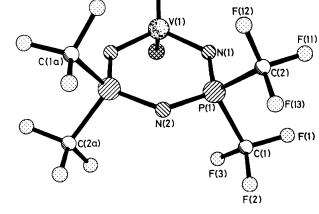

A Volatile Cyclic Metallaphosphazene; Preparation and X-Ray Structure of [(CF₃)₂PN]₂NVCl₂

Herbert W. Roesky,* Petra Olms, Michael Witt, Klaus Keller, Dietmar Stalke, Thomas Henkel, and George M. Sheldrick

Institut für Anorganische Chemie der Universität, Tammannstraße 4, D-3400 Göttingen, Federal Republic of Germany


The reaction of $(CF_3)_2P(CI)=NSiMe_3$ and $Me_3SiN=VCI_3$ in CH_2CI_2 leads to volatile $[(CF_3)_2PN]_2NVCI_2$; the X-ray structure analysis shows a planar six-membered NVNPNP-ring with C_{2v} molecular symmetry.

Volatile compounds containing metals are, in general, interesting candidates for application in CVD (Chemical Vapour Deposition) or MOCVD techniques. Recently, we reported the first synthesis and structure of metal-containing cyclic phosphazenes.¹ These compounds are not volatile at room temperature and tend to form polymeric materials at elevated temperatures. However, the reaction of $(CF_3)_2P(Cl)=NSiMe_3^{\dagger}$ and $Me_3SiN=VCl_3^2$ in dichloromethane leads to the unexpected formation of the sixmembered ring $[(CF_3)_2PN]_2NVCl_2$ (1).[‡]

Compound (1) is a yellow volatile solid which melts at 22.5 °C and decomposes. In the mass spectrum [electron impact (e.i.)] it exhibits the parent ion at m/z 501 (4% relative intensity). M^+ -CF₃ is observed at m/z 432 (12%), and CF₃ (m/z 69, 100%) is the most abundant ion. The ¹⁹F n.m.r. spectrum contains the typical doublet at δ -67.0 with a coupling constant of 126.3 Hz indicating magnetically equivalent CF₃ groups. The ³¹P- and the ⁵¹V-n.m.r. spectra show a broad unresolved singlet (δ 22.0) and multiplet (δ 48.5)

C(1)

 \dagger (CF₃)₂P(Cl)=NSiMe₃ was prepared from (CF₃)₂PN(SiMe₃)₂ and chlorine or sulphuryl dichloride under elimination of Me₃SiCl.⁴

 $\ddagger 2.4 \text{ g} (10 \text{ mmol}) \text{ Me}_3 \text{SiN}=\text{VCl}_3$ were dissolved in $\text{CH}_2 \text{Cl}_2 (60 \text{ ml})$ and cooled to -192 °C; at this temperature $(\text{CF}_3)_2 \text{P}(\text{Cl})=\text{NSiMe}_3 (5.8 \text{ g}, 20 \text{ mmol})$ was added. This mixture was slowly warmed up and kept at room temperature and stirred for an additional 5 h. $\text{CH}_2 \text{Cl}_2$ and $\text{Me}_3 \text{SiCl}$ were removed at room temperature *in vacuo* (2 × 10³ Pa). The crude product was sublimed twice (-10 °C/1 Pa), giving crystals suitable for X-ray diffraction. Yield 1.4 g (28%)—satisfactory elemental analyses were obtained.

Figure 1. Molecular structure of $[(CF_3)_2PN]_2NVCl_2$ (1); important bond lengths (pm) and angles (°): V-C(11) 215.9(2), N(1)-P(1) 161.2(4), N(2)-P(1) 159.5(3), N-V-N 104.1(3), P-N-P 121.3(4), V-N-P 129.0(3).

respectively. A crystal structure determination§ confirms the six-membered ring (Figure 1). This ring is nearly planar (mean deviation 2.1 pm) and the molecule exhibits effective $C_{2\nu}$ symmetry. It differs from the non-metallated analogues primarily in the considerably larger angles at the N atoms, [V-N-P 129.0(3)° cf. P-N-P 121.3(4)°]. The vanadium atom is co-ordinated tetrahedrally with short V-N bond lengths [172.1(5) pm]; the N-V-N angle [104.1(3)°] is smaller than Cl-V-Cl [119.1(1)°]. A similar effect is observed in CrO₂Cl₂ [O-Cr-O 108.5(4)°, Cl-Cr-Cl 113.2(3)°].³ The crystal structure resembles those of the molybdenum and tungsten compounds with composition (Ph₂PN)₂NMCl₃·2MeCN,¹ but

§ Crystal data for (1); $C_4Cl_2F_{12}N_3P_2V$, M = 501.8, monoclinic, space group C2/c, a = 1465.8(3), b = 828.8(2), c = 1531.6(3) pm, $\beta = 122.41(1)^\circ$, $D_c = 2.122$ gcm⁻³, Z = 4. The final *R*-value was 0.072 for 1248 unique data with $F > 4\sigma(F)$. Data were collected on a Stoe-Siemens AED diffractometer using graphite-monochromated Mo- K_{α} radiation ($\lambda = 0.71069$ Å) at -80 °C. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1. crystals of the vanadium compound do not contain solvent molecules.

We thank the Fonds der Chemischen Industrie and the Deutsche Forschungsgemeinschaft for financial assistance.

Received, 26th September 1988; Com. 8/03764G

References

- H. W. Roesky, K. V. Katti, U. Seseke, M. Witt, E. Egert, R. Herbst, and G. M. Sheldrick, Angew. Chem., 1986, 98, 447; Angew. Chem., Int. Ed. Engl., 1986, 25, 477; H. W. Roesky, K. V. Katti, U. Seseke, H.-G. Schmidt, E. Egert, R. Herbst, and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1987, 847; K. V. Katti, H. W. Roesky, and M. Rietzel, Inorg. Chem., 1987, 26, 4032; M. Witt, H. W. Roesky, M. Noltemeyer, and G. M. Sheldrick, Angew. Chem., 1988, 100, 852; Angew. Chem., Int. Ed. Engl., 1988, 27, 851.
- 2 E. Schweda, K. D. Scherfise, and K. Dehnicke, Z. Anorg. Allg. Chem., 1985, 528, 117.
- 3 C. T. Marsden, L. Hedberg, and K. Hedberg, *Inorg. Chem.*, 1982, **21**, 1115.
- 4 H. W. Roesky, J. Lucas, M. Noltemeyer, and G. M. Sheldrick, *Chem. Ber.*, 1983, **117**, 1583.