C}$ (average)	108.7

Scheme 2 Resonance forms of compound 7a, outer ring atoms being omitted for clarity
complexes of $\left[\mathrm{Ti}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cl}_{2}\right]^{+}$and in $4 .^{4}$ A disordered structure has been reported for the polymeric $\left[\left\{\left[\mathrm{TiCl}_{2}\left(\mathrm{NSiMe}_{3}\right)\right]_{2}\right\}_{x}\right]$ where one set of $\mathrm{Ti}-\mathrm{N}$ bonds was found to be $169 \mathrm{pm} .^{20}$

The $\mathrm{P}-\mathrm{N}$ distance in compound 7 a [160.5(2) pm] is longer than in most other cyclic phosphazenes, ${ }^{17}$ and the $\mathrm{P}-\mathrm{O}$ separation [151.7(2) pm] is close to that calculated (150 pm) for a double bond. The $\mathrm{Ti}-\mathrm{O}$ bond length of 197.9(2) pm is in the range found for titanium bonded to bridging sp^{2}-hybridised oxygen atoms. ${ }^{21}$ Since low-temperature data had been collected, a clear distinction between oxygen and nitrogen atoms could be made by comparison of the isotropic thermal parameters with those obtained by exchanging O and N . A strong trans effect is shown by the co-ordinated MeCN ligands, the $\mathrm{Ti}-\mathrm{N}$ bond trans to the ring nitrogen being longer by $12.5(3) \mathrm{pm}$ compared to the one in the cis position.

Experimental

All manipulations were performed in vessels predried and heated under dry nitrogen or argon or in vacuo. Solvents were dried and degassed by standard methods, TiCl_{4} purified by condensation in vacuo, and commercially available $\mathrm{SiMe}_{3} \mathrm{Cl}$

[^1]Table 4 Crystallographic data for compounds 5a and 7a*

Compound	5a	7a
Formula	$\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{PSi}_{2} \mathrm{Zr}$	$\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{Cl}_{4} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Ti}_{2}$
M	598.2	832.2
a / pm	941.7(1)	999.5(1)
b / pm	1827.5(2)	1608.2(2)
c / pm	1638.2(2)	1287.4(1)
$\beta /{ }^{\circ}$	97.65(2)	101.31(2)
U / nm^{3}	2.794	2.029
Z	4	2
$F(000)$	1224	848
$D_{\text {c }} / \mathrm{Mg} \mathrm{m}^{-3}$	1.42	1.36
Crystal size (mm)	$0.3 \times 0.3 \times 0.1$	$0.8 \times 0.45 \times 0.4$
μ / mm^{-1}	0.83	0.77
Reflections		
unique	3631	3546
observed	3016	3134
R	0.046	0.036
R^{\prime}	0.052	0.046
Goodness of fit	1.34	1.83
g in weighting scheme		
$w^{-1}=\sigma^{2}(F)+g F^{2}$	0.0008	0.0003
Refined parameters	274	219

* Details in common; crystal system monoclinic, space group $P 2_{1} / n$.
and $\mathrm{SiMe}_{3} \mathrm{~N}_{3}$ distilled prior to use. The compound ZrCl_{4} was used as obtained, while $\mathrm{Ph}_{2} \mathrm{PSiMe}_{3},{ }^{22 *}\left[\mathrm{VCl}_{3}\left(\mathrm{NSiMe}_{3}\right)\right]$, ${ }^{14}$ $\mathrm{Me}_{3} \mathrm{SiOPPh}_{2} \mathrm{NSiMe}_{3} \quad 6,{ }^{13}$ and $\mathrm{ClPPh}_{2} \mathrm{NSiMe}_{3} 10^{15}$ were prepared according to the literature. The ${ }^{31} \mathrm{P}$ NMR spectra were recorded on a Bruker AM 250 spectrometer; elemental analyses were carried out by Mikroanalytisches Labor Beller, Göttingen. The mass spectrum of compound 9 was recorded on a Finnigan Mat 8230 mass spectrometer. Only the highest peak of any isotope distribution is given. The boiling and melting points are listed without thermometer corrections.

