Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Supporting Information for:

A Square-Planar Osmium(II) Complex

Josh Abbenseth^a, Martin Diefenbach^b, Sarah C. Bete^a, Christian Würtele^a, Christian Volkmann^a, Serhiy Demeshko^a, Max C. Holthausen^b and Sven Schneider^a*

- a. Institut f
 ür Anorganische Chemie, Georg-August-Universit
 ät G
 öttingen, Tammannstra
 ße 4, 37077 G
 öttingen.
 E-mail: Sven.Schneider@chemie.uni-goettingen.de
- Institut f
 ür Anorganische Chemie, Goethe-Universit
 ät, Max-von-Laue-Straße 7 60438 Frankfurt/Main (Germany)
 E-mail: Max.Holthausen@chemie.uni-frankfurt.de

Sven.Schneider@chemie.uni-goettingen.de

Table of Content

Experimental Section
Materials and Methods
Synthesis of [OsHCl ₂ {N(CH ₂ CH ₂ PtBu ₂) ₂ }] (11)
Synthesis of [OsCl ₂ {N(CHCHPtBu ₂) ₂ }] (12)
Synthesis of [OsCl{N(CHCHPtBu ₂) ₂ }] (13):
Synthesis of [OsCl{N(CHCHPtBu ₂) ₂ }(CNtBu)] (14)4
Synthesis of [OsCl{N(CHCHPtBu ₂) ₂ }(CO)] (15)
Analytical Data for compound 125
Analytical Data for compound 137
Analytical Data for compound 1412
Analytical Data for compound 1514
Crystallographic Details
X-ray Single-Crystal Structure Analysis of 1217
X-ray Single-Crystal Structure Analysis of 13
X-ray Single-Crystal Structure Analysis of 1425
X-ray Single-Crystal Structure Analysis of 15
Computational Details
Geometries and Electronic Structures
Molecular Orbital Diagrams
Energies
Cartesian coordinates of PBE0D/TZVP geometries (Å) for 13 and 13,Me
References

Experimental Section

Materials and Methods

All experiments were carried out using Schlenk (argon atmosphere) and glovebox (argon atmosphere) techniques. All sol-vents were dried by passing through columns packed with activated alumina. Deuterated solvents were obtained from Euriso-Top GmbH, dried over Na/K (THF, Toluene, Benzene), distilled by trap-to-trap transfer in vacuo, and degassed by three freeze-pump-thaw cycles, respectively. Silica gel 60 silanized was purchased from Merck KGaA and heated at 120°C in vacuo for 5 days prior to use. CoCp₂ (abcr), CNtBu (Sigma-Aldrich), CO (Linde) and [NBu₄][PF₆] (Sigma-Aldrich) were used as purchased. ^HPNP^[1], TBP^[2] and OsCl₂(PPh₃)₃^[3] were prepared according to literature procedures. Cyclic voltammograms were recorded with a Metrohm Autolab PGSTAT101 using Ag/Ag⁺ reference-, glassy-carbon working- and Pt-wire counterelectrodes. Experimental X-band EPR spectra were recorded on a Bruker ELEXSYS-II E500 CW-EPR. The spectra were simulated by iteration of the anisotropic g-values, (super)hyperfine coupling constants, and line widths using the EPR-simulation program W95EPR developed by Prof. Dr Frank Neese. IR spectra were recorded with a Thermo Scientific Nicolet iZ10 FT/IR spectrometer at room temperature. Magnetic susceptibility measurements were performed with a Quantum Design MPMS-XL-5 SQUID magnetometer in the temperature range from 295 to 2 K at 0.5 T applied field. The powdered sample was contained in a Teflon bucket and fixed in a non-magnetic sample holder. Each raw data point for the measured magnetic moment of the sample was corrected for the diamagnetic contribution by subtraction of the experimentally determined magnetic measurement of the Teflon bucket. The molar susceptibility data were corrected for the diamagnetic contribution using the Pascal constants and the increment method according to Haberditzl.^[4] Experimental data were modelled with the *julX* program.^[5] Elemental analyses were obtained from the analytical laboratories at the Georg-August University on an Elementar Vario EL 3. NMR Spectra were recorded on Bruker Avance III 300, Bruker Avance III 300, Bruker Avance III 400 and Bruker Avance III HD 500 and were calibrated to the residual solvent proton resonance. (d_6 -Benzene δ_H = 7.16 ppm, d_8 -THF δ_H = 3.58 ppm, d_8 -toluene δ_H = 2.08 ppm). LIFDIspetrometry was performed on a Joel AccuTOF spectrometer under inert conditions.

Synthesis of $[OsHCl_2\{N(CH_2CH_2PtBu_2)_2\}]$ (11): $OsCl_2(PPh_3)_3$ (800 mg, 0.76 mmol, 1.0 eq) is dissolved in C_6H_6 /pentane (5:1, 30 mL) and ^HPNP (280 mg, 0.76 mmol, 1.0 eq) in C_6H_6 (5 mL) is added to the solution. The mixture is stirred for 45 min at RT. The solvent is removed and the solid is washed with pentane at 0°C (4 x 10 mL). DCM (15 mL) is added to the solid and the solution is heated to 40°C for 16h. The solvent is removed and the crude product is purified by washing with Et₂O (4 x 10 mL) and EtOH (4 x 5 mL). The solid is extracted with DCM (5 x 2 mL) and the solvent is removed. [OsHCl_2{N(CH_2CH_2PtBu_2)_2}] (358 mg, 0.57 mmol, 75%) is isolated in form of a green solid. Spectroscopic characterization data was identical with the prior reported values.^[6]

Synthesis of $[OsCl_2{N(CHCHPtBu_2)_2}]$ (12): $[OsHCl_2{N(CH_2CH_2PtBu_2)_2}]$ (160 mg, 0.26 mmol, 1.0 eq) and TBP (370 mg, 1.41 mmol, 7.0 eq) are dissolved in PhCl (20 mL) and stirred at 50°C for 4.5 h. The solvent is removed and the residue is washed with pentanes (8 x 10 mL) and extracted with benzene (5 x 5 mL). Lyophilization yields $[OsCl_2{N(CHCHPtBu_2)_2}]$ as a dark green powder (149 mg, 0.24 mmol, 95 %). Anal. Calcd for $C_{20}H_{40}Cl_2N_1Os_1P_2$ (617.62): C, 38.9; H, 6.53; N, 2.27 Found: C, 39.4; H, 6.36; N, 2.15. NMR (*d*₆-benzene): ¹H (300 MHz, RT): δ = 43.9 (br, 2H, CH), -0.06 (br, 36H, P(C(CH_3)_2), -97.7 (br, 2H, CH). MS (LIFDI, toluene): m/z = 618.0 (100%, $[M^+]$). $\mu_{eff}^{297 \text{ K}}$ = 1.65 μ_B .

Synthesis of $[OsCl{N(CHCHPtBu_2)_2}]$ (13): $[OsCl_2{N(CHCHPtBu_2)_2}]$ (20.0 mg, 32.4 µmol, 1.0 eq) and $CoCp_2$ (6.1 mg, 32.4 µmol, 1.0 eq) are dissolved in THF (2 mL) at -35°C and stirred for 1 min. The solvent is removed and the residue is extracted with pentane. Crystallization at -35°C yields $[OsCl{N(CHCHPtBu_2)_2}]$ in form of dark purple

crystals which are suitable for SQUID measurements (10.0 mg, 17.2 μmol, 53%). *Combustion analysis could not be obtained due to decomposition during drying in vacuo, presumably from loss of isobutene (see Figure 11).* However, SQUID data was reproduced with 3 independent samples. NMR (d_6 -Benzene): ¹H (300 MHz, RT): δ = 18.42 (ABXX'B'A', $N = |{}^3J_{AX} + {}^4J_{AX'}| = 17.0$ Hz, ${}^3J_{AB} = 6.0$ Hz. 2H, NCH), -4.20 (A₁₈XX'A'₁₈, $N = |{}^3J_{AX} + {}^5J_{AX'}| = 6.0$ Hz, 36H, P(C(CH₃)₂), -35.28 (d, ${}^3J_{AB} = 6.1$ Hz, 2H, PCH). ¹³C (125.76 MHz): δ = 262.4 (d, ${}^1J_{CH} = 165.1$ Hz, 2C, PCH), 77.1 (q, ${}^1J_{CH} = 125.5$, 12C, P(C(CH₃)₃)₂), 34.3 (br, 4C, P(C(CH₃)₃)₂), 31.4 (d, ${}^1J_{CH} = 162.3$ Hz, 2C, NCH). ³¹P{¹H} (161.25 MHz): δ = -978.2 (s, 2P, P(C(CH₃)₃)₂). MS (LIFDI, toluene): m/z = 583.1 (100%, [M⁺]).

Synthesis of [OsCl{N(CHCHPtBu₂)₂}(CNtBu)] (14): [OsCl₂{N(CHCHPtBu₂)₂] (25.0 mg, 40.5 μmol, 1.0 eq) and CoCp₂ (7.7 mg, 42.3 μmol, 1.0 eq) are dissolved in benzene (5 mL) and stirred for 1 min. CNtBu (4.6 μL, 40.5 μmol, 1.0 eq) is added and the solution is stirred for an additional minute. After filtration the crude product is purified *via* column chromatography with silanized silica (benzene). Lyophilization yields [OsCl{N(CHCHPtBu₂)₂}(CNtBu)] as a purple powder (18.3 mg, 27.5 μmol, 68%). Anal. Calcd for C₂₅H₄₉Cl₁N₂Os₁P₂ (665.30): C, 45.1; H, 7.42; N, 4.21 Found: C, 45.4; H, 8.02; N, 4.10. NMR (*d*₆-benzene, RT): ¹H (400 MHz): δ = 7.04 (ABXX'B'A', $N = |^{3}J_{AX} + ^{4}J_{AX'}| = 17.0 Hz, ³J_{AB} = 5.9 Hz. 2H, NCH), 4.33 (ABXX'B'A', <math>N = |^{2}J_{AX} + ^{4}J_{AX'}| = 2.6 Hz, ³J_{AB} = 5.9 Hz, 2H, PCH), 1.51 (A₉XX'A'₉, <math>N = |^{3}J_{AX} + ^{5}J_{AX'}| = 6.6 Hz, 18H, P(C(CH₃)₃)), 1.22 (A₉XX'A'₉, <math>N = |^{3}J_{AX} + ^{5}J_{AX'}| = 6.6 Hz, 18H, P(C(CH₃)₃)), 1.22 (A₉XX'A'₉, <math>N = |^{3}J_{AX} + ^{5}J_{AX'}| = 11.2 Hz, 2C, P(C(CH₃)₃)), 1.19 (s, 9H, CN(C(CH₃)₃)). ¹³C{¹H} (125.76 MHz): <math>\delta$ = 166.8 (AXX'A', $N = |^{2}J_{AX} + ^{3}J_{AX'}| = 11.2 Hz, 2C, P(C(CH₃)₃), 36.3 (AXX'A', <math>N = |^{1}J_{AX} + ^{3}J_{AX'}| = 11.2 Hz, 2C, P(C(CH₃)₃), 36.3 (AXX'A', <math>N = |^{1}J_{AX} + ^{3}J_{AX'}| = 11.8 Hz, 2C, P(C(CH₃)₃), 33.3 (s, 3C, CN(CH₃)₃). The isonitrile C≡N resonance was not detected. ³¹P{¹H} (161.25 MHz): <math>\delta$ = 55.6 (s, 2P, P(C(CH₃)₃)₂). MS (LIFDI, toluene): m/z = 666.2 (100%, [M⁺]). IR (KBr): $\tilde{\nu}$ = 1931 (C=N).

Synthesis of [OsCl{N(CHCHPtBu₂)₂}(CO)] (15): [OsCl₂{N(CHCHPtBu₂)₂}] (15.0 mg, 24.3 µmol, 1.0 eq) and CoCp2 (4.6 mg, 24.3 µmol, 1.0 eq) are dissolved in THF (10 mL) in a 50 mL J-Young flask and stirred for 1 min at room temperature. The solution is degassed with three successive freeze-pump-thaw cycles and allowed to warm to room temperature. Upon melting, CO (600 µL, 1bar, 24.3 µmol, 1.0 eq) is slowly bubbled through the solution. The solution is stirred for 10 min at room temperature. After removal of the solvent the crude product is washed with pentanes (1 x 1 mL) and extracted with benzene (3 x 0.5 mL). The solution is concentrated and the product is further purified via column chromatography with silanized silica (benzene). The solvent is removed and the product is crystallized from Et₂O at -35°C. The crystals are washed with pentanes and dried. Lyophilization yields [OsCl{N(CHCHPtBu₂)₂}(CO)] (9.5 mg, 15.6 µmol, 64 %) as a purple powder. Anal. Calcd for C₂₁H₄₀N₁O₁OsP₂ (610.18): C, 41.3; H, 6.61; N, 2.30; Found: C, 41.0; H, 6.21; N, 2.12. NMR (*d*₆-benzene): ¹H (400 MHz): δ = 6.92 $(ABXX'B'A', N = |^{3}J_{AX} + ^{4}J_{AX'}| = 20.1 Hz, ^{3}J_{AB} = 5.8 Hz, 2H, NCH), 4.30 (ABXX'B'A', N = |^{2}J_{AX} + ^{4}J_{AX'}| = 2.8 Hz, ^{3}J_{AB} = 5.8 Hz, 2H, NCH)$ Hz, 2H, PCH), 1.41 (A₉XX'A'₉, $N = |^{3}J_{AX} + {}^{5}J_{AX'}| = 7.3$ Hz, 18H, P(C(CH₃)₃)), 1.16 (A₉XX'A'₉, $N = |^{3}J_{AX} + {}^{5}J_{AX'}| = 6.8$ Hz, 18H, P(C(CH₃)₃)). ¹³C{¹H} (125.76 MHz): δ = 168.4 (t, ²J_{CP} = 7.9 Hz, 1 C, CO), 166.8 (AXX'A', N = |²J_{AX} + ³J_{AX'}| = 6.6 Hz, 2C, NCH), 89.7 (AXX'A', $N = |{}^{1}J_{AX} + {}^{3}J_{AX'}| = 21.7$ Hz, 2C, PCH), 39.2 (AXX'A', $N = |{}^{1}J_{AX} + {}^{3}J_{AX'}| = 11.8$ Hz, 2C, $P(C(CH_3)_3)$, 37.0 (AXX'A', $N = |^{1}J_{AX} + {}^{3}J_{AX'}| = 12.4$ Hz, 2C, $P(C(CH_3)_3)$, 30.0 (A₃XX'A'₃, $N = |^{2}J_{AX} + {}^{4}J_{AX'}| = 2.3$ Hz, 6C, $P(C(CH_3)_3)$, 28.6 (A₃XX'A'₃, $N = |^2 J_{AX} + |^4 J_{AX'}| = 2.7$ Hz, 6C, $P(C(CH_3)_3)$. ${}^{31}P{}^{1}H{}$ (161.25 MHz): $\delta = 65.1$ (s, 2P, $P(C(CH_3)_3)_2)$. IR (Nujol): $\tilde{v} = 1893$ (C=O).

