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Reaction of LiN(SiMe& with Cp2Sn and pmdeta produces (Cp)(Me3Si)2NSn(y-Cp)Li.pmdeta 1 which can be viewed as a 
model intermediate for nucleophilic substitution of Cp2Sn. 

We have used nucleophilic addition and substitution of heavy ments.14 However, more potent nucleophiles, such as imino 
p block metal cyclopentadienyl derivatives of group 13 (E = anions and organometallics, substitute the Cp ligands of Cp2E 
Tl) and 14 (E = Sn, Pb) in the syntheses of a variety of (E = Sn or Pb).596Thus reaction of LiN=C(NMe& with Cp2Sn 
organometallic complexes.1" The metal centres within these (1 : 1) produces the dimeric mixed ligand complex 
species accept weak nucleophiles such as Cp- and produce a [(~f-Cp)sn(pN=C(NMe~)~}]~ in which only one of the Cp 
range of complexes containing anionic organometallic frag- ligands is displaced.5 We have proposed that the major 
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influences on the products of these reactions are the nucleo- 
philicity and steric bulk of the nucleophiles and the molar ratio 
of reagents employed. We report the synthesis and structure 
of ( c ~ ) ( M e ~ s i ) ~ N S n (  p-Cp)Li.pmdeta 1. The complex is 
formally the first example of a mixed ligand triorganostannate 
complex and can be seen as a model intermediate for 
nucleophilic substitution of Cp2Sn. 

Reaction of (Me3Si)2NLi with Cp2Sn and pmdeta (1 : 1 : 1 
equiv.) in toluene produces an orange solution from which 
colourless crystals of 1 are isolated.? 

Toluene 
Cp2Sn + LiN(SiMe3)2 - (Cp)(Me3Si)2NSn(pL-Cp)Liepmdeta 

pmedta 1 

Scheme 1 

An X-ray crystallographic study of 1$ shows it to be a 
monomeric triorganostannate complex (Cp)(Me$i).zNSn( p- 
Cp)Li.pmdeta 1 (Fig. 1). The Sn centre is attached to two 
distorted q3-Cp ligands [Cp(X) and Cp(Y)] and to the planar 
N centre of a (Me3Si)2N group (Sn(1)-N(1) 2.183(2) A, cf. 
Sn-N in monomeric [(Me3Si)2NI2Sn 2.09 A'}. This Sn centre 
has a distorted pyramidal geometry (sum of angles around Sn 
between the two Cp centroids5 and N ca. 348"). The Cp(Y) 
ligand holds the Sn and Li+ centres together in a bent p-Cp 
mode [Sn(l -centroid Cp(Y)-Li(1) ca. 163", centroid Cp(Y)- 

contrast to the situation occurring in (~ls-Cp)~Sn-( p q 5 -  
Cp)Na.pmdeta,l where long range C-H-..Na contacts cause a 
bending of ca. 172", the distortion of the Sn(p-Cp)Li bridge of 
1 does not result from intermolecular interactions. Evidently 
the Sn-[p-Cp(Y)] interaction in 1 is comparatively weak 
judging by the distances involved [centroid Cp(Y)-Sn( 1) 
2.83 A], which are considerably greater than the terminal Cp 

Li(1) 2.25 a ] and makes an +contact with the Li centre. In 

t A solution of hexamethyldisilazane [0.40 g, 2.5 mmol toluene (10 
ml)] was reacted with BunLi (1.56 ml, 2.5 mmol, 1.6 mol dm-3 in 
hexanes) and the reaction mixture heated to reflux yielding a 
pale-brown solution. This solution was cooled to -30 "C and Cp@ 
was added [0.63 g, 2.5 mmol, in tetrahydrofuran (1.4 ml)]. Warming 
to 50 "C and stirring (5 min) gave a yellow precipitate. Addition of 
pmdeta (0.53 ml, 2.5 mmol) produced an orange solution, which was 
reduced in vucuo to 4 ml. Subsequent storage at -35 "C for one week 
yielded colourless, air-sensitive crystalline rods of 1 in low (though 
reproducible) yield (ca. 20%, first batch): melting point 58 "C, 
decomp. 150 "C; IR h m - l  (Nujol), 3039 (Cp-H); 1H NMR (+25 "C, 
250 MHz, 0.2 mol dm-3 in [2H8]toluene) 6 6.13 (s, 10 H, Cp), 1.92(s) 
and 1.87(s) (23 H, pmdeta), 0.47(s) and 0.17(s) [18 H, (Me3Si)zN]; 
Satisfactory elemental analyses (C, H, N) were obtained. 