Preparations.-[Bis(trimethylsilyl)amino $]$ diphenyl(trimethylsilylimino) phosphorane 1.-The compound $\mathrm{Ph}_{2} \mathrm{PSiMe}_{3}(51.5 \mathrm{~g}$, 0.2 mol) and $\mathrm{SiMe}_{3} \mathrm{~N}_{3}\left(c a .80 \mathrm{~cm}^{3}, 0.5 \mathrm{~mol}\right)$ were heated to $80^{\circ} \mathrm{C}$ for 12 h and subsequently under reflux until nitrogen evolution had ceased. After removal of excess of $\mathrm{SiMe}_{3} \mathrm{~N}_{3}$ the residue was carefully fractionated in high vacuum (1 Pa). The yield of compound 1 was $78 \mathrm{~g}(90 \%)$, as a colourless oily liquid of b.p. $125^{\circ} \mathrm{C}(1 \mathrm{~Pa})$, which solidified partially as colourless needles on prolonged standing. The properties are consistent with those given in ref. 12.
$\left[\mathrm{ZrCl}_{3}\left(\mathrm{Me}_{3} \mathrm{SiNPPh}_{2} \mathrm{NSiMe}_{3}\right)\right] \cdot \mathrm{MeCN} 5 \mathrm{5a}$. The compound $\mathrm{ZrCl}_{4}(2.4 \mathrm{~g}, 10 \mathrm{mmol})$ and $1(4.3 \mathrm{~g}, 10 \mathrm{mmol})$ were stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(100 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ for 2 h . After filtration of insoluble material, volatiles were evaporated and the residue redissolved in MeCN $\left(80 \mathrm{~cm}^{3}\right)$. After several days at $-25^{\circ} \mathrm{C}$ crystallisation started. Compound 5a crystallises as colourless needles of m.p. $135^{\circ} \mathrm{C}$ (decomp.). Additional crops up to a total of $4.8 \mathrm{~g}(80 \%)$ can be obtained by concentrating the solution (Found: C, 40.3; $\mathrm{H}, 5.6 ; \mathrm{Cl}, 17.7 ; \mathrm{N}, 7.1 . \mathrm{C}_{20} \mathrm{H}_{31} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{PSi}_{2} \mathrm{Zr}$ requires $\mathrm{C}, 40.15$; $\mathrm{H}, 5.20 ; \mathrm{Cl}, 17.80 ; \mathrm{N}, 7.00 \%), \delta(\mathrm{P})\left(\mathrm{CD}_{3} \mathrm{CN}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 38.8 \mathrm{ppm}$.
$\left[\left\{\mathrm{TiCl}_{2}\left(\mathrm{OPPh}_{2} \mathrm{~N}\right)\right\}_{2}\right] \cdot 4 \mathrm{MeCN} 7 \mathrm{7a}$. The compound TiCl_{4} (3.8 $\mathrm{g}, 20 \mathrm{mmol}$) was transferred in vacuo into a mixture of $\mathrm{Me}_{3} \mathrm{SiOPPh}_{2} \mathrm{NSiMe}_{3} 6(7.2 \mathrm{~g}, 20 \mathrm{mmol})$ and $\mathrm{MeCN}\left(120 \mathrm{~cm}^{3}\right)$ at $-190^{\circ} \mathrm{C}$. After warming the solution was stirred at ambient temperature for 12 h . Insoluble material was filtered off and volatiles were removed. The yellowish brown residue was redissolved in a little MeCN and kept for crystallisation at $-25^{\circ} \mathrm{C}$. Filtration and concentration of the mother-liquor gave a total yield of compound 7 a of $5 \mathrm{~g}(65 \%)$, m.p. $168 \pm 2^{\circ} \mathrm{C}$ (decomp.) (Found: $\mathrm{C}, 46.4 ; \mathrm{H}, 4.2 ; \mathrm{Cl}, 16.2 ; \mathrm{N}, 9.0$. $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{Cl}_{4} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Ti}_{2}$ requires $\mathrm{C}, 46.20 ; \mathrm{H}, 3.90 ; \mathrm{Cl}, 17.05 ; \mathrm{N}$, 10.10%), $\delta(\mathrm{P})\left(\mathrm{CDCl}_{3}-\mathrm{MeCN}\right) 35.4 \mathrm{ppm}$.
$\left[\left\{\mathrm{VCl}_{2}\left(\mathrm{NPPh}_{2} \mathrm{~N}\right)\right\}_{2}\right]$ 9. The compound $\left[\mathrm{VCl}_{3}\left(\mathrm{NSiMe}_{3}\right)\right](2.4$