Figure 1: ¹H-NMR spectrum of **12**, C₆D₆, RT.

Figure 2: EPR-powder spectrum of 12, 140 K, Freq.: 9.448 GHz, Mod.: 7.00 G, Power: 10 mW.

Figure 3: Cyclovoltammogram of 12, THF, 0.1 M TBAHP, 0.1 mM, RT.

Analytical Data for compound 13

18.1 18.0 17.9 17.8 17.7 17.6 17.5 17.4 17.3 17.2 17.1 17.0 -3.3 -3.4 -3.5 -3.6 -3.7 -3.8 -3.9 -4.0 -4.1 -4.2 -4.3 -4.4 -4.5 -4.6 -4.7 -3.2.7 -3.2.8 -3.2.9 -3.3.0 -3.3.1 -3.3.2 -3.3.3 -3.3.4 -3.3.5 -3.3.6 -3.3. Chemical Shift (ppm)

Figure 5: VT-¹H-NMR spectrum of **13**, Toluene-*d*₈, -55°C (red) to -15°C (green), 5°C steps.

Figure 6: Temperature dependence of the ¹H-NMR signals of 13.

Figure 7: ³¹P{¹H}-NMR spectrum of **13**, C₆D₆, RT (inset: ³¹P{¹H}-¹H HMQC NMR spectrum of **13**, Toluene- d_8 , - 35°C).

290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Chemical Shift [ppm]

Figure 8: ¹³C-NMR spectrum of **13**, C₆D₆, RT.

Figure 9: ${}^{13}C{}^{1}H{}^{-1}H{}^{-1}HMQC NMR spectrum of 13, C_6D_6, RT.$

Figure 10: ¹³C{¹H}-¹H-HMBC NMR spectrum of **13**, C₆D₆, RT.

Figure 11: ¹H NMR spectrum of 13 after 24h at room temperature showing formation of isobutene, C₆D₆, RT.

Figure 12: $\chi_M T$ vs. *T* plot for **13**. The open circles are the observed susceptibility, the red solid line corresponds to the best fit with the parameters *PI* = 2.5 % (*S* = 1, the blue broken line, PI: paramagnetic impurity) and *TIP* = 1030·10⁻⁶ cm³·mol⁻¹.

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 Chemical Shift (ppm)

Figure 13: ³¹P{¹H}-NMR spectrum of **14**, C₆D₆, RT.

Figure 14: ¹H-NMR spectrum of 14, C₆D₆, RT.

Figure 15: ¹³C{¹H}-NMR spectrum of **14**, C₆D₆, RT.

Figure 16: IR-Spectrum of 14, KBr, RT.

Analytical Data for compound 15

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 Chemical Shift form

Figure 17: ³¹P{¹H}-NMR spectrum of **15**, C₆D₆, RT.

Figure 18: ¹H-NMR spectrum of 15, C₆D₆, RT.

Figure 19: ¹³C{¹H}-NMR spectrum of **15**, C₆D₆, RT.

Figure 20: IR-Spectrum of 15, KBr, RT.

Crystallographic Details

CCDC-1534960 (12), CCDC-1534959 (13), CCDC-1534961 (14) and CCDC-1534958 (15) contain the supplementary crystallographic data for this paper. This data can be obtained free of charge via http://www.ccdc.cam.ac.uk/ products/csd/request/ (or from Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK. Fax: +44-1223- 336-033; e-mail: deposit@ccdc.cam.ac.uk).

Crystallographic Details

Suitable single crystals for X-ray structure determination were selected from the mother liquor under an inert gas atmosphere and transferred in protective perfluoro polyether oil on a microscope slide. The selected and mounted crystals were transferred to the cold gas stream on the diffractometer. The diffraction data were obtained at 100 K on a Bruker D8 three-circle diffractometer, equipped with a PHOTON 100 CMOS detector and an INCOATEC microfocus source with Quazar mirror optics (Mo-K α radiation, λ = 0.71073 Å).

The data obtained were integrated with SAINT and a semi-empirical absorption correction from equivalents with SADABS was applied. The structures were solved and refined using the Bruker SHELX 2014 software package.^[7] All non-hydrogen atoms were refined with anisotropic displacement parameters. All C-H hydrogen atoms were refined isotropically on calculated positions by using a riding model with their U_{iso} values constrained to 1.5 U_{eq} of their pivot atoms for terminal sp3 carbon atoms and 1.2 times for all other carbon atoms.

Figure 21: Thermal ellipsoid plot of **12** with the anisotropic displacement parameters drawn at the 50% probability level. The asymmetric unit contains two half complex molecules. Both complex molecules are disordered over two positions. The first disordered complex molecule was refined with population of 0.910(3) on the main domain using some restraints (SADI) and constraints (EADP). The second disordered complex molecule was refined with population of 0.502(6) on the main domain using some restraints (SADI, RIGU) and constraints (EADP).

Table 1: Cry	stal data and	structure refinement	for 12 .
--------------	---------------	----------------------	-----------------

Identification code	mo_CW_JA_110116_2_0	m_a (JA-i-10)	
Empirical formula	$C_{20}H_{40}Cl_2NOsP_2$		
Formula weight	617.57		
Temperature	102(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	Pnma		
Unit cell dimensions	a = 16.8714(6) Å	$\alpha = 90^{\circ}$	
	b = 16.9302(7) Å	$\beta = 90^{\circ}$	
	c = 17.1112(6) Å	$\gamma = 90^{\circ}$	
Volume	4887.6(3) Å ³		
Z	8		
Density (calculated)	1.679 Mg/m^3		
Absorption coefficient	5.573 mm ⁻¹		
F(000)	2456		
Crystal size	0.154 x 0.097 x 0.056 mm	3	
Crystal shape and color	Block,	clear intense green	
Theta range for data collection	2.079 to 26.731°		
Index ranges	-21<=h<=21, -21<=k<=21	-21<=h<=21, -21<=k<=21, -21<=l<=21	

Reflections collected	70085	
Independent reflections	5375 [R(int) = 0.0474]	
Completeness to theta = 25.242°	99.9 %	
Max. and min. transmission	0.7454 and 0.5878	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	5375 / 64 / 357	
Goodness-of-fit on F ²	1.549	
Final R indices [I>2sigma(I)]	R1 = 0.0392,	wR2 = 0.0761
R indices (all data)	R1 = 0.0459,	wR2 = 0.0784
Largest diff. peak and hole	1.331 and -2.360 eÅ ⁻³	

Table 2: Bond lengths [Å] and angles [°] for 12.		P(1)-Os(1A)	2.3924(18)
C(1)-C(2)	1.323(9)	P(2)-C(13)#1	1.872(10)
C(1)-N(1)	1.409(6)	P(2)-C(13A)#1	1.915(11)
C(20)-C(19A)	1.524(16)	P(2)-Os(2)	2.3845(17)
C(20)-C(19)	1.535(17)	P(3)-C(19A)#1	1.845(15)
C(14)-C(13A)	1.515(12)	P(3)-C(19)#1	1.899(16)
C(14)-C(13)	1.550(12)	P(3)-Os(2)	2.3904(18)
C(9)-C(7)	1.534(8)	Os(2)-Cl(3)	2.304(3)
C(9)-C(7A)	1.538(16)	Os(2)-Cl(4)	2.382(2)
C(13)-C(15)	1.516(15)	Cl(1)-Os(1)	2.380(3)
C(13)-C(16)	1.522(17)	Cl(2)-Os(1)	2.319(2)
C(13)-P(2)	1.872(10)	Os(1)-P(1)#1	2.3899(13)
C(19)-C(21)	1.535(16)	C(3)-C(4)	1.527(7)
C(19)-C(22)	1.54(2)	C(3)-C(6)	1.538(7)
C(19)-P(3)	1.899(16)	C(7)-C(10)	1.531(8)
C(13A)-C(16A)	1.516(15)	C(7)-C(8)	1.539(8)
C(13A)-C(15A)	1.561(15)	Cl(1A)-Os(1A)	2.40(3)
C(13A)-P(2)	1.915(11)	Cl(2A)-Os(1A)	2.28(2)
C(19A)-C(22A)	1.530(16)	Os(1A)-P(1)#1	2.3924(18)
C(19A)-C(21A)	1.547(19)	C(3A)-C(4A)	1.527(15)
C(19A)-P(3)	1.845(15)	C(3A)-C(6A)	1.527(15)
C(2)-P(1)	1.799(6)	C(7A)-C(10A)	1.541(16)
C(5)-C(3)	1.511(8)	C(7A)-C(8A)	1.549(16)
C(5)-C(3A)	1.536(15)		
C(11)-C(12)	1.337(10)	C(2)-C(1)-N(1)	122.1(5)
C(11)-N(2)	1.419(9)	C(15)-C(13)-C(16)	109.3(10)
C(12)-P(2)	1.806(8)	C(15)-C(13)-C(14)	110.4(8)
C(17)-C(18)	1.338(10)	C(16)-C(13)-C(14)	106.9(9)
C(17)-N(2)	1.395(9)	C(15)-C(13)-P(2)	115.6(9)
C(18)-P(3)	1.791(8)	C(16)-C(13)-P(2)	104.9(7)
N(1)-C(1)#1	1.409(6)	C(14)-C(13)-P(2)	109.3(6)
N(1)-Os(1A)	1.957(10)	C(21)-C(19)-C(20)	107.5(10)
N(1)-Os(1)	1.966(6)	C(21)-C(19)-C(22)	107.9(12)
N(2)-Os(2)	1.970(5)	C(20)-C(19)-C(22)	110.6(12)
P(1)-C(7)	1.875(6)	C(21)-C(19)-P(3)	114.6(10)
P(1)-C(7A)	1.885(19)	C(20)-C(19)-P(3)	108.5(9)
P(1)-C(3)	1.885(6)	C(22)-C(19)-P(3)	107.7(9)
P(1)-C(3A)	1.888(19)	C(14)-C(13A)-C(16A)	113.9(9)
P(1)-Os(1)	2.3899(13)	C(14)-C(13A)-C(15A)	107.6(9)

C(16A)-C(13A)-C(15A)	107.1(10)	C(12)-P(2)-C(13A)#1	104.3(4)
C(14)-C(13A)-P(2)	108.7(7)	C(13A)-P(2)-C(13A)#1	129.9(7)
C(16A)-C(13A)-P(2)	113.6(8)	C(12)-P(2)-Os(2)	98.3(2)
C(15A)-C(13A)-P(2)	105.4(7)	C(18)-P(3)-C(19A)#1	105.0(5)
C(20)-C(19A)-C(22A)	112.0(11)	C(18)-P(3)-C(19A)	105.0(5)
C(20)-C(19A)-C(21A)	106.9(10)	C(19A)#1-P(3)-C(19A)	127.4(10)
C(22A)-C(19A)-C(21A)	108.5(12)	C(18)-P(3)-C(19)	104.8(5)
C(20)-C(19A)-P(3)	111.7(9)	C(18)-P(3)-C(19)#1	104.8(5)
C(22A)-C(19A)-P(3)	112.9(10)	C(19)-P(3)-C(19)#1	93.5(9)
C(21A)-C(19A)-P(3)	104.4(9)	C(18)-P(3)-Os(2)	98.4(2)
C(1)-C(2)-P(1)	115.6(4)	N(2)-Os(2)-Cl(3)	103.66(9)
C(12)-C(11)-N(2)	122.5(7)	N(2)-Os(2)-Cl(4)	160.80(9)
C(11)-C(12)-P(2)	115.1(6)	Cl(3)-Os(2)-Cl(4)	95.54(10)
C(18)-C(17)-N(2)	121.2(7)	N(2)-Os(2)-P(2)	82.94(17)
C(17)-C(18)-P(3)	115.7(6)	Cl(3)-Os(2)-P(2)	94.62(7)
C(1)#1-N(1)-C(1)	116.9(6)	Cl(4)-Os(2)-P(2)	95.75(7)
C(1)#1-N(1)-Os(1A)	120.8(3)	N(2)-Os(2)-P(3)	81.65(18)
C(1)-N(1)-Os(1A)	120.8(3)	Cl(3)-Os(2)-P(3)	96.44(7)
C(1)#1-N(1)-Os(1)	121.5(3)	Cl(4)-Os(2)-P(3)	96.27(8)
C(1)-N(1)-Os(1)	121.5(3)	P(2)-Os(2)-P(3)	162.78(6)
C(17)-N(2)-C(11)	116.8(6)	N(1)-Os(1)-Cl(2)	106.82(19)
C(17)-N(2)-Os(2)	122.4(5)	N(1)-Os(1)-Cl(1)	160.16(19)
C(11)-N(2)-Os(2)	120.5(4)	Cl(2)-Os(1)-Cl(1)	93.02(10)
C(2)-P(1)-C(7)	105.4(3)	N(1)-Os(1)-P(1)#1	82.22(4)
C(2)-P(1)-C(7A)	105.4(6)	Cl(2)-Os(1)-P(1)#1	96.39(4)
C(2)-P(1)-C(3)	103.9(3)	Cl(1)-Os(1)-P(1)#1	95.85(4)
C(7)-P(1)-C(3)	110.5(3)	N(1)-Os(1)-P(1)	82.22(4)
C(2)-P(1)-C(3A)	104.0(6)	Cl(2)-Os(1)-P(1)	96.39(4)
C(7A)-P(1)-C(3A)	111.0(7)	Cl(1)-Os(1)-P(1)	95.84(4)
C(2)-P(1)-Os(1)	98.2(2)	P(1)#1-Os(1)-P(1)	162.17(7)
C(7)-P(1)-Os(1)	123.55(19)	C(5)-C(3)-C(4)	110.4(5)
C(3)-P(1)-Os(1)	112.31(18)	C(5)-C(3)-C(6)	108.0(5)
C(2)-P(1)-Os(1A)	97.5(3)	C(4)-C(3)-C(6)	108.4(5)
C(7A)-P(1)-Os(1A)	112.9(9)	C(5)-C(3)-P(1)	111.4(4)
C(3A)-P(1)-Os(1A)	122.9(8)	C(4)-C(3)-P(1)	113.4(4)
C(12)-P(2)-C(13)#1	105.3(4)	C(6)-C(3)-P(1)	105.0(4)
C(12)-P(2)-C(13)	105.3(4)	C(10)-C(7)-C(9)	110.1(5)
C(13)#1-P(2)-C(13)	86.7(8)	C(10)-C(7)-C(8)	108.2(5)
C(12)-P(2)-C(13A)	104.3(4)	C(9)-C(7)-C(8)	109.7(6)

