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The aim of the present study is to test ESA’s Sentinel-2 (S2) satellites (S2A and S2B) for an efficient 
quantification of land cover (LC) and forest compositions in a tropical environment southwest of Mount 
Kenya. Furthermore, outcome of the research is used to validate ESA’s S2 prototype LC 20 m map of 
Africa that was produced in 2016. A decision tree that is based on significant altitudinal ranges was 
used to discriminate four natural tree compositions that occur within the investigation area. In addition, 
the classification process was supported by Google Earth images, and land use (LU) data that were 
provided by the local Kenyan Forest Service (KFS). Final classification products include four LC 
classes and five subclasses of forest (four natural forest subclasses plus one non-natural forest class). 
Results of the Jeffries-Matusita (JM) distance test show significant differences in spectral separability 
between all classes. Furthermore, the study identifies spectral signatures and significant wavelengths 
for a classification of all LC classes and forest subclasses where wavelengths of SWIR and the red-
edge domain show highest importance for the discrimination of tree compositions. Finally, 
considerable differences can be seen between the utilized multi-temporal classification set (total of 39 
bands from three acquisition dates) and ESA’s S2 prototype LC 20 m map of Africa 2016. A visual 
comparison of ESA’s prototype map within the investigation area indicates an overrepresentation of 
tree cover areas (as confirmed in previous studies) and also an underrepresentation of water. 
 
Key words: Tropical tree composites, Mt. Kenya, Sentinel-2, ESA S2 LC 20 m map of Africa. 

 
 
INTRODUCTION 
 
Forests are subject to several policies of individual states 
and important agreements from the United Nations (UN) 
(FAO, 2017; IPCC, 2003; UN, 1992, 1997, 2015). The 
amount of people that directly profit from forests as a 
natural resource is vast (FAO, 2016b).  This  also  applies 

to the forests of Mount Kenya National Park, Lewa 
Wildlife Conservancy, and Ngare Ndare Reserve of the 
greater Mount Kenya ecoregion. Altogether, these forests 
shape an extensive ecosystem that represents habitat to 
numerous endemic species and provide water  and  other
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natural resources to people that live in the mountains and 
the adjacent foothills (Kenya Wildlife Service, 2010; 
Winiger and Brunner, 1986). Nevertheless, forests in 
general and also in Kenya are under massive pressure 
and in competition with other land-use (LU) systems to 
this day (McDowell et al., 2020; Barlow et al., 2016; 
Kenya Forest Service, 2010). Tropical forests are among 
the most threatened forests and often exposed to radical 
LU changes and impacts of climate change (Bastin et al., 
2019; FAO, 2016a; Lambin et al., 2001). Agriculture is 
the primary economic activity in the bordering areas of 
the investigated forest reserve. The increase of 
agriculturally used areas is a major challenge for 
sustainable tropical forest management (Kenya Forest 
Service, 2010). In addition, wildfires, intensified by the 
effects of climate change, frequently occur within the 
reserve (Nyongesa, 2015). It is therefore of major 
concern to understand the structure of forests, to 
subsequently investigate their interactions with land-use 
and land cover (LULC) changes, as well as the effects of 
climate change to support sustainable management of 
tropical forest resources. 

Satellite remote sensing (SRS) can bring important 
benefits for monitoring LULC changes regarding 
disturbances and changes within the forest ecosystem 
(DeFries et al., 1995; Hansen et al., 2013; Townshend, 
1992). Quantifying forest cover changes on a large scale 
is a major challenge to this day. It requires high temporal 
and spatial accuracy to detect detailed changes within 
short time periods (Crowther et al., 2015). At the same 
time resources are limited and researchers need to find 
efficient solutions for forest monitoring (Wulder and 
Coops, 2014). Regional anomalies like persistent cloud 
cover in tropical environments make the process even 
more complex and limit the availability of up to date SRS 
data (Asner, 2001). However, techniques of SRS are 
continuously developing providing new possibilities for 
Earth observation. 

In 2015, Sentinel-2A (S2A) was successfully launched 
by the European Space Agency (ESA) as part of the 
Copernicus program. Sentinel-2B (S2B) successfully 
followed in 2017. All of the data that is produced by the 
twin satellites is available for free to the scientific 
community and beyond. The Sentinel-2 (S2) Copernicus 
mission orbits the earth every five days using both 
satellites (S2A and S2B) that are equipped with 13 
spectral bands at a bandwidth of the visible and near-
infrared (VNIR) as well as the short-wavelength infrared 
(SWIR). The spatial resolution of the spectral bands 
ranges from 10 m (bands 2-4, and 8) to 20 m (bands 5-7, 
8a, 11, and 12) and 60 m (bands 1, 9, and 10) (Fletcher, 
2012). As already stated by other authors, strength of the 
S2 mission is the combination of systematic global 
coverage, high revisit frequency, multispectral 
information, wider field of view, and comparatively good 
spatial resolution (Sola et al., 2018). This enables 
researchers to see changes in land cover (LC) and  forest 

 
 
 
 
cover even at a small scale regarding the spatial and 
temporal resolution. Consequently, numerous studies 
with the objectives to test S2 products for their technical 
possibilities have arisen within the last years (Ganivet 
and Bloomberg, 2019). 