Table 5 Atomic coordinates $\left(\times 10^{4}\right)$ for compound 5a

Atom	x	y	z
Zr	8 964(1)	$7942(1)$	8327 (1)
$\mathrm{Cl}(1)$	$7653(1)$	7 502(1)	9416 (1)
$\mathrm{Cl}(2)$	11 133(1)	8 287(1)	9 194(1)
$\mathrm{Cl}(3)$	9 968(2)	$6779(1)$	7949 (1)
Si(1)	10367 (2)	8299 (1)	6 423(1)
$\mathrm{Si}(2)$	7 062(2)	$9517(1)$	$8959(1)$
P	$8339(1)$	9 201(1)	$7351(1)$
$\mathrm{N}(1)$	$9267(4)$	$8485(2)$	7 184(2)
N(2)	$7957(4)$	$9021(2)$	8 257(2)
N(3)	6 927(5)	7 495(2)	7 474(3)
C(1)	$6754(5)$	9 286(3)	$6602(3)$
C(2)	5 689(6)	$9786(3)$	$6711(3)$
C(3)	4 425(6)	9813 (3)	$6154(3)$
C(4)	4 250(6)	9 341(3)	5493 (3)
C(5)	5 302(7)	$8849(3)$	5 381(3)
C(6)	6543 (6)	$8814(3)$	5 930(3)
$\mathrm{C}(11)$	$9406(5)$	$10017(3)$	7 282(3)
C(12)	10 799(6)	10 009(3)	7729 (3)
C(13)	11 743(6)	10 567(3)	7 605(3)
C(14)	11330 (6)	11 125(3)	7063 (3)
C(15)	$9957(6)$	11 148(3)	6 642(3)
C(16)	$9001(6)$	10 593(3)	6761 (3)
C(21)	$9723(7)$	7456 (3)	$5847(4)$
C(22)	10340 (7)	$9074(3)$	5 676(3)
C(23)	12 221(6)	8 175(3)	6 939(4)
C(31)	7 206(8)	10520 (3)	8 787(4)
C(32)	$7958(7)$	$9353(3)$	$10026(3)$
C(33)	$5159(6)$	9 217(4)	$8865(4)$
C(41)	$6120(6)$	7 273(3)	$6952(3)$
C(42)	$5128(6)$	6 989(3)	6 292(3)

X-Ray Structure Analyses.-Crystals of compounds 5a and 7a suitable for diffraction studies were obtained by crystallisation from MeCN at $-25^{\circ} \mathrm{C}$. Both structures were studied on a Stoe-Siemens four-circle diffractometer with graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation. Data were collected at $-85^{\circ} \mathrm{C}$ with a profile-fitting method, ${ }^{23} 2 \theta_{\max }=45^{\circ}$ for 5a and 50° for 7a, and reflections with $|F|>3 \sigma F$ for 5a and $|F|>4 \sigma F$ for 7a respectively were treated as observed. The structures were solved by Patterson and Fourier methods, and refined by full-matrix least squares (on F), with all nonhydrogen atoms anisotropic. A riding model was employed for the H atoms with idealised geometry. All calculations were performed with the programs SHELXS 86^{24} and SHELX 76. ${ }^{25}$ Crystallographic data for compounds 5 a and 7 a are shown in Table 4, atomic coordinates in Tables 5 and 6.

Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom co-ordinates, thermal parameters, and remaining bond lengths and angles

Acknowledgements

We are grateful to VW-Stiftung, Fonds der Chemischen Industrie, and Deutsche Forschungsgemeinschaft for financial support

References

1 H. W. Roesky, K. V. Katti, U. Seseke, M. Witt, E. Egert, R. Herbst and G. M. Sheldrick, Angew. Chem., 1986, 98, 447; Angew. Chem., Int. Ed. Engl., 1986, 25, 477; H. W. Roesky, K. V. Katti, U. Seseke, H.-G. Schmidt, E. Egert, R. Herbst and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1987, 847; K. V. Katti, H. W. Roesky and M. Rietzel, Inorg. Chem., 1987, 26, 4032; K. V. Katti, U. Seseke, M. Witt and H. W. Roesky, Phosphorus Sulfur, 1987, 30, 421; K. V. Katti, H. W. Roesky and M. Rietzel, Z. Anorg. Allg. Chem., 1987, 553, 123.
2 H. W. Roesky, P. Olms, M. Witt, K. Keller, D. Stalke, T. Henkel and G. M. Sheldrick, J. Chem. Soc., Chem. Commun., 1989, 366.

