The Observation of a Pb-Li Bond; Synthesis, Structure and Model Molecular Orbital (MO) Calculations on the Monomeric $\mathrm{Ph}_{3} \mathrm{~Pb}$-Li•(pmdeta) Complex [pmdeta = $\left(\mathrm{Me}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NMe}$]

David R. Armstrong, ${ }^{a}$ Matthew G. Davidson, ${ }^{b}$ David Moncrieff, ${ }^{c}$ Dietmar Stalke ${ }^{d}$ and Dominic S. Wright* b
a Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
${ }^{\circ}$ University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK
c Supercomputer Computations Research Institute B-186, Florida State University, Tallahassee, Florida 32306-4052, USA
${ }^{\text {a }}$ Institut für Anorganische Chemie, Tammannstrasse 4, W-3400 Göttingen, Germany

The title compound has been synthesised by the cleavage reaction of $\mathrm{Ph}_{3} \mathrm{~Pb}_{\mathrm{PbbPh}}^{3}$ with Bu Li and has been shown to have a monomeric Pb -Li bonded structure in the solid state; ab initio calculations have been used to probe the nature of the early main group metal/heavy p block metal bonding involved.

Complexes containing bonds between transition metals and heavy p block metals are well known and have been characterised in the solid state. ${ }^{1}$ Recently, we have been interested in the occurrence and the nature of bonds between early main group metals $[\mathrm{M}=\mathrm{Li}, \mathrm{Na}$, etc. (group 1); Mg, Ca, etc. (group 2)] and heavy p block metals $[\mathrm{E}=\mathrm{Ga}-\mathrm{Tl}$ (group 3); Sn, Pb (group 4); Sb, Bi (group 5)].2.3 Previous studies have centred on species which contain non-metallic p blockearly main group metal contacts, e.g. organometallics (containing $\mathrm{C}-\mathrm{M}$), metal amides ($\mathrm{N}-\mathrm{M}$), and metal alkoxides (O-M). ${ }^{4}$ Compounds which contain metallic p block elements and alkali or alkaline earth metals, and in which there is a potential for bonding between these, have rarely been studied in their own right though such materials have been known for many years. ${ }^{5}$ More commonly these species have been employed as in situ reagents in organic or inorganic syntheses.

A case in point is the early main group metal triorganostannates (commonly formulated as ' $\mathrm{R}_{3} \mathrm{SnM}^{\prime}$ ' or ' $\mathrm{R}_{3} \mathrm{Sn}^{-} \cdot \mathrm{M}^{+}$') which have been used extensively to promote the formation of $\mathrm{Sn}-\mathrm{C}$ bonds by their reactions with electrophilic organic substrates such as ketones, epoxides and acid chlorides. ${ }^{6}$