Moreover, the Climate Change Initiative (CCI) of the 
ESA derived a LC classification prototype map of Africa 
at 20 m spatial resolution that was based on S2 
observation data from December 2015 to December 
2016 (Fabrizio et al., 2018). Only few studies have so far 
tested the potential of S2 to discriminate forest types, tree 
compositions, and tree species. These include but are 
not limited to: Immitzer et al. (2016) on the classification 
of tree species in Central Europe (Germany), Laurin et al. 
(2016) on forest types, dominant species and functional 
guilds in West Africa (Ghana), Puletti et al. (2017) on 
forest categories and types in Southern Europe (Italy), 
Karasiak et al. (2017) on tree species in Southern Europe 
(France), Persson, Lindberg and Reese (2018) on tree 
species in Northern Europe (Sweden), and Grabska et al. 
(2019) on forest types and tree species in Eastern 
Europe (Poland). However, most of the studies were 
conducted within a temperate environment. 
Consequently, more applied research within the tropical 
environment is needed. Driven by the motivation of the 
Karantina University and the Kenya Forest Service 
(KFS), this study aims to fill this research gap through 
combined use of LU data, Google Earth images, 
topographic data as well as historic field-based data to 
develop an efficient method for the creation of spectral 
signatures. Furthermore, the outcome of the present 
study will be used for a visual comparison with the 
existing LC product of ESA’s S2 prototype LC 20m map 
of Africa 2016. The main objectives of the study are: 
 

i) Testing opportunities and challenges offered by S2 
imagery for classification of tropical forest subclasses 
based on historical field acquisition and terrain 
information derived from Digital Elevation Models (DEM); 
ii) Visual comparison of S2 Prototype Land Cover 20 m 
Map of Africa 2016 and conducted classification within 
the investigation area; 
iii) Creating a detailed classification product for the 
investigation area that includes LC classes and forest 
compositions. 
 
 
MATERIALS AND METHODS 

 
Case study area 
 
Mount Kenya, also known as Kirinyaga or Kinyaa in the language of 
Swahili, is the highest mountain massif in Kenya and the second 
highest in Africa with its highest peak of 5,199 MAMSL. It is located 
about 150 km north-northeast of the capital Nairobi right on the 
equator in the center of Kenya (Figure 1).  

Part of the greater ecosystem is the Mount Kenya National Park/ 
Natural Forest in the center and the Lewa Wildlife Conservancy as 
well as the Ngare Ndare Forest Reserve in the north.  Altogether,  it
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Figure 1. Geographical location and administrative borders of the investigation area (after Winiger and Brunner, 1986). 

 
 
 
shapes an extensive ecosystem that provides habitat to numerous 
endemic species as well as water to people living in the mountains 
and the adjacent foothills (Kenya Wildlife Service, 2010). The 
investigation area is located in the southwest of the Mount Kenya 
area, bordering the northeastern National Park (Figure 1). Except 
for a very small part in the east that is attributed to Kirinyaga 
County, most of the investigation area is part of Nyeri County. 
Furthermore, it consists of three forest stations: Kabaru, Hombe 
and Ragati.  
 
 
Field-based reference data 
 
Based on an extensive recording of Mount Kenya’s forests in 1992 
to 1994, Bussmann and Beck (1995) accounted 41 tree 
associations with 47 sub-associations. Furthermore, 10 alliances, 5 
orders and 4 classes were identified. Four of the ten alliances can 
be found in the investigation area southwest of the mountain 
spreading up to an altitude of 3,400 m (Table 1). Descriptions of the 
associations give detailed information about the ecological factors, 
locations, as well as character and differential species. According to 
Bussmann and Beck (1995), (1) Ocotetea usambarensis is the most 
common forest formation ranging from 1,970 m to 2,520 m altitude. 
Differential tree species of this formation is Neoboutonia 
macrocalyx Pax with a flowering time from September to December 
(Burrows et al., 2018). Another formation is (2) Cassipourion 
malosanae which is predominantly two-storey ranging from altitudes 
of 2,150 m to 2,650 m. Differential tree species of Cassipourion 
malosanae are Rhizophoracee Cassipoura malosana with a 
flowering time from September to January and Olea capensis L. 
ssp. Hochstetteri with irregular flowering intervals of up to seven 
years (Burrows et al., 2018; Bussmann and Beck, 1995). Third 
formation is  (3)  Podocarpo   latifolii – Sinarundinarietum  alpine  at 

altitudes of 2,350 m to 3,050 m. A bamboo canopy overtopped with 
single trees of Podocarpus latifolius that in turn represents the 
differential tree species is characteristic for this forest type. The 
fourth formation that occurs in the investigation area is (4) 
Haganietea abyssinicae. At a range of 2,650 m to 3,350 m altitude, 
this subalpine forest forms the upper forest belt around Mount 
Kenya. Differential species is H. abyssinicae that is also known as 
Kosso tree (Bussmann and Beck, 1995). 
 
 
Digital data applications 
 
Digital data of the research include all data that was used through 
application of geographic information systems (GIS). Integral part of 
these data are Sentinel-2 satellite images, the S2 prototype LC 20 
m map of Africa 2016, SRTM Digital Elevation Models (DEM), and a 
LU-map that was provided by the KFS. 
 