$ Crystal data: C25H51LiN4Si2Sn, M = 589.5, monoclinic, space group 
P21/c, a = 9.854(1), b = 22.939(2), c = 13.975(1) A, p = 90.360(10)", 
V = 3144.1(5) A3, 2 = 4, D, = 1.245 Mg m-3, h = 0.71073 A, T = 
153 K, p(Mo-Ka) = 0.907 mm-1. Data were collected on a 
Siemens-Stoe AED using an oil-coated rapidly cooled crystal (T. 
Kottke and D. Stalke, J. Appf. Crystallogr., 1993, in the press) of 
dimensions 0.3 X 0.3 x 0.3 mm by the 28/w method (8" S 28 d 50"). 
Of a total of 6328 reflections collected, 5515 were independent. A 
semi-empirical method from psi-scans was used in the absorption 
correction. The structure was solved by Patterson methods 
(SHELXS-90; G. M. Sheldrick, Acta Crystuflogr., Sect. A ,  1990, 46, 
467) and refined by full-matrix least squares on F with to R1 (F > 
4aF) and wR2 (all data) of 0.022 and 0.058, respectively {Rl = 
E~Fo-Fc~/ZFo and wR2 = [ZW(F~~-F,~)~/ZW(F~~)~]~.~} (G. M. Shel- 
drick, SHELXL-92, Gottingen, 1992). Lar est peak and hole in the 
final difference map 0.906 and -0.404 e 1 - 3 .  Atomic coordinates, 
bond distances and angles, and thermal parameters have been 
deposited at the Cambridge Crystallographic Data Centre. See Notice 
to Authors, Issue No. 1. 

Q Bond lengths and bond angles involving the Cp rings in 1 are defined 
arbitrarily in terms of the centroids of all five C atoms of the Cp rings 
throughout the text for simplicity. 

X Y 

m 

Li 

Fig. 1 Molecular structure of 1. Hydro en atoms have been omitted 
for clarity. Selected bond lengths (I) and angles (O): ring X, 
C(6)-Sn(l) 3.095(2), C(7)-Sn(l) 2.836(2), C(8)-Sn(l) 2.557(2), 
C(9)-Sn(l) 2.633(2), C(l0)-Sn(1) 2.991(2), centroid Cp(X)-Sn(1) 
2.57; ring Y, C(1)-Sn(1) 2.796(2), C(2)-Sn(l) 2.882(2), C(3)-Sn(l) 
3.225(2), C(4)-Sn(l) 3.338(2), C(S)-Sn(l) 3.095(2), centroid Cp(Y)- 
Sn(1) 2.83, C(1)-Li(1) 2.502(4), C(2)-Li(l) 2.647(4), C(3)-Li(l) 
2.645(4), C(4)-Li(l) 2.515(4), C(5)-Li(1) 2.418(4), centroid Cp(Y)- 
Li(1) 2.25, centroid Sn(l)-centroid Cp(Y)-Li 163; (MesSi)zN, Sn(1)- 
N( 1) 2.183(2), Si( 1,2)-N( 1) 1.710(2), Si( 1)-N( 1)-Si(2) 122.9( l ) ,  
Si(1)-N(1)-Sn(1) 124.1(1), Si(2)-N(l)-Sn(l) 112.2(1). 

contacts in 1 [centroid Cp(X)-Sn(1) 2.57 A], and are also 
slightly greater than the bridging Sn-( p-tl5-C~) distances in 
(qS-Cp)2Sn-(p-qS-Cp)Na.pmdeta (centroid Cp-Sn, 2.75 A) .1 

Nucleophilic addition rather than substitution results when 
LiN(SiMe3)2 is reacted with Cp2Sn because the bulky 
( Me3Si)2N group precludes oligomerisation of (Cp)( Me3- 
Si)2NSn, which must therefore be electronically satisfied by 
loosely binding to CpLi-pmdeta. The latter can be compared 
with the outcome of the reaction of LiN=C(NMe2)2 with 
Cp2Sn, which gives the dimeric substitution product [(q3- 
Cp)Sn{p-N=C(NMe2)2}]2.5 Complex 1 can be regarded as a 
model intermediate for nucleophilic substitution of Cp2Sn. 
Two mechanisms are plausible, (i) a concerted (one-step) SN2 
type mechanism or (ii) an associative (two-step) mechanism. 
The structure of 1 can be interpreted in terms of the more 
probable associative pathway.* In the initial step, addition of 
nucleophiles (RM) occurs at the Sn centre forming an 
intermediate [CpRSn(pCp)M] similar to 1. In the subsequent 
step CpM is produced by breaking the weak Cp...Sn contact 
and producing CpRSn. 