The $\mathrm{Ph}_{3} \mathrm{Sn}-\mathrm{Li} \cdot($ pmdeta) complex [pmdeta $=$ $\left.\left(\mathrm{Me}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NMe}\right]$ was recently shown by us to be a $\mathrm{Sn}-\mathrm{Li}$ bonded monomer in the solid state. ${ }^{2}$ This was the first observation of an alkali or alkaline earth metal-Sn bond in the solid. Our most recent work has centred on extending the syntheses of potentially $\mathrm{E}-\mathrm{M}$ bonded species and in assessing the occurrence and nature of such bonding. ${ }^{3}$ Accordingly, we report here the synthesis of the $\mathrm{Ph}_{3} \mathrm{~Pb}-\mathrm{Li} \cdot$ (pmdeta) complex, 2. This is the first structurally characterised early main group metal triorganoplumbate (containing $\mathrm{Pb}-\mathrm{C}$ bonds), and the first compound in which a $\mathrm{Pb}-\mathrm{Li}$ (or indeed any early main
group metal) Pb bond is observed. Ab initio MO calculations have been used to investigate the character of its $\mathrm{Pb}-\mathrm{Li}$ bonding, which arises from the interaction of the 6 s and $6 \mathrm{p}_{z}$ orbitals of Pb with the 2 s and $2 \mathrm{p}_{z}$ orbitals of Li . The pyramidal geometry of the $\mathrm{Ph}_{3} \mathrm{~Pb}$ - unit of $\mathbf{2}$ can be rationalised in terms of the phenyl groups interacting predominantly with the $6 \mathrm{p}_{z}$ orbital of Pb .
The title compound 2 was prepared by the cleavage of hexaphenyldilead $\left(\mathrm{Ph}_{3} \mathrm{~Pb}-\mathrm{PbPh}_{3}\right)$ (1 equiv.) with Bu Li (1 equiv.) and pmdeta (1 equiv.) in toluene. The complex was found to be extremely air- and moisture-sensitive and also thermally unstable (only surviving for $c a .1$ day at $20^{\circ} \mathrm{C}$ under N_{2}) \dagger A low-temperature X-ray crystallographic study on a freshly synthesised sample of (2), $\stackrel{\ddagger}{\text { s }}$ shows it to be a $\mathrm{Pb}-\mathrm{Li}$ bonded monomer in the solid state (Fig. 1). It is essentially isostructural with the $\mathrm{Ph}_{3} \mathrm{Sn}-\mathrm{Li} \cdot($ pmdeta) complex 1 and contains two crystallographically independent molecules in its asymmetric unit. Complex $\mathbf{2}$ is the first early main group metal trialkyl- or triaryl-plumbate (containing $\mathrm{C}-\mathrm{Pb}$ bonds) to be structural characterised, and the first compound to contain a $\mathrm{Pb}-\mathrm{Li}$ (or indeed any early main group metal) bond; all other structurally characterised complexes contain bridging P or O centres which hold the metals together, e.g. $\mathrm{Bu} \mathrm{t}^{\mathrm{P}} \cdot \mathrm{Pb} \cdot\left(\mu_{2^{-}}\right.$ $\mathrm{PBut}_{2} \cdot \mathrm{Li} \cdot 2$ thf, ${ }^{7}$ or are ion-separated. ${ }^{8}$ The $\mathrm{Pb}-\mathrm{Li}$ bond is slightly longer than that expected for a purely covalent interaction [sum of covalent radii of Li and $\mathrm{Pb}, c a .2 .81 \AA,{ }^{9} c f$. av. 2.858(14) \AA in 2]. This situation is similar to the $\mathrm{Sn}-\mathrm{Li}$ contacted analogue [sum of covalent radii of Sn and $\mathrm{Li}, c a$. $2.74 \AA,{ }^{9} \mathrm{cf}$. av. $2.817(7) \AA$ in $\left.\mathbf{1}^{2}\right]$.
The $\mathrm{Ph}_{3} \mathrm{~Pb}^{-}$anion of $\mathbf{2}$ is closer to a pyramidal structure than the corresponding $\mathrm{Ph}_{3} \mathrm{Sn}^{-}$anion in $1[\mathrm{av} . \mathrm{C}-\mathrm{Pb}-\mathrm{C}$, $94.3(3)^{\circ}, c f$. C-Sn-C $96.1(2)^{\circ}$ in 1]. These geometries suggest that both metals are using principally p orbitals to bond to their Ph groups and that the interaction with Li is fundamentally with the s orbitals on Sn and Pb . The more compressed (pyramidal) angles in 2 are consistent, in this respect, with the expected increase in energetic separation
$\ddagger \mathrm{Bu}^{\mathrm{n}} \mathrm{Li}\left(0.32 \mathrm{ml}, 1.6 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in hexanes, 0.5 mmol$)$ was added to a stirred, chilled (ca. $-20^{\circ} \mathrm{C}$) solution of hexaphenyldilead $\left(\mathrm{Ph}_{3} \mathrm{~Pb}-\right.$ $\left.\mathrm{PbPh}_{3}\right)(0.44 \mathrm{~g}, 0.5 \mathrm{mmol})$ and pmdeta $(0.11 \mathrm{ml}, 0.5 \mathrm{mmol})$ in 35 ml of toluene. A solution colour change from colourless to faint-yellow occurred as the reaction was allowed to heat to $20^{\circ} \mathrm{C}$, with the formation of a white precipitate. This powder was heated gently into solution at $\mathrm{ca} .50^{\circ} \mathrm{C}$. Slow cooling of the resulting yellow solution to $20^{\circ} \mathrm{C}$ gave colourless thermally unstable, air-sensitive crystalline blocks of 2 in 35% yield: decomp. ca. $90^{\circ} \mathrm{C}$ to black solid (decomp. 1 day at $20^{\circ} \mathrm{C}$ under N_{2}); IR v/cm ${ }^{-1}$ (Nujol), ca. 3100 w ($\mathrm{C}-\mathrm{H}$ aryl), 1563 m (m, aryl C=C), bands grouped at $1052,1033,1011 \mathrm{~ms}$ and 719 , $702\left(\mathrm{~s}, o-\mathrm{C}_{6} \mathrm{H}_{5}\right)$ are particularly characteristic; ${ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$; $\left.\mathrm{C}_{6} \mathrm{D}_{6} ;+25^{\circ} \mathrm{C}\right)$, ca. $\delta 8.6-7.3(15 \mathrm{H}$, groups of multiplets), $1.84(23 \mathrm{H}$, br s, pmdeta). Satisfactory analyses (C,H,N) were obtained for all samples of $\mathbf{2}$.
\ddagger Crystal data: $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{LiN}_{3} \mathrm{~Pb}, M=618.73$, monoclinic, space group $\stackrel{+}{P} 2_{1}, a=12.377(2), b=17.543(2), c=12.663(2) \AA, \beta=101.801(11)^{\circ}$, $U=2691.4(7) \AA^{3}, Z=4, \mathrm{D}_{\mathrm{c}}=1.527 \mathrm{Mgm}^{-3}, F(000)=1224, \lambda=$ $0.71073 \AA, T=153 \mathrm{~K}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=6.286 \mathrm{~mm}^{-1}$. Data were collected on a Siemans-Stoe AED using an oil-coated rapidiy-cooled crystal of dimensions $0.65 \times 0.38 \times 0.30 \mathrm{~mm}$ by the $2 \theta / \omega$ method $\left(8^{\circ} \leqslant 2 \theta \leqslant\right.$ 60°). Of a total of 9673 collected reflections, 9233 were unique. The structure was solved by direct methods (SHELX 92) and refined by full-matrix least-squares on F^{2} with all data to $R 1$ and w $R 2$ values of 0.037 and 0.086 , respectively (SHELX 92); largest difference peak and hole 1.77 and -1.72 e \AA^{-3}. A semi-empirical method from psi-scans was employed for the absorption correction. All hydrogens were located in the difference Fourier map and their positions were refined in a riding model with common refined U values for chemically equivalent atoms. The absolute structure was determined by refining the Flack parameter to 0.495 (11), implying racemic twinning. Atomic coordinates, bond distances and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