C(10)-C(7)-P(1)	106.4(4)
C(9)-C(7)-P(1)	108.1(4)
C(8)-C(7)-P(1)	114.3(4)
N(1)-Os(1A)-Cl(2A)	103.7(8)
N(1)-Os(1A)-P(1)#1	82.34(19)
Cl(2A)-Os(1A)-P(1)#1	96.9(2)
N(1)-Os(1A)-P(1)	82.34(19)
Cl(2A)-Os(1A)-P(1)	96.9(2)
P(1)#1-Os(1A)-P(1)	161.4(4)
N(1)-Os(1A)-Cl(1A)	162.5(10)
Cl(2A)-Os(1A)-Cl(1A)	93.8(11)
P(1)#1-Os(1A)-Cl(1A)	95.7(2)
P(1)-Os(1A)-Cl(1A)	95.7(2)
C(4A)-C(3A)-C(6A)	108.6(14)
C(4A)-C(3A)-C(5)	109.0(14)

C(6A)-C(3A)-C(5)	108.8(14)
C(4A)-C(3A)-P(1)	108(3)
C(6A)-C(3A)-P(1)	113(3)
C(5)-C(3A)-P(1)	110.1(11)
C(9)-C(7A)-C(10A)	107.9(14)
C(9)-C(7A)-C(8A)	107.1(14)
C(10A)-C(7A)-C(8A)	107.9(14)
C(9)-C(7A)-P(1)	107.4(11)
C(10A)-C(7A)-P(1)	119(3)
C(8A)-C(7A)-P(1)	107(3)

Symmetry transformations used to generate equivalent atoms: #1 x,-y+1/2,z

Figure 21: Thermal ellipsoid plot of **13** with the anisotropic displacement parameters drawn at the 50% probability level. The asymmetric unit contains a half complex molecule.

Table 3:	Crystal data	and structure	refinement	for 13 .
----------	--------------	---------------	------------	-----------------

Identification code	mo_CW_JA_020816_0n	n_a (JA-ii-32)	
Empirical formula	$C_{20}H_{40}ClNOsP_2$		
Formula weight	582.12		
Temperature	112(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2/c		
Unit cell dimensions	a = 11.4519(6) Å	$\alpha = 90^{\circ}$	
	b = 8.5831(4) Å	$\beta = 113.000(2)^{\circ}$	
	c = 13.3683(6) Å	$\gamma = 90^{\circ}$	
Volume	1209.55(10) Å ³		
Z	2		
Density (calculated)	1.598 Mg/m ³		
Absorption coefficient	5.518 mm ⁻¹		
F(000)	580		
Crystal size	0.187 x 0.157 x 0.072 m	0.187 x 0.157 x 0.072 mm ³	
Theta range for data collection	2.373 to 28.366°	2.373 to 28.366°	
Index ranges	-15<=h<=15, -10<=k<=1	-15<=h<=15, -10<=k<=11, -17<=l<=17	
Reflections collected	36752		

Independent reflections	3027 [R(int) = 0.0469]	
Completeness to theta = 25.242°	100.0 %	
Max. and min. transmission	0.7457 and 0.6334	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3027 / 0 / 121	
Goodness-of-fit on F ²	1.122	
Final R indices [I>2sigma(I)]	R1 = 0.0161,	wR2 = 0.0301
R indices (all data)	R1 = 0.0269,	wR2 = 0.0329
Largest diff. peak and hole	0.484 and -0.634 e.Å ⁻³	

Table 4: Bond length	ns [Å] and angles [°] for 13.	C(10)-C(7)-C(8)	109.9(2)
C(1)-C(2)	1.333(3)	C(9)-C(7)-C(8)	108.0(2)
C(1)-N(1)	1.403(2)	C(10)-C(7)-P(1)	114.67(16)
C(2)-P(1)	1.802(2)	C(9)-C(7)-P(1)	104.65(15)
C(3)-C(5)	1.524(3)	C(8)-C(7)-P(1)	110.51(15)
C(3)-C(6)	1.526(3)	C(1)-N(1)-C(1)#1	117.5(2)
C(3)-C(4)	1.542(3)	C(1)-N(1)-Os(1)	121.25(12)
C(3)-P(1)	1.877(2)	C(1)#1-N(1)-Os(1)	121.25(12)
C(7)-C(10)	1.528(3)	C(2)-P(1)-C(7)	104.95(10)
C(7)-C(9)	1.528(3)	C(2)-P(1)-C(3)	104.59(10)
C(7)-C(8)	1.529(3)	C(7)-P(1)-C(3)	113.19(10)
C(7)-P(1)	1.875(2)	C(2)-P(1)-Os(1)	99.45(7)
N(1)-C(1)#1	1.403(2)	C(7)-P(1)-Os(1)	117.65(7)
N(1)-Os(1)	1.980(2)	C(3)-P(1)-Os(1)	114.48(7)
P(1)-Os(1)	2.3392(5)	N(1)-Os(1)-P(1)	82.656(13)
Cl(1)-Os(1)	2.3542(7)	N(1)-Os(1)-P(1)#1	82.656(13)
Os(1)-P(1)#1	2.3392(5)	P(1)-Os(1)-P(1)#1	165.31(3)
C(2)-C(1)-N(1)	121.60(19)	N(1)-Os(1)-Cl(1)	180.0
C(1)-C(2)-P(1)	115.04(16)	P(1)-Os(1)-Cl(1)	97.344(13)
C(5)-C(3)-C(6)	110.3(2)	P(1)#1-Os(1)-Cl(1)	97.344(13)
C(5)-C(3)-C(4)	108.57(19)		
C(6)-C(3)-C(4)	108.2(2)		_
C(5)-C(3)-P(1)	110.53(16)	Symmetry transformation	ons used to generate
C(6)-C(3)-P(1)	114.49(16)	equivalent atoms:	
C(4)-C(3)-P(1)	104.33(15)	#1 -x+1,y,-z+1/2	
C(10)-C(7)-C(9)	108.8(2)		

Figure 23. Thermal ellipsoid plot of **14** with the anisotropic displacement parameters drawn at the 50% probability level. The structure was refined using two constrains (EADP).

Table 5:	Crystal dat	a and structu	re refinemer	nt for 14 .
----------	-------------	---------------	--------------	--------------------

Identification code	mo_CV_JA_060516_2_0m_a	(JA-i-94)
Empirical formula	$C_{25}H_{49}ClN_2OsP_2$	
Formula weight	665.25	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P21/c	
Unit cell dimensions	a = 15.2391(7) Å	$\alpha = 90^{\circ}$
	b = 10.9698(5) Å	$\beta = 96.832(2)^{\circ}$
	c = 16.9742(8) Å	$\gamma=90^\circ$
Volume	2817.4(2) Å ³	
Z	4	
Density (calculated)	1.568 Mg/m ³	
Absorption coefficient	4.750 mm ⁻¹	
F(000)	1344	
Crystal size	$0.947 \ge 0.766 \ge 0.556 \text{ mm}^3$	
Crystal shape and color	Block,	clear intense blue
Theta range for data collection	2.215 to 27.197°	
Index ranges	-19<=h<=19, -14<=k<=14, -21	<=l<=21

Reflections collected	76131	
Independent reflections	6264 [R(int) = 0.0694]	
Completeness to theta = 25.242°	100.0 %	
Max. and min. transmission	0.7455 and 0.1448	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	6264 / 0 / 283	
Goodness-of-fit on F ²	1.067	
Final R indices [I>2sigma(I)]	R1 = 0.0290,	wR2 = 0.0755
R indices (all data)	R1 = 0.0349,	wR2 = 0.0797
Largest diff. peak and hole	1.645 and -2.020 eÅ ⁻³	

Table 6: Bond length	hs [Å] and angles [°] for 14.	P(2)-Os(1)-P(1)	160.58(3)
Os(1)-C(21)	1.827(4)	C(21)-Os(1)-Cl(1)	94.20(12)
Os(1)-N(2)	2.050(3)	N(2)-Os(1)-Cl(1)	163.87(9)
Os(1)-P(2)	2.3688(10)	P(2)-Os(1)-Cl(1)	97.55(3)
Os(1)-P(1)	2.3827(10)	P(1)-Os(1)-Cl(1)	97.40(3)
Os(1)-Cl(1)	2.4046(9)	C(2)-P(1)-C(3)	106.72(19)
P(1)-C(2)	1.787(4)	C(2)-P(1)-C(7)	103.67(19)
P(1)-C(3)	1.882(4)	C(3)-P(1)-C(7)	110.26(19)
P(1)-C(7)	1.885(4)	C(2)-P(1)-Os(1)	99.78(14)
C(1)-C(2)	1.350(6)	C(3)-P(1)-Os(1)	120.49(13)
C(1)-N(2)	1.366(5)	C(7)-P(1)-Os(1)	113.66(13)
N(1)-C(21)	1.197(5)	C(2)-C(1)-N(2)	123.0(4)
N(1)-C(22)	1.466(5)	C(21)-N(1)-C(22)	144.4(4)
P(2)-C(12)	1.790(4)	C(12)-P(2)-C(13)	106.64(19)
P(2)-C(13)	1.872(4)	C(12)-P(2)-C(17)	103.45(18)
P(2)-C(17)	1.881(4)	C(13)-P(2)-C(17)	110.64(19)
N(2)-C(11)	1.382(5)	C(12)-P(2)-Os(1)	100.30(14)
C(3)-C(5)	1.530(6)	C(13)-P(2)-Os(1)	123.60(14)
C(3)-C(6)	1.536(6)	C(17)-P(2)-Os(1)	109.77(13)
C(3)-C(4)	1.539(6)	C(1)-N(2)-C(11)	118.8(3)
C(19)-C(17)	1.537(6)	C(1)-N(2)-Os(1)	120.7(3)
C(18)-C(17)	1.532(5)	C(11)-N(2)-Os(1)	120.5(3)
C(9)-C(7)	1.524(6)	C(1)-C(2)-P(1)	115.1(3)
C(8)-C(7)	1.530(6)	C(5)-C(3)-C(6)	109.0(3)
C(7)-C(10)	1.532(6)	C(5)-C(3)-C(4)	107.6(3)
C(11)-C(12)	1.339(6)	C(6)-C(3)-C(4)	110.1(3)
C(17)-C(20)	1.525(6)	C(5)-C(3)-P(1)	115.4(3)
C(16)-C(13)	1.539(6)	C(6)-C(3)-P(1)	108.3(3)
C(15)-C(13)	1.532(6)	C(4)-C(3)-P(1)	106.5(3)
C(14)-C(13)	1.532(6)	C(9)-C(7)-C(8)	110.5(4)
C(22)-C(24)	1.512(6)	C(9)-C(7)-C(10)	108.3(4)
C(22)-C(23)	1.520(6)	C(8)-C(7)-C(10)	107.6(4)
C(22)-C(25)	1.522(6)	C(9)-C(7)-P(1)	111.5(3)
		C(8)-C(7)-P(1)	113.6(3)
C(21)-Os(1)-N(2)	101.93(15)	C(10)-C(7)-P(1)	105.0(3)
C(21)-Os(1)-P(2)	95.07(13)	C(12)-C(11)-N(2)	122.9(4)
N(2)-Os(1)-P(2)	81.07(9)	C(20)-C(17)-C(18)	109.2(3)
C(21)-Os(1)-P(1)	96.11(13)	C(20)-C(17)-C(19)	108.5(3)
N(2)-Os(1)-P(1)	81.12(9)	C(18)-C(17)-C(19)	110.1(4)

C(20)-C(17)-P(2)	104.3(3)
C(18)-C(17)-P(2)	113.5(3)
C(19)-C(17)-P(2)	110.9(3)
C(14)-C(13)-C(15)	107.4(3)
C(14)-C(13)-C(16)	109.6(3)
C(15)-C(13)-C(16)	110.2(4)
C(14)-C(13)-P(2)	106.4(3)
C(15)-C(13)-P(2)	114.2(3)
C(16)-C(13)-P(2)	109.0(3)
C(11)-C(12)-P(2)	114.9(3)

N(1)-C(21)-Os(1)	178.9(4)
N(1)-C(22)-C(24)	108.7(4)
N(1)-C(22)-C(23)	107.7(3)
C(24)-C(22)-C(23)	110.4(4)
N(1)-C(22)-C(25)	109.8(3)
C(24)-C(22)-C(25)	109.8(4)
C(23)-C(22)-C(25)	110.6(4)

Figure 24: Thermal ellipsoid plot of **15** with the anisotropic displacement parameters drawn at the 50% probability level. The asymmetric unit contains a half disordered complex molecule. The disorder was refined with site occupation factors of 0.25 for both sites using PART commands and some restraints (SADI, RIGU) and constraints (EADP). The structure was refined as an inversion twin using the twin law -100 0-10 00-1 (BASF: 0.50(3)).