Variable-temperature and -concentration 1H NMR spectro- 
scopy and cryoscopic molecular mass measurements in arene 
solutions suggest that 1 is in equilibrium with (Cp)(Me3- 
Si)ZNSn 2 and CpLi-pmdeta 3. 

Ks 
Cp (Me3Si)2NSn(p.-Cp)Li*pmdeta e Cp(Me$i)2NSn + CpLi-pmdeta 

1 2 3 

Scheme 2 

Measurements of the degree of association (n)  of [(Cp)- 
(Me3Si)zNSn( y-Cp)Li-pmdeta], 1 in benzene at various con- 
centrations (0-0.07 mol dm-3) conform to the dissociation of 
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Fig. 2 (a)  Variation of degree of association (n)  with concentration of 1 in benzene (Cs): (-) best fit theoretical, 0 experi- 
mental, K ,  = 0.04 f 0.01 rnol dm-3; (b) variable-concentration 1H NMR spectroscopy of 1 in toluene (25 O C, 250 MHz) 

the complex into two fragments [Fig. 2(a)] .v  The dissociative 
equilibrium constant for this process is ca. 0.04 mol dm-3 
(AGO ca. 7.4 kJ mol-1). The identities of these two fragments 
are largely confirmed by 1H NMR (250M Hz) studies of 1 in 
toluene [Fig. 2(b) ] .  At low concentration (ca. 0.03 mol dm-3) 
and at 25 "C, two Me resonances for (Me3Si)ZN (A 6 0.18 and 
B 0.42; total 18 H) and two Cp (C 6 5.92 and D 6 6.32; total 10 
H) are observed. On the basis of a molar ratio of ca. 1.9 : 1 
calculated from the cryoscopically determined equilibrium 
constant (in benzene at 6 "C) at this concentration, the 
resonance at 6 0.18 can be assigned to 2 and that at 6 0.42 to 
undissociated 1 (observed ratio ca. 1.5 : 1). The (Me3Si)ZN and 
Cp resonances occur in pairs each with the same relative ratio 
of  ca. 18 H : 10 H,  respectively (A + D, B + C). Hence, the Cp 
resonance at 6 5.91 can be assigned to undissociated 1 and that 
at 6 6.32 to 2 + 3. The separate Cp ligands of 2 and 3 could not 
be resolved by reducing the temperature to -90 "C. 

At higher concentrations the Cp resonances merge into a 
broad singlet (<0.07 mol dm-3) and a sharp singlet is finally 
observed (ca. 0.2 mol dm-3) at the average position of the Cp 
resonances (C and D) seen at low concentration (6 6.13). It 
should be noted that an alternative equilibrium, akin to that 
proposed for (q5-Cp)2Sn(pqs-Cp)Na-pmdeta, involving dis- 
sociation of 1 into CpZ(Me3Si)zNSn- and Li-pmdeta+ cannot 
be completely ruled out.' However, the low energy for 

7 Cryoscopic data: The analysis of the cryoscopic data was carried out 
by a curve fitting analytical method (M. G. Davidson, D. Stalke, R. 
Snaith and D. S. Wright, J. Org. Chem., 1993, 58, 2810). The data 
conform to the general dissociation equation [A B + C; K ,  = Cs(l - 
n)*/n(2n - l)] with a best-fit curve calculated form the experimental 
points >0.01 rnol dm-3: n = 0.50 k 0.01 (0.005 mol dm-3), 0.58 
(0.023 rnol dm-3), 0.64 (0.04 mol dm-3), 0.63 (0.059 rnol dm-3). 

dissociation of 1 and the observation of two very distinct Cp 
and (Me3Si)2N resonances even at 25 "C1 supports the 
assertion that dissociation occurs at the apparently weaker 
Sn...(y-Cp) contact in 1 rather than at the (p-Cp)..-Li contact, 
so giving two species in which very different ligand environ- 
ments are present. 
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