Fig. 1 Molecular structure of one of the monomer molecules in the asymmetric unit of 2. Hydrogen atoms have been omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$: molecule $1, \mathrm{~Pb}(1)-\mathrm{C}(1)$ $2.297(7), \mathrm{Pb}(1)-\mathrm{C}(7) 2.306(7), \mathrm{Pb}(1)-\mathrm{C}(13), 2.282(8), \mathrm{Pb}(1)-\mathrm{Li}(1)$ $2.852(15) ; \quad \mathrm{C}(1)-\mathrm{Pb}(1)-\mathrm{C}(7) 95.3(2), \quad \mathrm{C}(1)-\mathrm{Pb}(1)-\mathrm{C}(13) 95.1(3)$, $\mathrm{C}(13)-\mathrm{Pb}(1)-\mathrm{C}(7) 92.6(3):$ molecule $2, \mathrm{~Pb}(2)-\mathrm{C}(19) 2.306(6), \mathrm{Pb}(2)-$ $\mathrm{C}(25) 2.295(8), \mathrm{Pb}(2)-\mathrm{C}(31) 2.293(7), \mathrm{Pb}(2)-\mathrm{Li}(2) 2.864(13) ; \mathrm{C}(19)-$ $\mathrm{Pb}(2)-\mathrm{C}(25) 93.9(3), \mathrm{C}(19)-\mathrm{Pb}(2)-\mathrm{C}(31) 96.0(2), \mathrm{C}(31)-\mathrm{Pb}(2)-\mathrm{C}(25)$ $93.0(3)$, av. $\mathrm{C}-\mathrm{Pb}-\mathrm{Li}$ (in molecules 1 and 2) 121.9(3).
(inert pair) between the p and sorbitals moving from Sn to Pb . The pyramidal geometry of the Pb centre in $\mathbf{2}$ contrasts with the more tetrahedral $\mathrm{Ph}_{3} \mathrm{~Pb}$ - units in transition metal complexes, e.g. $\mathrm{Ph}_{3} \mathrm{PbV}(\mathrm{CO})_{6}$ (av. $\mathrm{C}-\mathrm{Pb}-\mathrm{C}$, ca. $\left.106.2^{\circ}\right)^{10}$ and cis $-\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{PbPh}_{3}\right) \mathrm{Ph}\left(\right.$ av. $\left.\mathrm{C}-\mathrm{Pb}-\mathrm{C}, ~ c a .106 .6^{\circ}\right) .{ }^{11}$