 
Sentinel-2 data 
 
The ESA mission uses twin satellites, equipped with a Multi 
Spectral Instrument (MSI) including 13 spectral bands at a 
bandwidth of the visible and near-infrared (VNIR) as well as the 
short wavelength infrared (SWIR) domain (Table 2) that orbit the 
Earth every five days. The satellites were launched in 2015 (S2A) 
and 2017 (S2B). Spatial resolution for the bands of the classical 
blue (490 nm), green (560 nm), red (665 nm) and near-infrared 
(842 nm) is 10 m. Four narrow bands in the vegetation red-edge 
spectral domain (705, 740, 783 and 865 nm) as well as two large 
SWIR bands (1610 nm and 2190 nm) are at 20 m spatial resolution. 
Finally, three bands at the spatial resolution of 60 m “[…] are mainly 
dedicated to atmospheric corrections and cloud screening (443  nm
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Table 1. Phytosociological characteristics of forest alliances at Mount Kenya. 
 

Tree composition Altitudinal range Vegetation structure Differential species  

Ocotetea usambarensis 1,970-2,520 m 
(I) Lower species diversity than the forests of the lower altitude 

(II) One tree stratum with less dense shrub layer 
Neoboutonia macrocalyx Pax 

    

Cassipourion malosanae 2,150-2,650 m Mainly two-storey 

Upper canopy: 

(i) Rhizophoracee Cassipourea malosana 

(ii) Olea capensis L. ssp. Hochstetteri  

Lower tree: Lepidotrichilia volkensii 

    

Podocarpo latifolii-
Sinarundinarietum alpinae 

2,350-3,050 m Bamboo canopy overtopped by single trees 
Single trees: 

Podocarpus latifolius 

    

Haganietea 

abyssinicae 
2,650-3,350 m 

(I) Upper forest belt around whole Mount Kenya 

(II) Often very thick mossy cushions especially on the more or 
less horizontal stems and branches 

Hagenia abyssinica 

 

Source: Adopted from Bussmann and Beck (1995). 

 
 
 

Table 2. Sentinel-2 images of the years 2018 and 2019 (till April only) with indication of cloud cover (CC) in % (ESA, 2019). 
 

Year/Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

CC in 2018 (%) <4 <4 =4-10 >10 =4-10 >10 >10 <4 <4 =4-10 >10 >10 

CC in 2019 (%)  <4 <4 >10 >10 N/A N/A N/A N/A N/A N/A N/A N/A 

 
 
 
more aerosol retrieval, 945 nm for water vapor retrieval and 1275 
nm for cirrus cloud detection)” (Fletcher, 2012: 12).  

 
 
Sentinel-2 protoptype land covers 20 m of the map of Africa 

 
The CCI Land Cover consortium provides global and continental LC 
maps as result of the CCI Land Cover project. As part of the project, 
the prototype of a high-resolution LC map at 20 m of Africa was 
successfully developed (S2 prototype LC 20m map of Africa 2016). 
Data basis of the map are one year of S2A observations from 
December 2015 to December 2016. Whereas an official validation 
of the map has not yet been done, a user evaluation of Lesiv et al. 
(2017) estimates an overall accuracy of approximately 65% 
regarding the prototype. The evaluation was done using two 
independent datasets. Furthermore, the user evaluation highlights 
an overestimation of individual classes including Tree cover areas 
(Fabrizio et al., 2018). Figure 2 shows a cutout of the investigation 
area of the aforementioned S2 prototype LC 20m map of Africa 
2016. As can be seen in the map, LC classes that mainly appear 
within the investigation area are Tree cover areas; Shrub cover 
areas; Grassland; Cropland; and Bare areas.  

 
 
The shuttle radar topography mission (SRTM) 

 
SRTM provides digital elevation data of the Earth’s surface 
between 60° north latitude and 56° south latitude. Spatial resolution 

of the free available product is close to 30 m, which makes it one of 
the highest-resolution models of the Earth Data for the SRTM were 
acquired by the Space Shuttle Endeavour (STS-99) in February 
2000 (Farr et al., 2007). The elevation of the investigated area 
ranges from 1,752 m above sea level in the west to 3,259 m above 
sea level in the northeast.  The elevation model derived from SRTM 
data was used to determine the height limits (Altitudinal Belts) of 
the forest type distribution. 

 
 
Land use map of the kenya forest service 

 
Based on Sentinel and Google Earth data of 2018, a LU map of the 
forest stations Ragati, Hombe and Kabaru was produced by the 
Kenya Forest Service (KFS) in 2018. The classification of the map 
includes Air Strips, Shrublands, Swamps, Tea zone, PELIS, Forest 
Plantation (including indigenous species as well as Cypress, Pines, 
and Eucalypts (Mbugua, 2000), Grassland, and Natural Forest 
Zones that all appear within the investigation area. 

 
 
Approach 

 
Figure 3 illustrates the overall scheme of the research showing 
underlying steps of data preprocessing and classification. Before 
starting with the pre-processing, a status-quo analysis using 
present LC and LU maps of the investigation area was done. After 
selecting and downloading satellite  products  at  Level-1C,  images
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Figure 2. Cutout of the investigation area of S2 prototype LC 20 m map of Africa 2016 adopted from (ESA Climate 
Change Initiative - Land Cover project 2017, 2016). 