Tabl	e 7:	Crystal	data and	l structure	refinement	for	15.
------	------	---------	----------	-------------	------------	-----	-----

Identification code	mo_CW_JA_090117_0m_b (JA-ii-81)		
Empirical formula	$C_{21}H_{40}CINOOsP_2$		
Formula weight	610.13		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Tetragonal		
Space group	I4		
Unit cell dimensions	a = 12.0393(7) Å	$\alpha = 90^{\circ}$	
	b = 12.0393(7) Å	$\beta = 90^{\circ}$	
	c = 8.5145(5) Å	$\gamma=90^\circ$	
Volume	1234.13(16) Å ³		
Z	2		
Density (calculated)	1.642 Mg/m ³		
Absorption coefficient	5.415 mm ⁻¹		
F(000)	608		
Crystal size	0.309 x 0.180 x 0.142 mm ³		
Crystal shape and color	Block,	dark brown	
Theta range for data collection	2.392 to 33.138°		
Index ranges	-17<=h<=18, -18<=k<=18, -13	<=l<=12	

Reflections collected	28153	
Independent reflections	2296 [R(int) = 0.0545]	
Completeness to theta = 25.242°	100.0 %	
Max. and min. transmission	0.7466 and 0.5604	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2296 / 310 / 201	
Goodness-of-fit on F ²	1.066	
Final R indices [I>2sigma(I)]	R1 = 0.0355,	wR2 = 0.0641
R indices (all data)	R1 = 0.0520,	wR2 = 0.0685
Absolute structure parameter	0.50(3)	
Largest diff. peak and hole	1.354 and -1.026 eÅ ⁻³	

Table 8: Bond lengths [Å] and angles [°] for 15.		C(7)-C(6)#3	1.73(5)	
Os(1)-C(11)#1	1.85(3)	C(7)-C(11)	2.04(4)	
Os(1)-C(11)#2	1.85(3)	C(8)-C(6)#3	1.96(5)	
Os(1)-C(11)	1.85(3)	C(6)-C(8)#2	1.96(5)	
Os(1)-C(11)#3	1.85(3)	C(11)-O(1)	1.27(3)	
Os(1)-N(1)	2.19(2)	O(1)-C(9)#2	1.87(3)	
Os(1)-Cl(1)	2.240(9)	O(1)-C(5A)#3	1.89(4)	
Os(1)-P(1)	2.394(4)			
Os(1)-P(1)#2	2.394(4)	C(11)#1-Os(1)-C(11)#2	89.3(2)	
Os(1)-P(1)#3	2.394(4)	C(11)#1-Os(1)-C(11)	167.3(18)	
Os(1)-P(1)#1	2.394(4)	C(11)#2-Os(1)-C(11)	89.3(2)	
N(1)-C(1)#1	1.322(17)	C(11)#1-Os(1)-C(11)#3	89.3(2)	
N(1)-C(1)	1.322(17)	C(11)#2-Os(1)-C(11)#3	167.3(18)	
N(1)-C(1)#2	1.322(17)	C(11)-Os(1)-C(11)#3	89.3(2)	
N(1)-C(1)#3	1.322(17)	C(11)#1-Os(1)-N(1)	96.4(9)	
P(1)-O(1)	0.704(19)	C(11)#2-Os(1)-N(1)	96.4(9)	
P(1)-C(2)	1.744(15)	C(11)-Os(1)-N(1)	96.4(9)	
P(1)-C(7A)	1.80(2)	C(11)#3-Os(1)-N(1)	96.4(9)	
P(1)-C(3A)	1.83(5)	C(11)#1-Os(1)-Cl(1)	83.6(9)	
P(1)-C(3)	1.85(2)	C(11)#2-Os(1)-Cl(1)	83.6(9)	
P(1)-C(7)	1.87(3)	C(11)-Os(1)-Cl(1)	83.6(9)	
C(1)-C(2)	1.379(19)	C(11)#3-Os(1)-Cl(1)	83.6(9)	
C(3A)-C(4A)	1.52(4)	N(1)-Os(1)-Cl(1)	180.0	
C(3A)-C(6A)	1.54(4)	C(11)#1-Os(1)-P(1)	176.2(9)	
C(3A)-C(5A)	1.54(3)	C(11)#2-Os(1)-P(1)	91.4(9)	
C(5A)-O(1)#2	1.89(4)	C(11)-Os(1)-P(1)	16.5(9)	
C(7A)-O(1)	1.43(3)	C(11)#3-Os(1)-P(1)	90.8(8)	
C(7A)-C(9A)	1.56(2)	N(1)-Os(1)-P(1)	79.81(8)	
C(7A)-C(8A)	1.56(2)	Cl(1)-Os(1)-P(1)	100.19(8)	
C(7A)-C(10A)	1.59(2)	C(11)#1-Os(1)-P(1)#2	91.4(9)	
C(5)-C(3)	1.51(4)	C(11)#2-Os(1)-P(1)#2	16.5(9)	
C(3)-C(9)#2	0.88(4)	C(11)-Os(1)-P(1)#2	90.8(8)	
C(3)-O(1)	1.49(3)	C(11)#3-Os(1)-P(1)#2	176.2(9)	
C(3)-C(6)	1.50(4)	N(1)-Os(1)-P(1)#2	79.81(8)	
C(3)-C(4)	1.59(3)	Cl(1)-Os(1)-P(1)#2	100.19(8)	
C(7)-C(8)	1.55(2)	P(1)-Os(1)-P(1)#2	88.21(3)	
C(7)-C(10)	1.56(2)	C(11)#1-Os(1)-P(1)#3	90.8(8)	
C(7)-C(9)	1.57(2)	C(11)#2-Os(1)-P(1)#3	176.2(9)	
C(7)-O(1)	1.71(3)	C(11)-Os(1)-P(1)#3	91.4(9)	

C(11)#3-Os(1)-P(1)#3	16.5(9)	C(3)-P(1)-Os(1)	123.1(8)
N(1)-Os(1)-P(1)#3	79.81(8)	C(7)-P(1)-Os(1)	105.3(8)
Cl(1)-Os(1)-P(1)#3	100.19(8)	N(1)-C(1)-C(2)	125.7(15)
P(1)-Os(1)-P(1)#3	88.21(3)	C(1)-C(2)-P(1)	115.5(10)
P(1)#2-Os(1)-P(1)#3	159.63(16)	C(4A)-C(3A)-C(6A)	106(4)
C(11)#1-Os(1)-P(1)#1	16.5(9)	C(4A)-C(3A)-C(5A)	113(4)
C(11)#2-Os(1)-P(1)#1	90.8(8)	C(6A)-C(3A)-C(5A)	88(4)
C(11)-Os(1)-P(1)#1	176.2(9)	C(4A)-C(3A)-P(1)	120(2)
C(11)#3-Os(1)-P(1)#1	91.4(9)	C(6A)-C(3A)-P(1)	112(2)
N(1)-Os(1)-P(1)#1	79.81(8)	C(5A)-C(3A)-P(1)	113(2)
Cl(1)-Os(1)-P(1)#1	100.19(8)	C(3A)-C(5A)-O(1)#2	144(3)
P(1)-Os(1)-P(1)#1	159.63(16)	O(1)-C(7A)-C(9A)	123.3(18)
P(1)#2-Os(1)-P(1)#1	88.21(3)	O(1)-C(7A)-C(8A)	93.8(15)
P(1)#3-Os(1)-P(1)#1	88.21(3)	C(9A)-C(7A)-C(8A)	106.3(17)
C(1)#1-N(1)-C(1)	126(2)	O(1)-C(7A)-C(10A)	120.3(19)
C(1)#1-N(1)-C(1)#2	77.9(9)	C(9A)-C(7A)-C(10A)	105.0(16)
C(1)-N(1)-C(1)#2	77.9(9)	C(8A)-C(7A)-C(10A)	104.9(16)
C(1)#1-N(1)-C(1)#3	77.9(9)	O(1)-C(7A)-P(1)	21.5(8)
C(1)-N(1)-C(1)#3	77.9(9)	C(9A)-C(7A)-P(1)	114.8(15)
C(1)#2-N(1)-C(1)#3	126(2)	C(8A)-C(7A)-P(1)	115.2(13)
C(1)#1-N(1)-Os(1)	117.2(10)	C(10A)-C(7A)-P(1)	109.6(16)
C(1)-N(1)-Os(1)	117.2(10)	C(9)#2-C(3)-O(1)	101(3)
C(1)#2-N(1)-Os(1)	117.2(10)	C(9)#2-C(3)-C(6)	40(3)
C(1)#3-N(1)-Os(1)	117.2(10)	O(1)-C(3)-C(6)	120(3)
O(1)-P(1)-C(2)	104.9(17)	C(9)#2-C(3)-C(5)	93(4)
O(1)-P(1)-C(7A)	48.4(16)	O(1)-C(3)-C(5)	113(2)
C(2)-P(1)-C(7A)	96.0(9)	C(6)-C(3)-C(5)	112(2)
O(1)-P(1)-C(3A)	70.6(17)	C(9)#2-C(3)-C(4)	144(4)
C(2)-P(1)-C(3A)	93.2(12)	O(1)-C(3)-C(4)	92.0(19)
C(7A)-P(1)-C(3A)	118.6(10)	C(6)-C(3)-C(4)	105(3)
O(1)-P(1)-C(3)	49.3(17)	C(5)-C(3)-C(4)	113(2)
C(2)-P(1)-C(3)	106.8(13)	C(9)#2-C(3)-P(1)	80(3)
O(1)-P(1)-C(7)	66.2(16)	O(1)-C(3)-P(1)	21.0(8)
C(2)-P(1)-C(7)	105.3(10)	C(6)-C(3)-P(1)	104(2)
C(3)-P(1)-C(7)	112.8(11)	C(5)-C(3)-P(1)	111.7(18)
O(1)-P(1)-Os(1)	153.4(17)	C(4)-C(3)-P(1)	110.7(18)
C(2)-P(1)-Os(1)	101.7(5)	C(8)-C(7)-C(10)	107.7(17)
C(7A)-P(1)-Os(1)	127.2(6)	C(8)-C(7)-C(9)	107.7(17)
C(3A)-P(1)-Os(1)	109.6(9)	C(10)-C(7)-C(9)	106.3(18)

C(8)-C(7)-O(1)	101(2)	Os(1)-C(11)-C(7)	122.0(15)
C(10)-C(7)-O(1)	98.8(17)	P(1)-O(1)-C(11)	36.2(16)
C(9)-C(7)-O(1)	134(2)	P(1)-O(1)-C(7A)	110(2)
C(8)-C(7)-C(6)#3	73.3(19)	C(11)-O(1)-C(7A)	109(2)
C(10)-C(7)-C(6)#3	122(2)	P(1)-O(1)-C(3)	110(2)
C(9)-C(7)-C(6)#3	34.8(18)	C(11)-O(1)-C(3)	101(2)
O(1)-C(7)-C(6)#3	138(2)	P(1)-O(1)-C(7)	91.7(18)
C(8)-C(7)-P(1)	115(2)	C(11)-O(1)-C(7)	85.0(18)
C(10)-C(7)-P(1)	108.6(16)	C(3)-O(1)-C(7)	151(2)
C(9)-C(7)-P(1)	111.6(19)	P(1)-O(1)-C(9)#2	82.2(18)
O(1)-C(7)-P(1)	22.1(7)	C(11)-O(1)-C(9)#2	80.4(18)
C(6)#3-C(7)-P(1)	123(2)	C(3)-O(1)-C(9)#2	27.8(15)
C(8)-C(7)-C(11)	138(2)	C(7)-O(1)-C(9)#2	163(2)
C(10)-C(7)-C(11)	92.4(16)	P(1)-O(1)-C(5A)#3	83.8(18)
C(9)-C(7)-C(11)	101.4(18)	C(11)-O(1)-C(5A)#3	84.4(19)
O(1)-C(7)-C(11)	38.3(11)	C(7A)-O(1)-C(5A)#3	27.0(12)
C(6)#3-C(7)-C(11)	126(2)		
P(1)-C(7)-C(11)	23.6(9)		
C(7)-C(8)-C(6)#3	57.5(17)	Symmetry transformations	s used to generate
C(3)-C(6)-C(8)#2	139(3)	equivalent atoms:	
O(1)-C(11)-Os(1)	154(2)	#1 -x+1,-y+1,z #2 y,-x+	1,z #3 -y+1,x,z

56.6(15)

O(1)-C(11)-C(7)

Computational Details

The molecular geometries of two singlet and two triplet isomers of **13** in C_2 and C_s symmetry were optimized under gas-phase conditions using the Gaussian09 program^[8] with the PBE0 hybrid functional^[9,10] in conjunction with Grimme's 3rd generation atom-pairwise dispersion correction including Becke–Johnson damping (D3BJ).^[11] The def2-TZVP orbital basis set^[12] was employed with the quasi-relativistic ECP60MWB pseudopotential,^[13] which replaces the 60 core electrons in osmium. This level of DFT is abbreviated as PBE0D/TZVP. The optimized geometries were identified as minima through analysis of the eigenvalues of the Hessian matrix. Further calculations were conducted on a smaller model system, in which the four tBu groups of the pincer were replaced by methyl groups (**13,Me**). For each fully optimized electronic state of the real system **13**, the model systems **13,Me** were constructed in constrained geometries where only the C–H bond lenghts of the twelve newly added hydrogen atoms (which replace the twelve methyl fragments of the four tBu groups) were allowed to relax, i.e., all angles and dihedrals are kept fixed and all remaining coordinates are unaltered.

Relative energies from correlated wavefunction theory were computed at the DFT molecular geometries for the electromers of the **13**,**Me** model system using the Molpro2015.1 program.^[14] The explicitly correlated coupled-cluster ansatz with single and double excitations and perturbative triples, CCSD(T)-F12b,^[15, 16] was employed in combination with the F12-optimized correlation-consistent polarized double- and triple-zeta orbital and auxiliary basis sets of the cc-pVnZ-F12 family^[17–19] on non-metal atoms and the aug-cc-pVnZ-PP orbital basis set which includes the relativistic ECP60MDF pseudopotential on Os^[20] in conjunction with the auxiliary def2-QZVPP/JKfit basis sets^[21] for the many-electron integrals (CABS) as well as for the density-fitting of the Fock and exchange matrices (JKfit) and with the aug-cc-pVnZ/MP2fit basis set^[22] for the remaining integrals. The CCSD(T)-F12 energies were extrapolated to the complete basis set limit CBS(D,T) according to the procedure of Hill *et al.*^[23] Final energies given in the text are based on an ONIOM(CCSD(T)-F12:PBE0D) approach according to $E_{tot}(\mathbf{13}) = E_{CCSD(T)-F12}(\mathbf{13},\mathbf{Me}) - E_{PBE0D}(\mathbf{13},\mathbf{Me}) + E_{PBE0D}(\mathbf{13}).$

Quasi-degenerate perturbation theory (QDPT) was used to calculate spin-orbit eigenstates for the real system **13**. Computations were performed on the DFT-optimized geometry of the lowest-energy C_2 -symmetric ³B state based on a CASSCF wavefunction within the ORCA program.^[24, 25] The ZORA approximation^[26] was employed along with the ZORA-def2TZVP basis sets^[27] for all elements. The active space comprises the five Os-based 5d orbitals and five occupied ligand-metal based orbitals, giving rise to a CAS(16,10) expansion. In the CASSCF calculations the orbitals were optimized by the average of 5 quintet, 45 triplet and 50 singlet roots arising from the formal d⁶ configuration of the osmium(II) center. The RI and RIJCOSX^[28] approximations were used along with the corresponding def2TZVP/C auxiliary basis sets^[29] and a fine grid (GridX6 in ORCA convention), respectively. The final energies are obtained from NEVPT2 calculations,^[30–32] and the energies that enter QDPT treatment via a full SOMF operator^[33] are thus corrected to second order (dynamic correlation).