In order to probe the nature of the early main group metal/heavy p block metal bonds found in $\mathrm{Ph}_{3} \mathrm{~Pb}-\mathrm{Li} \cdot$ (pmdeta) 2 and, for comparison, in $\mathrm{Ph}_{3} \mathrm{Sn}-\mathrm{Li} \cdot($ pmdeta) 1, ab initio calculations have been performed on a number of solvated and unsolvated models. § Despite differences in the basis sets used, the optimised structures of unsolvated $\mathrm{Ph}_{3} \mathrm{Sn}-\mathrm{Li} \mathbf{1}^{\prime}\left(3-21 \mathrm{G}^{12}\right)$ and $\mathrm{Ph}_{3} \mathrm{~Pb}-\mathrm{Li} 2^{\prime}$ (double zeta basis set with pseudo-potentials on Pb^{13}) [Figs. 2(a) and (b), respectively] both reflect, qualitatively, the observed trends and geometries within the solid-state structures of $\mathbf{1}$ and $\mathbf{2}$. Thus, both calculated models predict the observed compression in the $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ and $\mathrm{C}-\mathrm{Pb}-\mathrm{C}$ angles ($c a .102^{\circ}$ in both) and the expansion in the $\mathrm{Li}-\mathrm{Sn}-\mathrm{C}$ and $\mathrm{Li}-\mathrm{Pb}-\mathrm{C}$ angles (ca. 116° in both). The $\mathrm{Ph}_{3} \mathrm{Sn}$ - and $\mathrm{Ph}_{3} \mathrm{~Pb}-$ units in $\mathbf{1}^{\prime}$ and $\mathbf{2}^{\prime}$ therefore have a geometry significantly distorted from pure tetrahedral $\left(\mathrm{sp}^{3}\right)$. The major influence, dominating the electron density on the heavy p block metal available for interaction to Li , is the effectiveness of charge
$\S M O$ calculations: $\mathbf{1}^{\prime}, \mathbf{1} \cdot \mathrm{NH}_{3}$; the geometries were optimised using the GAUSSIAN 90 suite of programs and a 3-21G basis set (ref. 12). The total energies (in a.u.) calculated for the optimised geometries are: $\mathbf{1}^{\prime},-6690.646487 ; \mathbf{1}^{\prime} \cdot \mathrm{NH}_{3},-6746.58022$.
$2^{\prime}, 3^{\prime}, 3^{\prime} \cdot \mathrm{NH}_{3}, 4,4^{\prime} \mathbf{a}$ and $\mathbf{4}^{\prime} \mathbf{b}$; the geometries were optimised using the GAUSSIAN 90 suite of programs and a double zeta basis set employing pseudo-potentials for Pb (ref. 13). Calculations were performed on an IBM RS6000 system. The total energies (in a.u) calculated for the optimised geometries are: $2-700.928846 ; 3{ }^{\prime}$ $-129.558395 ; \mathbf{3}^{\prime} \cdot \mathrm{NH}_{3}-185.781473 ; \mathbf{4}^{\prime}-5.572736 ; \mathbf{4}^{\prime} \mathbf{a}-12.313486$; $4^{\prime} \mathrm{b}-5.0274999$.

Ab Initio Program: GAUSSIAN 90 Program (Revision I), M. J. Frisch, M. Head-Gordon, G. W. Trucks, J. B. Foresman, H. B. Schlegel, K. Raghavachari, M. Robb, J. S. Binkley, C. Gonzalez, D. J. Defrees, D. J. Fox, R. A. Whitesides, R. Seeger, C. F. Melius, J. Baker, R. L. Martin, L. R. Kahn, J. J. P. Stewart, S. Topiol and J. A. Pople, Gaussian Inc., Pittsburgh PA, 1990.