 
 
 

 
 

Figure 3. Overall scheme of methods and research structure. 

 
 
 
had to be pre-processed before starting the classification process. 
This step of pre-processing involved steps of data correction, data 
resampling, and calculation of several Vegetation Indices (VIs) that 
were   needed   for   the   classification   process   at  a  later  stage. 

Furthermore, image composites of spectral bands and VIs were 
processed. Representative training samples were created based on 
the available LU map, and visual interpretation of Google Earth 
images    and    tested  on   their   spectral   separability   using   the 
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Jeffries-Matusita (JM) distance test. Finally, a Maximum Likelihood 
Classification and visual comparison was performed. 

High quality and preferably cloud free imagery are a pre-requisite 
for further image processing and analysis. Table 1 shows most 
suitable S2 imagery for the years 2018 and 2019 (until April) via the 
Copernicus Open Access Hub (OAH) portal of the ESA. Persistent 
cloud cover is characteristic for the study area, nevertheless a total 
of six images with a cloud cover less than 4% could be acquired. 

Due to their suitable distribution of cloud cover, three acquisition 
dates (14th January, 2018, 16th September, 2018 and 3rd of 
February, 2019) were chosen for further pre-processing including 
image correction, spatial resampling and the calculation of 
Vegetation Indices (VIs). The second step of the overall process 
and first partial step of the image pre-processing was an upgrade of 
Level-1C images to Level-2C. This was performed with the support 
of ESA’s Sen2Cor Processor v2.5.5 (ESA, 2018). The process of 
the upgrade for all three images included atmospheric correction, 
cirrus correction, and terrain correction, respectively. The spectral 
bands of S2 satellite images come with different spatial resolutions 
ranging from 10 m to 60 m. To get a suitable overall resolution for 
canopy applications as well as in order to exploit the potential of the 
visible R, G, B and the NIR bands at 10 m, all 20-m bands were 
resampled to a spatial resolution of 10 m (Puletti et al., 2017). The 
process was performed, using the nearest neighbor function of the 
Resampling tool in ArcGIS 10.7 which is primarily used for discrete 
data, such as LC classifications, since it does not change the digital 
values of the pixels (Patil et al., 2012). Bands at a spatial resolution 
of 60 m were not used for further processing since they are mainly 
designed for atmospheric corrections (Fletcher, 2012). After 
resampling all bands from a resolution of 20 m to a resolution of 10 
m, resampled spectral bands as well as original bands with a 
resolution of 10 m were used to calculate several VIs (Table 2). 

The last step of data pre-processing involved the creation of the 
following five image composites using the resampled bands (2, 3, 4, 
5, 6, 7, 8, 8A, 11, 12) as well as the computed VIs (NDVI, RENDVI, 
SRI): 
 
(i) Band 2, 3, 4, 5, 6, 7, 8, 8A, 11, 12 
(ii) Band 2, 3, 4, 5, 6, 7, 8, 8A, 11, 12, NDVI 
(iii) Band 2, 3, 4, 5, 6, 7, 8, 8A, 11, 12, RENDVI 
(iv) Band 2, 3, 4, 5, 6, 7, 8, 8A, 11, 12, SRI 
(v) Band 2, 3, 4, 5, 6, 7, 8, 8A, 11, 12, NDVI, RENDVI, SRI. 
 
At the same time, cloud cover within the image composites was 
removed to prevent interferences during the classification process. 
The first step of the classification process was the determination of 
natural-forest subclasses using the reference data of Bussmann 
and Beck (1995). Unique altitudinal belts regarding the occurrence 
of different tree alliances were derived from the reference data. The 
altitudinal belts for indigenous forest are from 1,970 to 2,150 m 
altitude for Ocotetea usambarensis, 2,520 m to 2,650 m altitude for 
Cassipourion malosanae, 2,651 to 3,050 m altitude for Podocarpo 
latifolii - Sinarundinarietum alpinae, and 3,051 m to 3,350 m altitude 
for Haganietea abyssinicae (Figure 4). The derived decision tree for 
the four different subclasses of Natural Forest is shown in Figure 5. 

With reference to the decision tree, class “A” is represented by 
Ocotetea usambarensis, class “B” by C. malosanae, class “C” by 
Podocarpo latifolii – Sinarundinarietum alpinae, and class “D” by 
Haganietea abyssinicae. The decision tree starts with a general 
query whether a pixel is defined as Natural Forest (four subclasses) 
or non-natural forest (Forest Plantation). This decision can be 
determined by the LU-map described by KFS. If the forest is 
declared as Natural Forest, the next question is whether a pixel is 
above or below an altitude of 3,050 m. If the pixel of Natural Forest 
is above 3,050 m altitude, it is declared as class “D”. If not, the next 
question is whether the Natural Forest is above or below 2,150 m 
altitude. Below 2,150 m altitude and different from class “D”, Natural 
Forest  is  defined  as  class  “A”.  Above  2,150 m  altitude, the next 

 
 
 
 
question is whether the pixel is above or below 2,520 m altitude. If 
the pixel is below 2,520 m altitude, it is not possible to define the 
Natural Forest as a specific class. These pixels cannot be used 
within training sample since they are located in a transition zone of 
two or more forest subclasses. If the pixel is above 2,520 m altitude, 
the next question is whether it is above or below 2,650 m altitude. If 
it is above 2,650 m altitude and different from class “D”, it is defined 
as class “C”. If it is below 2,650 m altitude and different from class 
“A” and class “C”, it is defined as class “B”. Finally, information of 
the four subclasses of Natural Forest with reference to their unique 
altitudinal appearance was used to create four shapefiles of the 
areas that are potentially covered by the same classes. In addition, 
shape files of all subclasses were collated to the LU class of 
Natural Forest and intersected if not coextensive to each other. 