Geometries and Electronic Structures

Two singlet and two triplet isomers of 13 in C_2 and C_s symmetry were considered in the calculations, all of which correspond to local minima on the potential energy surface.

Figure 25: Molecular geometries for singlet and triplet isomers of **13** computed using PBE0D/TZVP; *t*Bu groups and hydrogen atoms omitted for clarity.

Molecular Orbital Diagrams

Figure 26: MO scheme for the C_2 -symmetric singlet isomer of 13,Me computed using PBE0D/TZVP; symmetry labels and orbital plots at an isovalue of 0.075 $a_0^{-3/2}$ are also given.

Figure 27: Active MO scheme computed at the C_2 -symmetric triplet geometry of **13** for a SA-CASSCF(16,10) wavefunction, state-averaged over the 5 quintet, 45 triplet, and 50 singlet CSFs, which arise from the local 5d⁶ configuration of the formal Os^{II} center; average occupation numbers (red) and orbital labels (blue) with orbital plots at an isovalue of 0.05 $a_0^{-3/2}$ are also given.

Energies

Table 9: Total energies E_{tot} in Hartree and relative energies E_{rel} in kcal mol⁻¹ for the Me-truncated modelsystem 13,Me and the full complex 13, computed at the PBE0D/TZVP, CCSD(T)-F12/CBS(D,T)and ONIOM levels.^[a]

	PBE0D)/TZVP		CCSD(T)-F12b		$ONIOM^{[a]}$
			VDZ-F12	VTZ-F12	CBS(D,T)	
	13	13,Me	13, Me	13, Me	13,Me	13
			$E_{\rm tot}/{\rm Hartree}$	6		
$^{1}\mathrm{A'}~(C_{\mathrm{s}})$	-2073.651174	-1602.270778	-1600.771485	-1600.872070	-1600.904387	-2072.284783
${}^{1}A(C_{2})$	-2073.649772	-1602.270129	-1600.771452	-1600.872069	-1600.904406	-2072.284049
$^{3}\mathrm{A}^{\prime\prime}~(C_{\mathrm{s}})$	-2073.649959	-1602.268788	-1600.760068	-1600.860296	-1600.892408	-2072.273580
${}^{3}\mathrm{B}(C_{2})$	-2073.667070	-1602.283186	-1600.771010	-1600.871094	-1600.903223	-2072.287107
			$E_{\rm rel}/{\rm kcalmol}$	-1		
$^{1}\mathrm{A'}~(C_{\mathrm{s}})$	0.0	0.0	0.0	0.0	0.0	0.0
${}^{1}A(C_{2})$	0.9	0.4	0.0	0.0	0.0	0.3
$^{3}\mathrm{A}^{\prime\prime}~(C_{\mathrm{s}})$	0.8	1.2	7.2	7.4	0.5	7.0
${}^{3}\mathrm{B}(C_{2})$	-10.0	-7.8	0.3	0.6	0.7	-1.5

 $^{[a]} \rm ONIOM(\rm CCSD(T)\mbox{-}F12/\rm CBS(D,T)\mbox{-}PBE0D/TZVP)$ energy according to

 $E_{\text{tot}}^{\mathbf{13}}(\text{ONIOM}) = E_{\text{tot}}^{\mathbf{13},\mathbf{Me}}(\text{CCSD}(\text{T})-\text{F12/CBS}(\text{D},\text{T})) - E_{\text{tot}}^{\mathbf{13},\mathbf{Me}}(\text{PBE0D/TZVP}) + E_{\text{tot}}^{\mathbf{13}}(\text{PBE0D/TZVP})$

		$\Delta E_{\rm st}$	tate			$\Delta E_{\rm st}$	ate	$\Delta E_{ m S}$	oc
root	mult	CAS(16,10)	NEVPT2	root	mult	CAS(16,10)	NEVPT2	$\overline{\mathrm{CAS}(16,10)}$	NEVPT2
0	1	5713.6	2159.1	0	3	0.0	0.0	0.0	0.0
1	1	8420.0	7528.0	1	3	4414.9	4287.5	670.5	987.6
2	1	8974.0	8096.0	2	3	4803.7	4760.9	1535.6	1694.5
3	1	13532.3	10097.8	3	3	6181.2	7422.2	2684.8	2146.5
4	1	15134.6	15265.4	4	3	10938.3	10422.1	3221.6	3487.8
5	1	15430.5	13163.3	5	3	15432.0	14329.3	6954.9	7059.4
6	1	18130.0	18105.2	6	3	37407.7	13057.7	7401.3	7079.2
7	1	22541.0	20343.1	7	3	38640.9	14806.1	7450.0	7635.6
8	1	23621.9	21295.1	8	3	39958.4	38473.2	7539.2	7926.0
9	1	32077.1	26741.4	9	3	40390.1	28549.8	8289.3	8795.8
10	1	39267.3	15575.0	10	3	40660.5	37512.7	9150.9	8995.2
11	1	40653.5	17820.5	11	3	41150.1	33 332.6	9901.4	9220.7
12	1	41125.6	22251.7	12	3	42200.4	38589.0	10018.8	10270.0
13	1	43565.5	24902.2	13	3	42838.1	24999.4	11014.2	11344.2
14	1	44820.3	40883.7	14	3	43647.8	40 706.1	12361.0	11927.4
15	1	45945.0	22216.9	15	3	44590.5	43551.7	12377.6	12364.9
16	1	46223.4	42551.8	16	3	44782.5	42812.5	13926.8	13139.9
17	1	47498.5	42804.0	17	3	45103.4	22398.6	14847.6	13618.5
18	1	48 186.2	44998.7	18	3	46543.9	45429.0	15540.9	14315.1
19	1	50214.4	42111.8	19	3	46847.7	46751.0	18050.2	14633.7
20	1	50902.6	28526.6	20	3	48 200.8	46071.1	18069.5	14642.9
21	1	51437.8	49101.5	21	3	48778.0	44808.9	19114.2	14834.8
22	1	52420.0	49583.8	22	3	50034.3	49383.1	19343.5	16064.7
23	1	53339.1	38603.7	23	3	50159.4	22082.6	19725.3	16475.8
24	1	54251.8	52703.2	24	3	50365.8	49722.9	21509.2	17527.8
25	1	54491.6	38404.0	25	3	50770.0	47425.8	25717.1	18132.7
26	1	54649.7	51041.9	26	3	51516.2	49987.9	26980.4	18330.3
27	1	54705.4	37736.0	27	3	51644.2	44237.4	32314.5	18388.4
28	1	54959.2	37491.7	28	3	51842.3	36649.1	32356.2	18839.3
29	1	56055.8	43215.2	29	3	52328.6	50670.6	32412.4	19003.4
30	1	56368.7	53866.5	30	3	52415.5	39281.5	32595.4	19382.3
31	1	56926.4	47587.1	31	3	52978.3	37861.4	32692.6	20670.1
32	1	57088.6	51631.3	32	3	54234.9	50758.5	35613.1	21630.3
33	1	57313.9	52697.0	33	3	54547.6	33310.9	35857.2	23882.6
34	1	59092.9	42512.9	34	3	54569.8	38147.9	36309.2	24035.8
35	1	59579.8	45379.6	35	3	54668.0	36835.3	36615.6	24915.3
36	1	59946.8	48 430.8	36	3	56645.5	47844.6	37560.1	24971.5
37	1	60081.4	53926.5	37	3	57152.0	50578.9	37608.7	25005.1
38	1	60995.3	41 310.6	38	3	57277.3	43605.6	38 366.1	25588.5
39	1	61 592.8	56877.8	39	3	58 775.9	42925.7	38 435.3	26395.7
40	1	62765.5	44 295.1	40	3	58 914.1	56 050.8	38 442.8	26 605.5
41	1	64 900.9	60167.5	41	3	61 357.0	44 053.6	38 553.8	27.037.5
42	1	66784.5	49117.9	42	3	63 492.3	55 309.0	38 967.5	27 058.8
43	1	68362.9	56102.3	43	3	64 526.3	47 688.3	39268.5	27207.5
44	1	68 823.8	54731.9	44	3	64 805.5	51796.5	39770.0	27 324.3
45	1	69561.4	61 968.4	0	5	30 825.9	32049.4	39 983 8	27 490.9
46	1	71 292 6	52 989 8	1	5	345790	35 719.9	39,990.0	28 799 7
47	1	72353.0	53 346.5	2	5	37561.7	37 971.4	41.381.8	30 908.2
48	1	72,899,0	53 014 6	- 3	5	41 004 9	43 471 4	11001.0	0000012
49	1	73 372.4	57462.0	4	5	61 169.6	42738.1		

Table 10: State energies sorted by spin multiplicity ΔE_{state} and spin-orbit eigenvalues ΔE_{SOC} in cm⁻¹ fromNEVPT2/SA-CASSCF(16,10)/def2TZVP(ZORA) calculations for 13.

Cartesian coordinates of PBE0D/TZVP geometries (Å) for 13 and 13, Me

65			
13	¹ A' (C _s): E_{tot} (PBEOD/TZVP)	= -2073.65117433	
0s	0.010583500130	-0.039205429854	0.00000000000
Ν	0.379781873368	1.858996767759	0.00000000000
Ρ	0.062082579459	0.233199327036	2.314665703588
Ρ	0.062082579459	0.233199327036	-2.314665703588
С	0.359180671626	2.014423381165	2.385752352981
Н	0.449490784467	2.600501817203	3.290957045670
С	0.359180671626	2.014423381165	-2.385752352981
Н	0.449490784467	2.600501817203	-3.290957045670
С	0.481619114072	2.593802130300	1.189504560211
Н	0.672794479736	3.659706952431	1.079416470417
С	0.481619114072	2.593802130300	-1.189504560211
Н	0.672794479736	3.659706952431	-1.079416470417
Cl	-1.023924465457	-2.104222874565	0.000000000000
С	-1.521349040810	0.015562612143	3.298778366664
С	1.542539505810	-0.524009445309	-3.185798142593
С	1.542539505810	-0.524009445309	3.185798142593
С	-1.521349040810	0.015562612143	-3.298778366664
С	-1.741964334889	-1.458437626948	3.624167384480
н	-1.645924195281	-2.082898676248	2.733651267324
н	-2.754944514437	-1.586491213443	4.019586350416
н	-1.047131828462	-1.818245872677	4.384993488556
c	-2 637361055400	0 489798157877	2 365783927190
н	-2 699442689976	-0 131959548163	1 472457976124
н	-2 481846868869	1 524038242118	2 049051631298
н	-3 592258008500	0 436969803308	2.040001001200
C	-1 573832885873	0.85367/312061	1 572376805859
с u	-1 505283509/15	1 020610002279	4.0723700000000
п u	-0.701015290194	0 507601/000378	4.332103333173 5.394720012303
п ц	-2 536830603568	0.68320602/177	5.204739913292
п С	1 55400750886	-2 02262626262005	-2 20/675266220
с п	0.717160541065	-2.023020203093	-2.09407000209
п u	1 519252206601	-2.0477052007	-1.90064479017
п u	2 470657734471	-2.212477030024	-3.2000204273917
п С	1 609665204767	-0.072050401070	-3.290020424309
с п	0.914900579150	-0.273952491079	-4.000001200437
п u	0.014099570150	-0.650606761005	-5.225540970274
п	2.562783465988	-0.050090701925	-5.069696159056
п	1.355044552242	0.790144040079	-4.927910039510
	2.111470027400	1 100055070400	-2.519007715244
п	2.864083465292	1.100855878429	-2.745655517197
п	3.0091/2/95535	-0.41105/1819/9	-2.885440573797
п	2.728130773304	-0.020101059579	-1.433546182213
U U	1.554927528886	-2.023626263095	2.8940/5300239
H	1.518252296691	-2.212477858024	1.820064478917
H	0.717162541065	-2.54//54409239	3.353678820759
п	2.479057734471	-2.455948000716	3.290820424309
	2.771470027400	0.097309300054	2.519007715244
H	2.728136773364	-0.020161659579	1.433546182213
H	3.669172795535	-0.41105/1819/9	2.885440573797
н	2.864083465292	1.160855878429	2.745853317197
C	1.608665324767	-0.2/39524910/9	4.686001206437
H	1.555644552242	0.790144646079	4.927910639510
Н	2.562783465988	-0.650696761925	5.069696159056
H	0.814899578150	-0.792365846432	5.225340970274
C	-1.573832885873	0.853674312961	-4.572376805859
Н	-0.791015280184	0.597621424849	-5.284739913292
Η	-1.505383508415	1.920610003378	-4.352185939179
H	-2.536830603568	0.683206024177	-5.065047320051
С	-2.637361055400	0.489798157877	-2.365783927190
Η	-2.481846868869	1.524038242118	-2.049051631298
Η	-2.699442689976	-0.131959548163	-1.472457976124
Η	-3.592258008500	0.436969803308	-2.899520480323
С	-1.741964334889	-1.458437626948	-3.624167384480
Η	-1.047131828462	-1.818245872677	-4.384993488556
Η	-2.754944514437	-1.586491213443	-4.019586350416
Η	-1.645924195281	-2.082898676248	-2.733651267324