(b)

Fig. 2 Ab initio optimised geometries of (a) $\mathrm{Ph}_{3} \mathrm{Sn}-\mathrm{Li} \mathbf{1}^{\prime}$, and (b) $\mathrm{Ph}_{3} \mathrm{~Pb}-\mathrm{Li} \mathbf{2}^{\prime}$. Key bond lengths (\AA), angles $\left({ }^{\circ}\right)$ and charges (e).
dispersion from Sn or Pb to their three phenyl rings. The phenyl groups in $\mathbf{1}^{\prime}$ are significantly more negatively charged (-0.52 e) than those in $\mathbf{2}^{\prime}(-0.44 \mathrm{e})$. It is interesting to note that, whereas in $\mathbf{2}^{\prime}$ there is a uniform charge distribution within its phenyl rings (ca. -0.25 e for each C), in $\mathbf{1}^{\prime}$ the bulk of the negative charge is carried by the $\alpha-\mathrm{C}(-0.43 \mathrm{e})$. The outcome of the less effective dispersion of electron density in $\mathbf{2}^{\prime}$, is to leave the Pb more electron rich (+1.03 e) than Sn in $\mathbf{1}^{\prime}$ $(+1.29 \mathrm{e})$. There is therefore more electron density on Pb than on Sn to bind to Li^{+}

Some measure of the effects of solvation of the Li is given by model calculations on solvated $\mathrm{Ph}_{3} \mathrm{Sn}-\mathrm{Li} \cdot \mathrm{NH}_{3}, \mathbf{1}^{\prime} \cdot \mathrm{NH}_{3}$. Solvation has the effects of elongating and weakening the $\mathrm{Sn}-\mathrm{Li}$ bond (now $2.771 \AA, c f .2 .747 \AA$ in 1^{\prime} and further distorting the $\mathrm{Ph}_{3} \mathrm{Sn}^{-}$anion towards pyramidal geometry (C-Sn-C, 101.2°, $c f .102 .6^{\circ}$ in $\mathbf{1}^{\prime}$. For reasons of their calculational complexity, solvated $\mathrm{Ph}_{3} \mathrm{~Pb}-\mathrm{Li}$ models have not been investigated. However, model calculations on unsolvated $\mathrm{Me}_{3} \mathrm{~Pb}-\mathrm{Li} \mathbf{3}^{\prime}$ and
solvated $\mathrm{Me}_{3} \mathrm{~Pb}-\mathrm{Li} \mathbf{3}^{\prime} \cdot \mathrm{NH}_{3}$, show that a similar elongation of the $\mathrm{Pb}-\mathrm{Li}$ bond and compression of the $\mathrm{Me}_{3} \mathrm{~Pb}^{-}$anion results from solvation of Li . Further investigations on $\mathrm{H}_{3} \mathrm{~Pb}-\mathrm{Li} \mathbf{4}^{\prime} \mathbf{a}$ and isolated $\mathrm{PbH}_{3}-\mathbf{4}^{\prime} \mathbf{b}$ suggest that the geometry about Pb will become even more pyramidal as the Pb and Li centres eventually ion-separate ($\mathrm{H}-\mathrm{Pb}-\mathrm{H}$ in $4^{\prime} \mathbf{a} 101.2^{\circ}$, and 93.2° in $\mathbf{4}^{\prime} \mathbf{b}$). The latter implies that the $\mathrm{Pb}-\mathrm{Li}$ bond in $\mathrm{Ph}_{3} \mathrm{~Pb}-$ $\mathrm{Li} \cdot($ pmdeta $) 2\left[\mathrm{C}-\mathrm{Pb}-\mathrm{C}, 94.3(3)^{\circ}\right]$ is comparatively weak.