The third step within the classification process involved the 
selection of training samples for all classes. For this purpose, 23 
high resolution satellite image subsets (1 m spatial resolution) from 
Google Earth were imported into ArcGIS 10.7. The locations of the 
individual images can be seen in Figure 6. The acquisition date of 
the image subsets (Image Copyright 2019 CNES / Airbus) was 
June 6th, 2018 and September 16th, 2018 which partially coincide 
with the acquisition date of the second S2 image used within the 
study.  

Figure 7 shows four examples of image subsets that were used 
for the classification process. (A) Classes of Water and Forest 
Plantation. (B) Natural-forest subclass of Ocotetea usambarensis. 
(C) Classes of Grassland and Forest Plantation (D) Class of 
Grassland and the natural-forest subclass of Ocotetea 
usambarensis (Google, 2019). 

Based on the decision tree (Figure 5), Google Earth images 
(Figure 7), and the LU map by the KFS multiple training samples for 
a total of nine LC classes were defined, using the Training Sample 
Manager in ArcGIS Pro 2.2.4 (ESRI, 2019). As can be seen in 
Table 3, a total amount of 9067 pixels are separated into the 
classes of Water (585), Bare Land (941), Forest Plantation (2702), 
Tea (154), Ocotetea usambarensis (1629), Podocarpo latifolii – 
Sinarundinarietum alpinae (982), H. abyssinicae (136), C. 
malosanae (1377), and Grassland (561). 

To analyze the quality of training samples of LC classes and 
forest subclasses, spectral distances were calculated for all classes 
by using the JM distance test. The test measures the average 
distance between two spectral class density functions and is 
defined by Wacker and Landgrebe (1972) as: 
 

 
 
Moreover, for normally distributed classes the formula is defined as: 
 

 
 
Where: 
 

 
 
Where mi is the first spectral signature vector, mj is the second 
spectral signature vector, Σi is the covariance matrix of mi, and Σj is 
the covariance matrix of mj. Results of the test close to 0 imply 
identical signatures whether values close to 2 imply completely 
different signatures (Richards and Jia, 2006). Spectral distances 
were computed for all three days using band composites of 10 
bands (2, 3, 4, 5, 6, 7, 8, 8A, 11, 12), 10 bands (similar to step one) 
plus NDVI, 10 bands (similar to step one) plus RENDVI, 10 bands 
(similar  to  step  one)  plus  SRI, and 10 bands (similar to step one)
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Figure 4. Differential altitudes of natural-forest subclasses based on reference data of Bussmann and Beck 
(1995). 

 
 
 

 
 

Figure 5. Decision-Tree for the differentiation of natural-forest subclasses. Class “A” is represented by 
Ocotetea usambarensis, class “B” by Cassipourion malosanae, class “C” by Podocarpo latifolii – 
Sinarundinarietum alpinae, and class “D” by Haganietea abyssinicae 

 
 
 
plus NDVI, RENDVI, and SRI for each day.  

The next step of the classification process was the performance 
of a Maximum Likelihood Classification. For this purpose, all 
training samples (Table 3) were used to produce classified satellite 
images for each acquisition date. In addition, a multi-temporal 
classification combining all three products was computed. Based on 

the results of spectral separability, the following layer stacks were 
used for Maximum Likelihood Classifications:  
 
(1) 14-01-2018 (band 2, 3, 4, 5, 6, 7, 8, 8A, 11, 12, NDVI, RENDVI, 
SRI) 
(2) 16-09-2018 (band 2, 3, 4, 5, 6, 7, 8, 8A, 11, 12, NDVI,  RENDVI,
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Figure 6. Location of 23 high resolution Google Earth image subsets that were used for the classification process. 

 
 
 

 
 
Figure 7. Examples of Google Earth images that were used for the classification process.  

 

  

  

 

A B 

C D 
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Table 3. Calculated formulas of vegetation indices adapted from (Puletti et al., 2017). 
 

Vegetation index Formula 

NDVI 
(             )

(             )
 

RENDVI 
(             )

(             )
 

SRI 
       

      
 

 
 
 

Table 4. Class ID, class names, class colors, and amount of training area pixels that were used for the 
classification process. 
 

Class ID Class name Class color Training pixels  

1  Water  585 

2  Bare land  941 

3  Forest plantation  2702 

4  Tea  154 

5  Ocotetea usambarensis  1629 

6  Podocarpo latifolii - Sinarundinarietum alpinae  982 

7  Haganietea abyssinicae  136 

8  Cassipourion malosanae  1377 

9  Grassland  561 

 Total  9067 

 
 
 
SRI). 
(3) 03-02-2019 (band 2, 3, 4, 5, 6, 7, 8, 8A, 11, 12, NDVI, RENDVI, 
SRI). 
(4) Multi-temporal (14-01-2018 + 16-09-2018 + 03-02-2019). 
 