3 M. Witt, H. W. Roesky, M. Noltemeyer and G. M. Sheldrick, Angew. Chem., 1988, 100, 852; Angew. Chem., Int. Ed. Engl., 1988, $27,851$.
4 M. Witt, H. W. Roesky, D. Stalke, F. Pauer, T. Henkel and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1989, 2173.
5 M. Witt and H. W. Roesky, Polyhedron, 1989, 8, 1736.
6 M. Witt, unpublished work.
7 U. Müller, U. Patt-Siebel, A. Khabou, K. Dehnicke, and E. Fluck, Chem.-Ztg., 1987, 111, 371.
8 H. W. Roesky and M. Lücke, Angew. Chem., 1989, 101, 480; Angew. Chem., Int. Ed. Engl., 1989, 28, 493.
9 H. W. Roesky, B. Meller, M. Noltemeyer, H.-G. Schmidt and U. Scholz, Chem. Ber., 1988, 121, 1403.
10 L. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals, 3rd edn., Cornell University Press, 1960.
11 M. T. Reetz, Organotitanium Reagents in Organic Synthesis, Springer, Berlin, 1986; Top. Curr. Chem., 1986, 106, 1; G. Wilkinson, F. G. A. Stone and E. W. Abel, Comprehensive Organometallic Chemistry, Pergamon, Oxford, 1982; W. Keim, R. Appel, A. Storeck, C. Krüger and R. Goddard, Angew. Chem., 1981, 93, 91; Angew. Chem., Int. Ed. Engl., 1981, 20, 116.
12 W. Wolfsberger and H. Hager, Z. Anorg. Allg. Chem., 1976, 425, 169; M. Witt, H. W. Roesky, M. Noltemeyer and A. Schmidpeter, New J. Chem., 1989, 13, 403.
13 R. H. Neilson, R. D. Jacobs, R. W. Scheirman and J. C. Wilburn, Inorg. Chem., 1978, 17, 1880.
14 E. Schweda, K. D. Scherfise and K. Dehnicke, Z. Anorg. Allg. Chem., 1985, 528, 117.
15 R. R. Ford, M. A. Goodman, R. H. Neilson, A. K. Roy, U. G. Wettermark and P. Wisian-Neilson, Inorg. Chem., 1984, 23, 2063.
16 P. Olms, M. Witt, H. W. Roesky, D. Stalke and G. M. Sheldrick, unpublished work.
17 C. W. Allen, in The Chemistry of Inorganic Homo- and Heterocycles, eds. I. Haiduc and D. W. Sowerby, Academic Press, London, 1987, vol 2, p. 501.
18 H. W. Roesky, H. Voelker, M. Witt and M. Noltemeyer, Angew.

Chem., 1990, 102, 712; Angew. Chem., Int. Ed. Engl., 1990, 29, 669.
$\mathrm{g}, 10 \mathrm{mmol})$ and $\mathrm{ClPPh}_{2} \mathrm{NSiMe}_{3} 10(3.1 \mathrm{~g}, 10 \mathrm{mmol})$ in MeCN $\left(120 \mathrm{~cm}^{3}\right)$ were warmed to $40^{\circ} \mathrm{C}$ for 4 h . The brick-red solid was filtered off, washed with a little MeCN , and dried in vacuo. The yield of analytically pure compound 9 , m.p. $235^{\circ} \mathrm{C}$ (decomp.), was 2.5 g (75%) (Found: C, 42.2; H, 3.2; Cl, 21.3; N, 8.4. $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{~V}_{2}$ requires $\mathrm{C}, 43.00 ; \mathrm{H}, 3.00 ; \mathrm{Cl}, 21.15 ; \mathrm{N}$, $8.35 \%), \delta(\mathrm{P})\left(\mathrm{CDCl}_{3}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)-10.2 \mathrm{ppm}, w_{\frac{1}{2}} \approx 1500 \mathrm{~Hz}$. EI MS: $m / z 670(M, 23), 533\left(M-\mathrm{NVCl}_{2}, 100\right), 497(M-$ $\left.\mathrm{NVCl}_{2}-\mathrm{HCl}, 79\right)$, and $456(\mathrm{M}-\mathrm{NVCl}-\mathrm{Ph}, 37 \%)$.

19 H. W. Roesky, F. Schrumpf and M. Noltemeyer, Z. Naturforsch., Teil B, 1989, 44, 35; I. A. Latham, G. J. Leigh, G. Huttner and I. Jibril, J. Chem. Soc., Dalton Trans., 1986, 377.

20 N. W. Alcock, M. Pierce-Butler and G. R. Willey, J. Chem. Soc., Dalton Trans., 1976, 707.
21 W. Haase and H. Hoppe, Acta Crystallogr., Sect. B, 1968, 24, 281.
22 G. W. Luther, III and G. Beyerle, Inorg. Synth., 1981, 17, 186.

23 W. Clegg, Acta Crystallogr., Sect. A, 1981, 37, 22.
24 G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467.
25 G. M. Sheldrick, SHELX 76, Program for Crystal Structure Determination, University of Cambridge, 1976.

Received 25th July 1990; Paper 0/03385E

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1991, Issue 1, pp. xviii-xxii.

[^1]: * As a minor change, LiPh was not quenched with $\mathrm{Bu}{ }^{\mathrm{t}} \mathrm{Cl}$ and the resulting $\mathrm{SiMe}_{3} \mathrm{Ph}$ separated by fractional distillation.