The most surprising result shown by these calculations is the manner in which the heavy p block metals use their orbitals. In $\mathrm{Ph}_{3} \mathrm{~Pb}-\mathrm{Li} \mathbf{2}^{\prime}$ the $6 \mathrm{p}_{z}$ orbital is directed towards and, together with the 6 s orbital, interacts with Li . The $\mathrm{Pb}-\mathrm{Li}$ bond is therefore a result of s and p, rather than of pure s, interaction. Both the p_{x} and p_{y} orbitals are used equivalently in their interaction with the phenyl groups. However, a significant interaction between Pb and these groups is with the $6 \mathrm{p}_{z}$ orbital the other lobe of which is directed towards their centre. Such is borne out by examination of the valence orbital populations on $\mathrm{Pb}\left(6 \mathrm{~s}, 1.395 ; 6 \mathrm{p}_{x}\right.$ and $6 \mathrm{p}_{y}, 0.423 ; 6 \mathrm{p}_{z}, 0.727$). It is possible that the compression in $\mathrm{C}-\mathrm{Pb}-\mathrm{C}$ angles towards a more pyramidal geometry in $\mathrm{Ph}_{3} \mathrm{~Pb}-\mathrm{Li}$ can be rationalised in terms of the phenyl rings maximising their interaction with the $6 p_{z}$ orbital on Pb . The phenyl rings are therefore pulled towards the z-axis. Model calculations on $\mathrm{PbH}_{4} \mathbf{4}^{\prime}\left(\mathrm{H}-\mathrm{Pb}-\mathrm{H}, 109.0^{\circ}\right.$; valence orbital populations; $6 \mathrm{~s}, 1.34 \mathrm{e} ; 6 \mathrm{p}_{x}, 6 \mathrm{p}_{y}$ and $6 \mathrm{p}_{z}, 0.67 \mathrm{e}$) and on $\mathrm{H}_{3} \mathrm{~Pb}-\mathrm{Li} 4^{\prime} \mathrm{a}\left(\mathrm{H}-\mathrm{Pb}-\mathrm{H}, 101.2^{\circ} ; 6 \mathrm{~s}, 1.46 \mathrm{e} ; 6 \mathrm{p}_{x}\right.$ and $6 \mathrm{p}_{y}$, $0.67 \mathrm{e} ; 6 \mathrm{p}_{z}, 0.93 \mathrm{e}$) illustrate this trend most dramatically.

We gratefully acknowledge the SERC (D. S. W, M. G. D), the Associated Octel Co, Ltd., Ellesmere Port, UK (D. S. W, M. G. D), the Nuffield Foundation (D. S. W.), and the DAAD (D. S.) for financial support. One of the authors (D. M.) acknowledges the support of the US Department of Energy through contact no. DE-FCØ5-85ER2500000.

Received, 27th May 1992; Com. 2/02699F

References

1 C. Elschenbroich and A. Salzer, Organometallics, VCH, Weinheim, 1st edn., 1988, ch. 8 and 9, and references cited therein.
2 D. Reed, D. Stalke and D. S. Wright, Angew. Chem., 1991, 103, 1539; Angew. Chem., Int. Ed. Engl., 1991, 30, 1459.
3 D. R. Armstrong, M. G. Davidson, D. Moncrieff, D. Stalke and D. S. Wright, unpublished work.

4 W. Setzer and P. v. R. Schleyer, Adv. Organomet. Chem., 1985, 24, 353; K. Gregory, P. v. R. Schleyer and R. Snaith, Adv. Inorg. Chem., 1991, 37, 47; D. Seebach, Angew. Chem., 1988, 100, 1685; Angew. Chem., Int. Ed. Engl., 1988, 27, 1624.
5 C. E. Coates and K. Wade, Organometallic Compounds, Methuem, London, 1967, vol. 1, p. 506.
6 M. Pereyre, J.-P, Quintard and A. Rahm, Tin in Organic Synthesis, Butterworths, London, 1987; Y. Yamamoto, Tetrahedron, 1989, 45, 909; P. G. Harrison, Chemistry of Tin, Chapman and Hall, New York, 1989; I. Omae, Organotin Chemistry, Elsevier, Amsterdam, 1989.
7 A. M. Arif, A. H. Cowley, R. A. Jones and J. M. Power, J. Chem. Soc., Chem. Commun., 1986, 1446.
8 F. E. G. Huttner and L. Zsolnai, Angew. Chem., 1989, 101, 1525; Angew Chem., Int. Ed. Engl., 1989, 28, 1496.
9 A. J. Gordon and R. A. Ford, The Chemists Companion: A Handbook of Practical Data and References, Wiley Interscience, New York, 1972, p. 83
10 F. Calderazzo, F. Pampaloni, G. Pelizzi and F. Vitali, Polyhedron, 1988, 7, 2039.
11 B. Crociani, M. Nicolini, D. A. Clemente and G. Bandoli, J. Organomet. Chem., 1973, 49, 249.

12 J. S. Binkley, J. A. Pople and W. J. Hedre, J. Am. Chem. Soc., 1980, 102, 939.
13 P. J. Hay and W. R. Wadte, J. Chem. Phys., 1985, 82, 270, 284 and 299.