 
RESULTS 
 
Spectral distances 
 
Table 4 shows the calculated spectral distances between 
all tree subclasses that include Ocotetea usambarensis, 
C. malosanae, Podocarpo latifolii – Sinarundinarietum 
alpinae, Hagenietum abyssinicae, and Forest Plantation 
for the band composite of 10 bands and three Vis. Most 
class pairs show equal separability values for the three 
different dates, but some considerable differences are 
apparent. The lowest overall value is shown for the class 
pair C. malosanae versus Ocotetea usambarensis on 
September 16th, 2018 with a spectral distance of 1.65 
(JM). In contrast, all other comparisons show excellent 
values at the same day. Similar values can be seen on 
February 3rd, 2019 where spectral distance between C. 
malosanae versus Ocotetea usambarensis is slightly 
higher (1.81 [JM]) but still below 1.9 (JM). In addition, a 
difference between the two aforementioned dates is 
shown for the class pair  Haganietea  abyssinicae  versus 

C. malosanae. On September 16th, 2018, the 
comparison shows an excellent value of 2.00 (JM). On 
February 3rd, 2019, the comparison shows a good value 
of 1.90 (JM). Best overall values are identified on January 
14th, 2018 with a lowest value of 1.90 (JM) for the class 
pair Ocotetea usambarensis versus Forest Plantation. 
However, all other spectral distances of January 14th are 
above 1.90 (JM), which makes it a good day for 
separation of all the Natural Forest subclasses and the 
Forest Plantation class. 

 
 
Spectral signatures 

 
Spectral signatures and profiles were computed for all 
three S2 acquisition dates. Furthermore, class reflection 
characteristics were analyzed using box plot statistics of 
all bands and VIs for each date. In the following, the 
spectral signatures of one acquisition date (January 14

th
, 

2018) are described. 
Figure 8 shows a spectral profile of mean reflection 

values on January 14th, 2018. The graph shows that all 
classes except from Grassland show highest amplitudes 
between band 5 and band 11 with the highest point at 
band 8A. Grassland shows the highest amplitude at band 
11.  Band  8  and  band  8A  seem  most  feasible  for the
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Figure 8. Spectral profile of 13 bands composite on January 14th, 2018. 

 
 
 
differentiation of LC classes since mean value lines of the 
classes are further apart in comparison to other bands. 
With reference to the mean reflection of all classes, 
values of Water stand out in almost all spectral bands 
(Figure 8). Mean values for water are by far the lowest 
compared to all other classes. For all non-water classes 
(mostly vegetated except from Bare Land) the 
significance of red-edge is apparent. This is especially 
shown comparing the class Tea to classes of Grassland 
and Bare Land where mean values at bands 6 (3035.8 
and 2155.01/2291.89), 7 (3699.98 and 2442.22/2680.53), 
and 8 (3965.68 and 2629.5/2803.66) differ considerably. 
Values of Grassland (2629.5) and Bare Land (2803.66) 
are similar in the NIR spectrum (band 8) with highest 
differences in the SWIR at Band 11 (3007.94/1971.43) 
and 12 (2100.06/1154.84). Clear differences can be seen 
in all three VIs (NDVI, RENDVI, SRI) for Water 
(0.3/0.15/1.27), Grassland (0.47/0.22/2.29), Tea (0.8/ 
[0.44]/11.95), and Bare Land (0.68/ [0.4]/0.55). Only 
RENDVI shows similar values when comparing the class 
of Tea (0.44) and with the class Bare Land (0.4). 

Although, mean reflection values of all forest 
subclasses (Figure 8) are lot denser compared to those 
of non-forest classes, major differences appear within the 
red-edge region.  Lowest  difference  of  mean  values  is 

measured between Ocotetea usambarensis and Forest 
Plantation. For all red-edge bands, the difference 
between these two classes is below 160 reflection units. 
On the contrary, highest separability can be determined 
between Podocarpo latifolii - Sinarundinarietum alpinae 
and Haganietea abyssinicae with up to nearly 1500 
reflection units in the NIR (band 8) and red-edge (band 
8A). Red-edge values of Grassland and Bare Land are 
quite close to the values of Ocotetea usambarensis and 
Forest Plantation. Considering the VIs, some forest 
subclasses show same values. This accounts for 
Ocotetea usambarensis (0.82) and Forest Plantation 
(0.82) at the NDVI, Ocotetea usambarensis (4.9), 
Podocarpo latifolii - Sinarundinarietum alpinae (4.9), and 
Forest Plantation (4.9) at the RENDVI, as well as C. 
malosanae (0.42) and Haganietea abyssinicae (0.42) at 
the RENDVI. 

A detailed visualization of all ten spectral bands on 14 
January, 2018 is shown in Figure 9. Figure 10 shows 
band reflection statistics of the three VIs. With reference 
to Grassland, it is possible to discriminate the class from 
all others within bands 2, 3, 4, 5, 11, 12, and the NDVI. At 
bands 6, 7, 8, 8A and the RENDVI as well as the SRI, the 
interquartile range of Grassland overlaps completely or 
partially with other classes. Almost the  same  applies  for



Fierke et al.         169 
 
 
 

 
 
Figure 9. Band reflection statistics of bands 2, 3, 4, 5, 6, 7 on January 14th, 2018. 