13	¹ A (C ₂): E_{tot} (PBE0D/TZVP)	= -2073.64977248	
0s	0.0000000000	0.00000000000	0.039731076135
Ν	0.00000000000	0.00000000000	-1.893476703082
Ρ	0.00000000000	2.314371827578	-0.239704722983
Ρ	0.00000000000	-2.314371827578	-0.239704722983
С	0.049191089137	2.384585419632	-2.046729096751
Н	0.063317504387	3.290359229769	-2.638878897608
С	-0.049191089137	-2.384585419632	-2.046729096751
Η	-0.063317504387	-3.290359229769	-2.638878897608
С	0.032996411058	1.189226601849	-2.638704140585
Н	0.042939701221	1.078189119637	-3.721455087696
С	-0.032996411058	-1.189226601849	-2.638704140585
Н	-0.042939701221	-1.078189119637	-3.721455087696
Cl	0.00000000000	0.00000000000	2.352779718947
С	-1.582160531915	3.230775486110	0.191503816407
С	1.582160531915	-3.230775486110	0.191503816407
С	1.534424931937	3.260918703552	0.281136590555
С	-1.534424931937	-3.260918703552	0.281136590555
С	-1.900159888829	3.023584717583	1.670742188891
Н	-1.926088328601	1.963534059509	1.924640863317
Η	-2.883348508966	3.456415579175	1.883091592030
Н	-1.176441311349	3.505058719102	2.327485236734
С	-2.678519756021	2.544767741694	-0.626330674660
H	-2.675995745792	1.464961937230	-0.455991947932
Н	-2.560157972488	2.721492658122	-1.696698672753
Н	-3.650922826499	2.941584947238	-0.318177297036
C	-1.567498772496	4.717547366349	-0.137255703333
H	-1.283767256878	4.910635884944	-1.174396409953
H	-0.895209129619	5.274621253736	0.516693489872
H	-2.573587594345	5.124663401352	0.009303970778
C	1.900159888829	-3.023584717583	1.670742188891
H TT	1.176441311349	-3.505058719102	2.32/485236/34
H TT	1.926088328601	-1.963534059509	1.924640863317
н	2.883348508966	-3.4564155/91/5	1.883091592030
U	1.567498772496	-4./1/54/306349	-0.13/255/03333
п	0.895209129619	-5.2/4021253/30	0.510093469672
п u	2.573507594345	-5.124003401352	-1 174206400052
п С	2 678510756021	-4.910035004944	-0.626220674660
ц	2.560157972488	-2 721/02658122	-1 696698672753
н	3 650922826499	-2 941584947238	-0.318177297036
н	2 675995745792	-1 464961937230	-0 455991947932
С	1 471666846904	3 562003997697	1 775182568048
н	1,205168964722	2.673288278772	2.352120317906
Н	0.755754923940	4.353878197085	2.001810015031
Н	2.455784196630	3.903287860406	2.112434696684
С	2.697288243269	2.301499887527	0.019631194253
Н	2.611018120856	1.399012562744	0.626595109830
Н	3.637541886548	2.806395336020	0.265835303505
Н	2.738323931309	1.997893038950	-1.029599725924
С	1.782378208287	4.539495719977	-0.512334931924
Н	1.902007976816	4.332052220944	-1.577457775036
Н	2.713915186706	4.996470562594	-0.162143661213
Н	0.990359805828	5.276763295849	-0.391931184586
С	-1.782378208287	-4.539495719977	-0.512334931924
Н	-0.990359805828	-5.276763295849	-0.391931184586
Н	-1.902007976816	-4.332052220944	-1.577457775036
Н	-2.713915186706	-4.996470562594	-0.162143661213
С	-2.697288243269	-2.301499887527	0.019631194253
Н	-2.738323931309	-1.997893038950	-1.029599725924
Н	-2.611018120856	-1.399012562744	0.626595109830
Н	-3.637541886548	-2.806395336020	0.265835303505
С	-1.471666846904	-3.562003997697	1.775182568048
Η	-0.755754923940	-4.353878197085	2.001810015031
Η	-2.455784196630	-3.903287860406	2.112434696684
Н	-1.205168964722	-2.673288278772	2.352120317906

65				
13	${}^{3}\mathtt{A}^{\prime\prime}$	(C _s): E_{tot} (PBEOD/TZVP)	= -2073.64995876	
0s		-0.043458612535	-0.093358317372	0.00000000000
Ν		0.204306864891	1.949037258266	0.000000000000
Ρ		0.036586366680	0.298982138533	2.342234233831
Ρ		0.036586366680	0.298982138533	-2.342234233831
С		0.195462398748	2.071584413787	2.381774005377
H		0.263284616920	2.661417741834	3.285539480597
С		0.195462398748	2.071584413787	-2.381774005377
H		0.263284616920	2.661417741834	-3.285539480597
C		0.266966570830	2.654138131866	1.170887401714
H		0.380656825746	3.733762168885	1.074093447363
C		0.266966570830	2.654138131866	-1.1/088/401/14
H		0.380656825746	3./33/62168885	-1.0/409344/363
CI		-0.534684006630	-2.299359051198	0.000000000000
C		1 577264216816		-3 172700015075
c		1.577264210010	-0.370177505094	-3.173700015275
C		-1 527106737176		-3 307508206274
c		-1 629642684779	-1 569935173474	3 622009047216
н		-1 478245481889	-2 182159281730	2 730498052049
н		-2 631503752360	-1 782230614132	4 008680081636
н		-0.913265015904	-1.878061063238	4.385363436786
C		-2.676073315649	0.312200341584	2.378123891519
Н		-2.687219109635	-0.301564312396	1.476388368244
Н		-2.599042578698	1.357572091087	2.070382653339
Н		-3.624029162395	0.179442937791	2.910270889644
С		-1.642364385387	0.740061698156	4.588151690920
Н		-1.636000771913	1.810365589027	4.374772354855
Н		-0.850867417801	0.525381977808	5.304873418007
Н		-2.597054250540	0.506120498922	5.070460461320
С		1.694602581860	-1.878735581805	-2.918978664594
Н		0.896839675789	-2.451217475298	-3.390822167542
Н		1.678339262813	-2.096586153737	-1.850167710092
Η		2.646345127689	-2.232322316955	-3.328769365739
С		1.644332240921	-0.088044039086	-4.667586012507
Н		0.904445419923	-0.658699244573	-5.230594772886
Η		2.631972671576	-0.376336122465	-5.042368776179
H		1.506680605060	0.973423923133	-4.886433473545
C		2.746924734769	0.313445953137	-2.471921708868
H		2.766408269112	1.385161969418	-2.674280140203
H		3.683415816012	-0.125413516584	-2.830190215166
п		2.089017330144	0.1/0218192919 _1 070725501005	-1.389462693942
U U		1.679330363913		2.910970004594
н		0 896839675789	-2 451217475298	3 390822167542
н		2 646345127689	-2 232322316955	3 328769365739
C		2 746924734769	0 313445953137	2 471921708868
H		2.689017330144	0.170218192919	1.389462693942
Н		3.683415816012	-0.125413516584	2.830190215166
Н		2.766408269112	1.385161969418	2.674280140203
С		1.644332240921	-0.088044039086	4.667586012507
Н		1.506680605060	0.973423923133	4.886433473545
Н		2.631972671576	-0.376336122465	5.042368776179
Н		0.904445419923	-0.658699244573	5.230594772886
С		-1.642364385387	0.740061698156	-4.588151690920
Н		-0.850867417801	0.525381977808	-5.304873418007
Η		-1.636000771913	1.810365589027	-4.374772354855
Н		-2.597054250540	0.506120498922	-5.070460461320
С		-2.676073315649	0.312200341584	-2.378123891519
Н		-2.599042578698	1.357572091087	-2.070382653339
H		-2.687219109635	-0.301564312396	-1.476388368244
H		-3.624029162395	0.179442937791	-2.910270889644
C		-1.629642684779	-1.569935173474	-3.622009047216
Н 		-0.913265015904	-1.878061063238	-4.385363436786
H		-2.631503752360	-1./82230614132	-4.008680081636
н		-1.4/8245481889	-2.182159281730	-2./30498052049

65			
13	³ B (C ₂): E_{tot} (PBEOD/TZVP)	= -2073.66707021	
0s	0.00000000000	0.00000000000	0.043430925012
Ν	0.00000000000	0.00000000000	-1.970293521730
Ρ	0.00000000000	2.324728405854	-0.267534793643
Ρ	0.00000000000	-2.324728405854	-0.267534793643
С	0.039129264870	2.384003498999	-2.062351607177
Η	0.054085448584	3.292297344719	-2.650282432114
С	-0.039129264870	-2.384003498999	-2.062351607177
Η	-0.054085448584	-3.292297344719	-2.650282432114
С	0.027306105901	1.183706878627	-2.670492557356
Η	0.038821081035	1.100832960289	-3.757204500725
С	-0.027306105901	-1.183706878627	-2.670492557356
Η	-0.038821081035	-1.100832960289	-3.757204500725
Cl	0.00000000000	0.00000000000	2.406318429581
С	-1.541746430595	3.271384638141	0.216441506477
С	1.541746430595	-3.271384638141	0.216441506477
С	1.579507416156	3.180251124587	0.265595938119
С	-1.579507416156	-3.180251124587	0.265595938119
С	-1.797534823448	3.138490795372	1.715823247630
Η	-1.751666505089	2.097645354047	2.040613846761
Н	-2.795715337933	3.528855464857	1.939738462796
H	-1.081819165519	3.702915756343	2.311771172195
C	-2.678788620805	2.564284058005	-0.523876349283
H	-2.725975274585	1.504426229145	-0.258250779523
H	-2.568688915059	2.637861335712	-1.606882945152
H	-3.629985665252	3.02401/1322/0	-0.238622346051
C	-1.513698585899	4.739692625439	-0.187555201023
H	-1.28401/290350	4.871399465816	-1.24/455/36238
H	-0.789355724900	5.307575213871	0.398169408224
Н	-2.498359288848	5.183143387291	-0.00559/163482
U T	1.797534823448	-3.138490795372	1./1582324/630
п	1.081819165519	-3.702915756343	2.311//11/2195
п	1.751000505050	-2.097045554047	2.040013040701
п С	2.795715557955	-3.520055404057	-0 197555201022
с ц	0 789355724900	-4.739092023439	0.308160/0822/
н	2 498359288848	-5 183143387291	-0 005597163482
н	1 284017290350	-4 871399465816	-1 247455736238
C	2 678788620805	-2 564284058005	-0 523876349283
н	2 568688915059	-2 637861335712	-1 606882945152
Н	3.629985665252	-3.024017132270	-0.238622346051
Н	2.725975274585	-1.504426229145	-0.258250779523
С	1.542908341313	3.504648108568	1.754759162919
Н	1.209283018275	2.647615496590	2.344796440615
Н	0.891911424882	4.353871647193	1.968396614989
Н	2.550895086427	3.774261374465	2.086639314762
С	2.669402941024	2.134694162481	0.015750375397
Н	2.542249090562	1.268913607923	0.672114506441
Н	3.649909359553	2.574154198799	0.226789041011
Η	2.668666865612	1.792262607458	-1.022555934008
С	1.905086687998	4.427336493621	-0.548098976989
Η	2.007321950270	4.194571514591	-1.609619451216
Η	2.860385785987	4.838303679814	-0.204978564955
Η	1.153094034854	5.208387555009	-0.438584757789
С	-1.905086687998	-4.427336493621	-0.548098976989
Η	-1.153094034854	-5.208387555009	-0.438584757789
Н	-2.007321950270	-4.194571514591	-1.609619451216
Н	-2.860385785987	-4.838303679814	-0.204978564955
С	-2.669402941024	-2.134694162481	0.015750375397
Н	-2.668666865612	-1.792262607458	-1.022555934008
Η	-2.542249090562	-1.268913607923	0.672114506441
Η	-3.649909359553	-2.574154198799	0.226789041011
С	-1.542908341313	-3.504648108568	1.754759162919
H 	-0.891911424882	-4.353871647193	1.968396614989
H	-2.550895086427	-3.774261374465	2.086639314762
н	-1.209283018275	-2.64/615496590	2.344/96440615