 
 
 
the class of Bare Land. The only difference in comparison 
to Grassland is that the interquartile range overlaps with 
Haganietea abyssinicae at the NDVI. Furthermore, Tea 
can be discriminated from other classes at bands 3, 5, 6, 
7, 8, and 8A. At all other bands as well as the VIs, the 
interquartile range of Tea overlaps with the interquartile 
range of other classes. The Water class can be 
separated at almost every spectral band and VI. Only 
exception is given by the RENDVI where the interquartile 
range of Water overlaps with Grassland. Consequently, 
all four non-forest classes can be separated quite well on 
January 14th, 2018. 

A  discrimination  of  forest  subclasses  is  much more 

complex which is also confirmed by the results of spectral 
distances. Probably the clearest discrimination of forest 
subclasses is identified for Haganietea abyssinicae. 
Especially at bands 2 and 3 the difference of Haganietea 
abyssinicae to all other classes is very high. At bands 4, 
5, 6, 7, 8, and 8A the interquartile range overlaps with 
other classes to a very small extent. Furthermore, a total 
overlap with other classes is seen at bands 11, 12 and at 
all VIs. For the forest subclass Podocarpo latifolii – 
Sinarundinarietum alpinae most effective discrimination 
can be seen at bands 3, 8, and 8A where the interquartile 
range overlaps just slightly with other classes. According 
to  the  box  plots  of bands 6, 7, 8, and 8A, C. malosanae  
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Figure 10. Band reflection statistics of bands 8, 8A, 11, and 12, as well as NDVI, RENDVI and 
SRI on January 14th, 2018. 

 
 
 
can be differentiated best in the spectral region of red-
edge and NIR. The forest subclasses of Ocotetea 
usambarensis and Forest Plantation and most difficult to 
separate. Except for band 11, the interquartile range of 
both classes overlaps within all other bands. This result is 
congruent with results of spectral distances, where 
comparisons between Ocotetea usambarensis and 
Forest Plantation show the lowest values on January 14

th
, 

2018. 

Land cover classification 
 
Table 5 lists area statistics of all LC classes on January 
14

th
, 2018, September 16

th
, 2018, and February 3

rd
, 2019 

combined to a multi-temporal composite. The composite 
classification map (Figure 11) is illustrated below. Forest 
subclasses cover a total area of 189 km

2
 (76%), whereas 

non-forest classes cover an area of 60 km
2
 (24%).  

Figure  11  shows  several  spatial characteristics of the
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Table 5. Spectral distances of five forest subclasses at three different dates. 
 

Composite  

bands 
Class pairs 

Level of Separability (JM) 

14/01/18 16/09/18 03/02/19 

10 Bands 

+NDVI 

+RENDVI 

+SRI 

Haganietea abyssinicae vs. Podocarpo latifolii – Sinarundinarietum alpinae 2.00 2.00 2.00 

Haganietea abyssinicae vs. Cassipourion malosanae 1.93 2.00 1.90 

Haganietea abyssinicae vs. Ocotetea usambarensis 2.00 2.00 2.00 

Haganietea abyssinicae vs. forest plantation 2.00 2.00 2.00 

Podocarpo latifolii - Sinarundinarietum alpinae vs.Cassipourion malosanae 2.00 2.00 2.00 

Podocarpo latifolii - Sinarundinarietum alpinae vs.Ocotetea usambarensis  2.00 2.00 2.00 

Podocarpo latifolii - Sinarundinarietum alpinae vs.Forest Plantation 2.00 2.00 2.00 

Cassipourion malosanae vs. Ocotetea usambarensis 1.94 1.65 1.81 

Cassipourion malosanae vs. forest plantation 1.97 2.00 2.00 

Ocotetea usambarensis vs. forest plantation 1.90 2.00 1.98 
 
 
 

 
 

Figure 11. Multi-temporal Maximum Likelihood Classification on January 14th, 2018, September 16th, 2018, and February 3rd, 2019. 

 
 
 
nine LC classes for multiple dates that for the most part 
coincide  with  characteristics  of  single-dates.  (1)  Small 

water bodies are visible east and west of the southern 
center,  similar to all other dates. (2) Bare Land is located 



172          Afr. J. Environ. Sci. Technol. 
 
 
 
in the western and central areas of the investigation area 
including small expansions in the northeastern parts. (3) 
Forest Plantation covers large parts of southern central 
areas with further coherent areas in the central north 
(similar to all other dates). (4) Small areas of Tea are 
visible in the southern investigation area. (5) Ocotetea 
usambarensis covers large parts of the southern center, 
representing the largest class with an extent of more than 
40%. (6) Podocarpo latifolii - Sinarundinarietum alpinae is 
visible in high altitudes in the northeast (similar to all 
other dates). (7) Small areas of Haganietea abyssinicae 
appear within the highest altitudes in the northeast. (8) C. 
malosanae covers large parts of the central east and 
north with some additional coveage in the west and (9) 
Grassland covers the western edge of the investigation 
area. 
 