29			
13,Me	1 A' (C _s): E_{tot} (PBEOD/TZ	ZVP) = -1602.27077829	
Os	0.224551836699	0.082754872870	0.00000000000
N	-1.693420776872	-0.163943476167	0.00000000000
Р	-0.050223458425	0.045943951425	2.314665703588
Р	-0.050223458425	0.045943951425	-2.314665703588
С	-1.834475218600	-0.232394087097	2.385752352981
Н	-2.419207927887	-0.331042494892	3.290957045670
С	-1.834475218600	-0.232394087097	-2.385752352981
Н	-2.419207927887	-0.331042494892	-3.290957045670
С	-2.422955586851	-0.298437734195	1.189504560211
Н	-3.494884077680	-0.452289678696	1.079416470417
С	-2.422955586851	-0.298437734195	-1.189504560211
Н	-3.494884077680	-0.452289678696	-1.079416470417
Cl	2.510168699932	-0.249599354312	0.00000000000
С	0.654492258145	-1.388628178012	3.298778366664
С	0.202806336452	1.689444410385	-3.185798142593
С	0.202806336452	1.689444410385	3.185798142593
С	0.654492258145	-1.388628178012	-3.298778366664
Н	1.704211728957	-1.206864559326	3.531363942762
Н	0.583899711779	-2.249743573405	2.633995635303
Н	0.097283954357	-1.612841659035	4.209709590451
Н	1.216117142862	2.034586092376	-2.977991937394
Н	0.017672582530	1.678044775104	-4.261621002867
Н	-0.493378998346	2.381796869185	-2.710857987496
Н	1.216117142862	2.034586092376	2.977991937394
Н	-0.493378998346	2.381796869185	2.710857987496
Н	0.017672582530	1.678044775104	4.261621002867
Н	0.097283954357	-1.612841659035	-4.209709590451
Н	0.583899711779	-2.249743573405	-2.633995635303
Н	1.704211728957	-1.206864559326	-3.531363942762
29			
29 13,Me	¹ A (C ₂): E_{tot} (PBEOD/TZ	VP) = -1602.27012880	
29 13,Me Os	¹ A (C ₂): <i>E</i> _{tot} (PBEOD/TZ 0.00000000000	VP) = -1602.27012880 0.000000000000	0.229231499142
29 13,Me Os N	¹ A (C ₂): <i>E</i> _{tot} (PBEOD/TZ 0.00000000000 0.00000000000	VP) = -1602.27012880 0.00000000000 0.000000000000000	0.229231499142 -1.703976280075
29 13,Me Os N P	¹ A (C ₂): E _{tot} (PBE0D/TZ 0.00000000000 0.00000000000 0.00000000	VP) = -1602.27012880 0.00000000000 0.00000000000 2.314371827578	0.229231499142 -1.703976280075 -0.050204299976
29 13,Me Os N P P	¹ A (C ₂): E _{tot} (PBE0D/TZ 0.00000000000 0.00000000000 0.00000000	<pre>VP) = -1602.27012880 0.00000000000 0.00000000000 2.314371827578 -2.314371827578</pre>	0.229231499142 -1.703976280075 -0.050204299976 -0.050204299976
29 13,Me Os N P P C	¹ A (C ₂): E _{tot} (PBE0D/TZ 0.00000000000 0.00000000000 0.00000000	<pre>VP) = -1602.27012880 0.00000000000 0.00000000000 2.314371827578 -2.314371827578 2.384585419632</pre>	0.229231499142 -1.703976280075 -0.050204299976 -0.050204299976 -1.857228673744
29 13,Me Os N P P C H	¹ A (C ₂): E _{tot} (PBE0D/TZ 0.00000000000 0.00000000000 0.00000000	<pre>VP) = -1602.27012880 0.00000000000 0.00000000000 2.314371827578 -2.314371827578 2.384585419632 3.290359229769</pre>	0.229231499142 -1.703976280075 -0.050204299976 -0.050204299976 -1.857228673744 -2.449378474601
29 13,Me Os N P P C H C	¹ A (C ₂): E_{tot} (PBE0D/TZ 0.00000000000 0.00000000000 0.00000000	<pre>VP) = -1602.27012880 0.00000000000 0.00000000000 2.314371827578 -2.314371827578 2.384585419632 3.290359229769 -2.384585419632</pre>	0.229231499142 -1.703976280075 -0.050204299976 -0.050204299976 -1.857228673744 -2.449378474601 -1.857228673744
29 13,Me Os N P C H C H C H	${}^{1}\text{A} (C_{2}): E_{\text{tot}}(\text{PBE0D/TZ} \\ 0.0000000000 \\ 0.0000000000 \\ 0.00000000$	<pre>VP) = -1602.27012880 0.00000000000 0.00000000000 2.314371827578 -2.314371827578 2.384585419632 3.290359229769 -2.384585419632 -3.290359229769</pre>	0.229231499142 -1.703976280075 -0.050204299976 -0.050204299976 -1.857228673744 -2.449378474601 -1.857228673744 -2.449378474601
29 13,Me Os N P C H C H C H C	¹ A (C ₂): E_{tot} (PBE0D/TZ 0.00000000000 0.00000000000 0.00000000	<pre>VP) = -1602.27012880 0.00000000000 0.0000000000 2.314371827578 -2.314371827578 2.384585419632 3.290359229769 -2.384585419632 -3.290359229769 1.189226601849</pre>	0.229231499142 -1.703976280075 -0.050204299976 -0.050204299976 -1.857228673744 -2.449378474601 -1.857228673744 -2.449378474601 -2.449203717578
29 13,Me Os N P C H C H C H C H	¹ A (C ₂): E_{tot} (PBE0D/TZ 0.00000000000 0.00000000000 0.00000000	<pre>VP) = -1602.27012880 0.00000000000 0.00000000000 2.314371827578 -2.314371827578 2.384585419632 3.290359229769 -2.384585419632 -3.290359229769 1.189226601849 1.078189119637</pre>	0.229231499142 -1.703976280075 -0.050204299976 -0.050204299976 -1.857228673744 -2.449378474601 -1.857228673744 -2.449378474601 -2.449203717578 -3.531954664689
29 13,Me Os N P C H C H C H C H C	¹ A (C ₂): E_{tot} (PBE0D/TZ 0.00000000000 0.0000000000 0.000000000	<pre>VP) = -1602.27012880 0.00000000000 0.0000000000 2.314371827578 -2.314371827578 2.384585419632 3.290359229769 -2.384585419632 -3.290359229769 1.189226601849 1.078189119637 -1.189226601849</pre>	0.229231499142 -1.703976280075 -0.050204299976 -1.857228673744 -2.449378474601 -1.857228673744 -2.449378474601 -2.449203717578 -3.531954664689 -2.449203717578
29 13,Me Os N P C H C H C H C H C H	¹ A (C ₂): E_{tot} (PBE0D/TZ 0.00000000000 0.0000000000 0.000000000	<pre>VP) = -1602.27012880 0.00000000000 0.0000000000 2.314371827578 -2.314371827578 2.384585419632 3.290359229769 -2.384585419632 -3.290359229769 1.189226601849 1.078189119637 -1.189226601849 -1.078189119637</pre>	0.229231499142 -1.703976280075 -0.050204299976 -0.050204299976 -1.857228673744 -2.449378474601 -1.857228673744 -2.449378474601 -2.449203717578 -3.531954664689 -2.449203717578 -3.531954664689
29 13,Me Os N P C H C H C H C H C H C L	¹ A (C ₂): E_{tot} (PBE0D/TZ 0.00000000000 0.00000000000 0.00000000	<pre>VP) = -1602.27012880 0.00000000000 0.00000000000 2.314371827578 -2.314371827578 2.384585419632 3.290359229769 -2.384585419632 -3.290359229769 1.189226601849 1.078189119637 -1.189226601849 -1.078189119637 0.000000000000</pre>	0.229231499142 -1.703976280075 -0.050204299976 -0.050204299976 -1.857228673744 -2.449378474601 -1.857228673744 -2.449378474601 -2.449203717578 -3.531954664689 -2.449203717578 -3.531954664689 2.542280141954
29 13,Me Os N P P C H C H C H C H C H C C	¹ A (C ₂): E_{tot} (PBE0D/TZ 0.00000000000 0.00000000000 0.00000000	<pre>VP) = -1602.27012880 0.00000000000 0.00000000000 2.314371827578 -2.314371827578 2.384585419632 3.290359229769 -2.384585419632 -3.290359229769 1.189226601849 1.078189119637 -1.189226601849 -1.078189119637 0.0000000000 3.230775486110</pre>	0.229231499142 -1.703976280075 -0.050204299976 -1.857228673744 -2.449378474601 -1.857228673744 -2.449378474601 -2.449203717578 -3.531954664689 -2.449203717578 -3.531954664689 2.542280141954 0.381004239414
29 13,Me Os N P P C H C H C H C H C H C C C C	¹ A (C ₂): E_{tot} (PBE0D/TZ 0.00000000000 0.00000000000 0.00000000	<pre>VP) = -1602.27012880 0.00000000000 0.00000000000 2.314371827578 -2.314371827578 2.384585419632 3.290359229769 -2.384585419632 -3.290359229769 1.189226601849 1.078189119637 -1.189226601849 -1.078189119637 0.0000000000 3.230775486110</pre>	0.229231499142 -1.703976280075 -0.050204299976 -1.857228673744 -2.449378474601 -1.857228673744 -2.449378474601 -2.449203717578 -3.531954664689 -2.449203717578 -3.531954664689 2.542280141954 0.381004239414 0.381004239414
29 13,Me Os N P C H C H C H C H C H C L C C C C	¹ A (C ₂): E_{tot} (PBE0D/TZ 0.00000000000 0.00000000000 0.00000000	<pre>VP) = -1602.27012880 0.00000000000 0.0000000000 2.314371827578 -2.314371827578 2.384585419632 3.290359229769 -2.384585419632 -3.290359229769 1.189226601849 1.078189119637 -1.189226601849 -1.078189119637 0.0000000000 3.230775486110 -3.230775486110 3.260918703552</pre>	0.229231499142 -1.703976280075 -0.050204299976 -1.857228673744 -2.449378474601 -1.857228673744 -2.449378474601 -2.449203717578 -3.531954664689 -2.449203717578 -3.531954664689 2.542280141954 0.381004239414 0.470637013562
29 13,Me Os N P C H C H C H C H C H C C C C C C	${}^{1}A$ (C ₂): E_{tot} (PBE0D/TZ 0.00000000000 0.0000000000 0.000000000	<pre>VP) = -1602.27012880 0.00000000000 0.00000000000 2.314371827578 -2.314371827578 2.384585419632 3.290359229769 -2.384585419632 -3.290359229769 1.189226601849 1.078189119637 -1.189226601849 -1.078189119637 0.0000000000 3.230775486110 -3.230775486110 3.260918703552 -3.260918703552</pre>	0.229231499142 -1.703976280075 -0.050204299976 -1.857228673744 -2.449378474601 -1.857228673744 -2.449378474601 -2.449203717578 -3.531954664689 -2.449203717578 -3.531954664689 2.542280141954 0.381004239414 0.470637013562 0.470637013562
29 13,Me Os N P C H C H C H C H Cl C C C H H	${}^{1}A$ (C ₂): E_{tot} (PBE0D/TZ 0.00000000000 0.0000000000 0.000000000	<pre>VP) = -1602.27012880 0.00000000000 0.0000000000 2.314371827578 -2.314371827578 2.384585419632 3.290359229769 -2.384585419632 -3.290359229769 1.189226601849 1.078189119637 -1.189226601849 -1.078189119637 0.0000000000 3.230775486110 -3.230775486110 3.260918703552 -3.260918703552 3.082816060583</pre>	0.229231499142 -1.703976280075 -0.050204299976 -1.857228673744 -2.449378474601 -1.857228673744 -2.449378474601 -2.449203717578 -3.531954664689 -2.449203717578 -3.531954664689 2.542280141954 0.381004239414 0.381004239414 0.470637013562 0.470637013562 1.437360472688
29 13,Me Os N P C H C C H C H C H C H C H C C H C H C H C C H C C C C C C H C C H C C H C C C C C H H C C C C C C C C C C C C C	¹ A (C ₂): E_{tot} (PBE0D/TZ 0.00000000000 0.00000000000 0.00000000	<pre>VP) = -1602.27012880 0.00000000000 2.314371827578 -2.314371827578 2.384585419632 3.290359229769 -2.384585419632 -3.290359229769 1.189226601849 1.078189119637 -1.189226601849 -1.078189119637 0.00000000000 3.230775486110 3.260918703552 -3.260918703552 3.082816060583 2.741848341959</pre>	0.229231499142 -1.703976280075 -0.050204299976 -1.857228673744 -2.449378474601 -1.857228673744 -2.449378474601 -2.449203717578 -3.531954664689 -2.449203717578 -3.531954664689 2.542280141954 0.381004239414 0.381004239414 0.470637013562 0.470637013562 1.437360472688 -0.201877638174
29 13,Me Os N P C H C H C H C H C C C C C C H H H H H H H H H H H H H	¹ A (C ₂): E_{tot} (PBE0D/TZ 0.00000000000 0.0000000000 0.000000000	<pre>VP) = -1602.27012880 0.00000000000 0.0000000000 2.314371827578 -2.314371827578 2.384585419632 3.290359229769 -2.384585419632 -3.290359229769 1.189226601849 1.078189119637 -1.189226601849 -1.078189119637 0.00000000000 3.230775486110 3.260918703552 -3.260918703552 3.082816060583 2.741848341959 4.296620567994</pre>	0.229231499142 -1.703976280075 -0.050204299976 -1.857228673744 -2.449378474601 -1.857228673744 -2.449378474601 -2.449203717578 -3.531954664689 -2.449203717578 -3.531954664689 2.542280141954 0.381004239414 0.381004239414 0.470637013562 1.437360472688 -0.201877638174 0.145321333452
29 13,Me Os N P C H C H C H C H C C C C C C C H H H H H H H H H H H H H	¹ A (C ₂): E_{tot} (PBE0D/TZ 0.00000000000 0.0000000000 0.00000000	<pre>VP) = -1602.27012880 0.00000000000 0.0000000000 2.314371827578 -2.314371827578 2.384585419632 3.290359229769 -2.384585419632 -3.290359229769 1.189226601849 1.078189119637 -1.189226601849 -1.078189119637 0.00000000000 3.230775486110 3.260918703552 -3.260918703552 3.082816060583 2.741848341959 4.296620567994 -3.082816060583</pre>	0.229231499142 -1.703976280075 -0.050204299976 -1.857228673744 -2.449378474601 -1.857228673744 -2.449378474601 -2.449203717578 -3.531954664689 -2.449203717578 -3.531954664689 2.542280141954 0.381004239414 0.381004239414 0.470637013562 1.437360472688 -0.201877638174 0.145321333452 1.437360472688
29 13,Me Os N P C H C C H C H C C H C H C C C C C H C H C H C H C H C C C C C C C C C C H H H H H H H H C H C H H H H H H H H H H H H H	¹ A (C ₂): E_{tot} (PBE0D/TZ 0.00000000000 0.00000000000 0.00000000	<pre>VP) = -1602.27012880 0.0000000000 0.0000000000 2.314371827578 -2.314371827578 2.384585419632 3.290359229769 -2.384585419632 -3.290359229769 1.189226601849 1.078189119637 -1.189226601849 -1.078189119637 0.00000000000 3.230775486110 3.260918703552 -3.260918703552 3.082816060583 2.741848341959 4.296620567994 -3.082816060583 -4.296620567994</pre>	0.229231499142 -1.703976280075 -0.050204299976 -1.857228673744 -2.449378474601 -1.857228673744 -2.449378474601 -2.449203717578 -3.531954664689 -2.449203717578 -3.531954664689 2.542280141954 0.381004239414 0.381004239414 0.470637013562 0.470637013562 1.437360472688 -0.201877638174 0.145321333452 1.437360472688 0.145321333452
29 13,Me Os N P C H C H C H C H C H C H C H C H H H H H H H H H H H H H	¹ A (C ₂): E_{tot} (PBE0D/TZ 0.0000000000 0.0000000000 0.00000000	<pre>VP) = -1602.27012880 0.00000000000 2.314371827578 -2.314371827578 2.384585419632 3.290359229769 -2.384585419632 -3.290359229769 1.189226601849 1.078189119637 -1.189226601849 1.078189119637 0.00000000000 3.230775486110 3.260918703552 -3.260918703552 3.082816060583 2.741848341959 4.296620567994 -3.082816060583 -4.296620567994</pre>	0.229231499142 -1.703976280075 -0.050204299976 -1.857228673744 -2.449378474601 -1.857228673744 -2.449378474601 -2.449203717578 -3.531954664689 -2.449203717578 -3.531954664689 2.542280141954 0.381004239414 0.381004239414 0.470637013562 1.437360472688 -0.201877638174 0.145321333452 1.437360472688 0.145321333452 -0.201877638174
29 13,Me Os N P C H C H C H C H C H C H C H C H H H H H H H H H H H H H	¹ A (C ₂): E_{tot} (PBE0D/TZ 0.00000000000 0.00000000000 0.00000000	<pre>VP) = -1602.27012880 0.0000000000 0.0000000000 2.314371827578 -2.314371827578 2.384585419632 3.290359229769 -2.384585419632 -3.290359229769 1.189226601849 1.078189119637 -1.189226601849 -1.078189119637 0.0000000000 3.230775486110 3.260918703552 -3.260918703552 -3.260918703552 3.082816060583 2.741848341959 4.296620567994 -3.08281606583 -4.296620567994 -2.741848341959 3.476194472628</pre>	0.229231499142 -1.703976280075 -0.050204299976 -1.857228673744 -2.449378474601 -1.857228673744 -2.449378474601 -2.449203717578 -3.531954664689 -2.449203717578 -3.531954664689 2.542280141954 0.381004239414 0.381004239414 0.470637013562 0.470637013562 1.437360472688 -0.201877638174 0.145321333452 1.437360472688 0.145321333452 -0.201877638174 1.538878814455 0.0421975751
29 13,Me Os N P C H C H C H C H C H C H C H H H H H H H H H H H H H	¹ A (C ₂): E_{tot} (PBE0D/TZ 0.00000000000 0.00000000000 0.00000000	<pre>VP) = -1602.27012880 0.00000000000 0.00000000000 2.314371827578 -2.314371827578 2.384585419632 3.290359229769 -2.384585419632 -3.290359229769 1.189226601849 1.078189119637 -1.189226601849 -1.078189119637 0.00000000000 3.230775486110 3.260918703552 -3.260918703552 -3.260918703552 3.082816060583 2.741848341959 4.296620567994 -3.082816060583 -4.296620567994 -2.741848341959 3.476194472628 2.577319064841 4.125770100777</pre>	0.229231499142 -1.703976280075 -0.050204299976 -1.857228673744 -2.449378474601 -1.857228673744 -2.449378474601 -2.449203717578 -3.531954664689 -2.449203717578 -3.531954664689 2.542280141954 0.381004239414 0.381004239414 0.470637013562 1.437360472688 -0.201877638174 0.145321333452 1.437360472688 0.145321333452 -0.201877638174 1.538878814455 0.284310675734
29 13,Me Os N P C H C H C H C H C H C H C H H H H H H H H H H H H H	¹ A (C ₂): E_{tot} (PBE0D/TZ 0.00000000000 0.00000000000 0.00000000	<pre>VP) = -1602.27012880 0.00000000000 0.0000000000 2.314371827578 -2.314371827578 2.384585419632 3.290359229769 -2.384585419632 -3.290359229769 1.189226601849 1.078189119637 -1.189226601849 -1.078189119637 0.0000000000 3.230775486110 3.260918703552 -3.260918703552 -3.260918703552 -3.260918703552 3.082816060583 2.741848341959 4.296620567994 -3.082816060583 -4.296620567994 -2.741848341959 3.476194472628 2.577319064841 4.175770404777 4.175770404777</pre>	0.229231499142 -1.703976280075 -0.050204299976 -1.857228673744 -2.449378474601 -1.857228673744 -2.449378474601 -2.449203717578 -3.531954664689 -2.449203717578 -3.531954664689 2.542280141954 0.381004239414 0.381004239414 0.470637013562 1.437360472688 -0.201877638174 0.145321333452 1.437360472688 0.145321333452 -0.201877638174 1.538878814455 0.284310675734 -0.097110382870
29 13,Me Os N P P C H C H C H C H C H C H C H C H H H H H H H H H H H H H	¹ A (C ₂): E_{tot} (PBE0D/TZ 0.00000000000 0.0000000000 0.00000000	<pre>VP) = -1602.27012880 0.00000000000 0.00000000000 2.314371827578 -2.314371827578 2.384585419632 3.290359229769 -2.384585419632 -3.290359229769 1.189226601849 1.078189119637 -1.189226601849 -1.078189119637 0.00000000000 3.230775486110 3.260918703552 -3.260918703552 -3.260918703552 -3.260918703552 -3.260918703552 3.082816060583 2.741848341959 4.296620567994 -3.082816060583 -4.296620567994 -2.741848341959 3.476194472628 2.577319064841 4.175770404777 -4.175770404777</pre>	0.229231499142 -1.703976280075 -0.050204299976 -1.857228673744 -2.449378474601 -1.857228673744 -2.449378474601 -2.449203717578 -3.531954664689 -2.449203717578 -3.531954664689 2.542280141954 0.381004239414 0.381004239414 0.470637013562 0.470637013562 1.437360472688 -0.201877638174 0.145321333452 1.437360472688 0.145321333452 -0.201877638174 1.538878814455 0.284310675734 -0.097110382870 -0.097110382870
29 13,Me Os N P C H C H C H C H C H C H C H C H H H H H H H H H H H H H	¹ A (C ₂): E_{tot} (PBE0D/TZ 0.00000000000 0.00000000000 0.00000000	<pre>VP) = -1602.27012880 0.00000000000 0.0000000000 2.314371827578 -2.314371827578 2.384585419632 3.290359229769 -2.384585419632 -3.290359229769 1.189226601849 1.078189119637 -1.189226601849 -1.078189119637 0.0000000000 3.230775486110 3.260918703552 -3.260918703552 3.082816060583 2.741848341959 4.296620567994 -3.082816060583 -4.296620567994 -2.741848341959 3.476194472628 2.577319064841 4.175770404777 -2.577319064841</pre>	0.229231499142 -1.703976280075 -0.050204299976 -1.857228673744 -2.449378474601 -1.857228673744 -2.449378474601 -2.449203717578 -3.531954664689 -2.449203717578 -3.531954664689 2.542280141954 0.381004239414 0.470637013562 0.470637013562 1.437360472688 -0.201877638174 0.145321333452 1.437360472688 0.145321333452 1.437360472688 0.145321333452 1.437360472688 0.145321333452 -0.201877638174 1.538878814455 0.284310675734 -0.097110382870 -0.097110382870

29			
13,Me	3 A" (C _s): E_{tot} (PBEOD/TZW	P) = -1602.26878780	
Os	0.283054454091	0.014455569231	0.000000000000
N	-1.772238879854	-0.077938860412	0.000000000000
Р	-0.117114232946	0.028712285266	2.342234233831
Р	-0.117114232946	0.028712285266	-2.342234233831
С	-1.891650271201	-0.106868940332	2.381774005377
Н	-2.484593175604	-0.137232080344	3.285539480597
С	-1.891650271201	-0.106868940332	-2.381774005377
Н	-2.484593175604	-0.137232080344	-3.285539480597
С	-2.478020321599	-0.132400197056	1.170887401714
Н	-3.561612878774	-0.198284227033	1.074093447363
С	-2.478020321599	-0.132400197056	-1.170887401714
Н	-3.561612878774	-0.198284227033	-1.074093447363
Cl	2.539857398269	-0.106300782954	0.000000000000
С	0.516439669272	-1.450765658211	3.307508206274
С	0.296735738916	1.659957706020	-3.173700015275
С	0.296735738916	1.659957706020	3.173700015275
С	0.516439669272	-1.450765658211	-3.307508206274
Н	1.578515150244	-1.347586235667	3.532511956827
Н	0.374425645394	-2.304566940246	2.645273891728
Н	-0.049747672103	-1.628984319496	4.223301136578
Н	1.340015060628	1.919341927419	-2.991766131241
Н	0.083680053059	1.673082928634	-4.244556292320
Н	-0.327018642239	2.401038240980	-2.673440680934
Н	1.340015060628	1.919341927419	2.991766131241
Н	-0.327018642239	2.401038240980	2.673440680934
Н	0.083680053059	1.673082928634	4.244556292320
Н	-0.049747672103	-1.628984319496	-4.223301136578
Н	0.374425645394	-2.304566940246	-2.645273891728
Н	1.578515150244	-1.347586235667	-3.532511956827
29			
13,Me	³ B (C ₂): E_{tot} (PBEOD/TZVF	P) = -1602.28318619	
Os	0.00000000000	0.00000000000	0.236343998081
N	0.00000000000	0.00000000000	-1.777380448661
Р	0.00000000000	2.324728405854	-0.074621720574
Р	0.00000000000	-2.324728405854	-0.074621720574
С	0.039129264870	2.384003498999	-1.869438534108
Н	0.054085448584	3.292297344719	-2.457369359045
С	-0.039129264870	-2.384003498999	-1.869438534108
Н	-0.054085448584	-3.292297344719	-2.457369359045
С	0.027306105901	1.183706878627	-2.477579484287
Н	0.038821081035	1.100832960289	-3.564291427656
С	-0.027306105901	-1.183706878627	-2.477579484287
Н	-0.038821081035	-1.100832960289	-3.564291427656

0.0000000000000000000000000000000000000	-2.324/20403034	-0.014021120314
0.039129264870	2.384003498999	-1.869438534108
0.054085448584	3.292297344719	-2.457369359045
-0.039129264870	-2.384003498999	-1.869438534108
-0.054085448584	-3.292297344719	-2.457369359045
0.027306105901	1.183706878627	-2.477579484287
0.038821081035	1.100832960289	-3.564291427656
-0.027306105901	-1.183706878627	-2.477579484287
-0.038821081035	-1.100832960289	-3.564291427656
0.00000000000	0.000000000000	2.599231502650
-1.541746430595	3.271384638141	0.409354579546
1.541746430595	-3.271384638141	0.409354579546
1.579507416156	3.180251124587	0.458509011188
-1.579507416156	-3.180251124587	0.458509011188
-1.724457840540	3.176457651367	1.480373279481
-2.352567007802	2.767153831698	-0.118563343195
-1.521651154914	4.323374696870	0.119905415116
1.724457840540	-3.176457651367	1.480373279481
1.521651154914	-4.323374696870	0.119905415116

-2.767153831698

3.412307499932

2.435344480620

4.072700954451

-4.072700954451

-2.435344480620

-3.412307499932

-0.118563343195

1.523777300685

0.280506638880

-0.123794258966

-0.123794258966

0.280506638880

1.523777300685

Cl

С

С

С

С

Н

Н

Н

Н

Н

Η

Η

Η

Η

Н

Н

Н

2.352567007802

1.553326381595

2.356003051620

1.812501221534

-1.812501221534

-2.356003051620

-1.553326381595

45

References

- [1] J. Meiners, A. Friedrich, E. Herdtweck, S. Schneider, Organometallics 2009, 28, 6331–6338.
- [2] V. W. Manner, T. F. Markle, J. H. Freudenthal, J. P. Roth, J. M. Mayer, E. R. Altwicker, R. G. Hicks, V. W. Bowry, K. U. Ingold, G. W. Burton, et al., Chem. Commun. 2008, 67, 256–258.
- [3] G. P. Elliot, N. M. McAuley, W. R. Roper, P. A. Shapley, *Inorganic Syntheses*, Vol. 15, John Wiley & Sons, Inc., New York, Chichester, Brisbane, Toronto, Singapore, **1989**.
- [4] a) W. Haberditzel, Angew. Chem. Int. Ed. Engl. 1966, 5, 288. b) G. A. Bain, J. F. Berry, J. Chem. Educ. 2008, 85, 532.
- [5] E. Bill, julX, Program for Simulation of Molecular Magnetic Data, Max-Planck Institute for Chemical Energy Conversion, Mülheim/Ruhr, 2008.
- [6] F. Schendzielorz, M. Finger, C. Volkmann, C. Würtele, S. Schneider, Angew. Chem. Int. Ed. 2016, 55, 11417–11420.
- [7] a) APEX2 v2014.9-0 (SAINT/SADABS/SHELXT/SHELXL), Bruker AXS Inc., Madison, WI, USA, 2014. b) George M. Sheldrick, Acta Cryst., 2015, A71, 3–8. c) George M. Sheldrick, Acta Cryst., 2015, C71, 3–8. d) George M. Sheldrick, Acta Cryst., 2008, A64, 112–122.
- [8] Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox (Gaussian, Inc., Wallingford, CT), 2013, see http://www.gaussian.com.
- [9] J. P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys. 1996, 105, 9982–9985.
- [10] C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158–6170.
- [11] S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465.
- [12] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.
- [13] D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß, Theor. Chem. Acc. 1990, 77, 123-141.
- [14] MOLPRO, version 2015.1, a package of ab initio programs, H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, W. Györffy, D. Kats, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O'Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang (University College Cardiff Consultants Ltd., Cardiff, UK), 2015, see http://www.molpro.net.

- [15] S. Ten-no, Chem. Phys. Lett. 2004, 398, 56–61.
- [16] T. B. Adler, G. Knizia, H.-J. Werner, J. Chem. Phys. 2007, 127, 221 106/1-221 106/4.
- [17] K. A. Peterson, T. B. Adler, H.-J. Werner, J. Chem. Phys. 2008, 128, 084102/1-084102/12.
- [18] K. E. Yousaf, K. A. Peterson, J. Chem. Phys. 2008, 129, 184108/1-184108/7.
- [19] S. Kritikou, J. G. Hill, J. Chem. Theory Comput. 2015, 11, 5269-5276.
- [20] D. Figgen, K. A. Peterson, M. Dolg, H. Stoll, J. Chem. Phys. 2009, 130, 164108/1-164108/12.
- [21] F. Weigend, J. Comput. Chem. 2008, 29, 167–175.
- [22] J. G. Hill, J. Chem. Phys. 2011, 135, 044105/1-044105/4.
- [23] J. G. Hill, K. A. Peterson, G. Knizia, H.-J. Werner, J. Chem. Phys. 2009, 131, 194105/1-194105/13.
- [24] ORCA version 3.0.3, an ab initio, DFT and semiempirical SCF-MO package, F. Neese, F. Wennmohs, U. Becker, D. Bykov, D. Ganyushin, A. Hansen, R. Izsák, D. G. Liakos, C. Kollmar, S. Kossmann, D. A. Pantazis, T. Petrenko, C. Reimann, C. Riplinger, M. Roemelt, B. Sandhöfer, I. Schapiro, K. Sivalingam, B. Wezisla, with contributions from M. Kállay, S. Grimme, E. Valeev, G. Chan (Max-Planck-Institut für Chemische Energiekonversion, Mülheim a. d. Ruhr, Germany), 2014, see https://orcaforum.cec.mpg.de/.
- [25] F. Neese, WIREs Comput. Mol. Sci. 2012, 2, 73–78.
- [26] C. van Wüllen, J. Chem. Phys. 1998, 109, 392–399.
- [27] D. A. Pantazis, X.-Y. Chen, C. R. Landis, F. Neese, J. Chem. Theory Comput. 2008, 4, 908–919.
- [28] F. Neese, F. Wennmohs, A. Hansen, U. Becker, Chem. Phys. 2009, 356, 98–109.
- [29] C. Hättig, Phys. Chem. Chem. Phys. 2005, 7, 59-66.
- [30] C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, J.-P. Malrieu, J. Chem. Phys. 2001, 114, 10252–10264.
- [31] C. Angeli, R. Cimiraglia, J.-P. Malrieu, Chem. Phys. Lett. 2001, 350, 297–305.
- [32] C. Angeli, R. Cimiraglia, J.-P. Malrieu, J. Chem. Phys. 2002, 117, 9138–9153.
- [33] B. A. Heß, C. M. Marian, U. Wahlgren, O. Gropen, Chem. Phys. Lett. 1996, 251, 365-371.