 
Visual comparison 
 
Figure 12 shows a side by side display of multi-temporal 
classification, Google imagery and ESA's S2 prototype 
samples. Furthermore, Table 6 shows a legend of Figure 
12 including class names as well as class colors of visible 
LC classes within the samples. 

Image subset “F” in row 1 shows a significant water 
body surrounded by different LC. This can be verified by 
the multi-temporal sample “A” of row 1 that clearly shows 
the class of Water, Bare Land, Forest Plantation, 
Ocotetea usambarensis, and some individual pixels of C. 
malosanae, and Tea. On the contrary, no water is 
determined at sample “K” of row 1 of the S2 prototype. 
Instead, areas of Shrub cover areas and Grassland are 
surrounded by Tree cover areas. Image subset “G” of row 
2 shows sparsely vegetated areas with several small 
islands of trees and shrubs surrounded by areas of trees 
and shrubs. This is partially verified by multitemporal 
sample “B” of row 2 that shows several small islands of 
Bare Land surrounded by Grassland, and Ocotetea 
usambarensis. In addition, individual pixels of C. 
malosanae appear. Sample “L” of ESA’s S2 prototype 
shows a large area of Cropland surrounded by Tree 
cover areas and small areas of Shrub cover areas and 
Grassland. No islands can be identified within the sample 
of ESA’s S2 prototype. At first glance, Google Earth 
image “H” of row 3 shows different forest types. This is 
confirmed by the multi-temporal sample “C” of row 3 that 
shows forest subclasses of C. malosanae, P. latifolii – S. 
alpinae, and Ocotetea usambarensis as well as a small 
area of Bare Land on the bottom right. Sample “N” of row 
3 of ESA’s S2 prototype exclusively shows Tree cover 
areas with a small number of Shrub cover areas. Image 
subset “I” of row 4 shows two different types of forests 
with fields of tea in the bottom left. In addition, several 
paths/streets cross the image. This is mainly verified by 
multi-temporal sample “D” of row 4 that shows classes of 
Forest Plantation, O. usambarensis,  C.  malosanae,  and 

 
 
 
 
Tea. Moreover, aforementioned paths/streets are 
represented by small areas of Bare Land within the 
classified image. Sample “N” of row 4 of ESA’s S2 
prototype shows mostly Tree cover areas with a small 
area of Cropland in the bottom left. Finally, image subset 
“J” of row 5 shows non-vegetated areas separated by 
large areas of tree cover that indicate human impact. 
Multi-temporal sample “E” of row 5 is partially 
correspondent to this. The classification is characterized 
by large areas of Forest Plantation and Bare Land but 
includes a differentiation between Forest Plantation and 
Ocotetea usambarensis as well as some pixels of Tea. 
Hence, a differentiation of trees is shown in the multi-
temporal classification but not in the Google Earth image. 
Sample “O” of ESA’s S2 prototype shows predominantly 
Tree covered areas with an individual spot of Shrub. In 
conclusion, the most significant difference between the 
multi-temporal classification and ESA’s S2 prototype is 
the appearance of water (row 1), the differentiation of 
details within the LC (row 1 to 5), and the discrimination 
of forest subclasses (row 1, 3, 4, and 5). Moreover, the 
overrepresentation of Cropland as well as Tree cover 
areas (Figures 2 and 11) can be confirmed as stated by 
Fabrizio et al. (2018). 
 
 
DISCUSSION 
 
The present study demonstrates the potential of multi-
temporal S2 images combined with historic reference 
data, topographic data, high resolution imagery, and LU 
data for LC classification and discrimination of tree 
compositions in a tropical environment, which is 
characterized by decreasing forest area and an increase 
of agricultural activity (Barlow et al., 2016; FAO, 2016a). 
The study also supports the envisaged shift to freely 
available SRS programs (Wulder and Coops, 2014; 
Wulder et al., 2018) providing opportunities to scientists 
and policy-makers with limited resources and barriers of 
access due to the lack of high-performance technology 
and permission rights, which are not always available to 
the global community (Pettorelli et al., 2014; Shukla and 
Kot, 2016; Wulder and Crops, 2014; Wulder et al., 2018). 

The major outcome of the study is a multi-temporal 
Maximum Likelihood Classification that shows LC classes 
and tree compositions based on the analysis of spectral 
signatures using three single-day images for the area of 
interest. The new product can help to support the 
improvement of Kenya’s national forest monitoring and 
remote sensing capacities (Romijn et al., 2015; FAO, 
2016b) and complements existing regional forest 
monitoring studies conducted by Song et al. (2013) and 
Nyongesa (2015). The study shows the high potential of 
ESA S2 products for the classification of tropical tree 
composites. The high temporal and spatial resolution of 
the ESA S2 products is a necessary requirement to 
identify,  map  and  monitor  detailed   changes   in  forest
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Figure 12. Side by side display of multi-temporal classification (A, B, C, D, E), high resolution satellite imagery 
(Google) - (F, G, H, I, J), and ESA's S2 prototype (K, L, M, N, O). 

 
 
 

Table 6. Areas of LC classes in km2 and % of multi-temporal dates. 
 

LC CLASS Area (km²) Area (%) 

Ocotetea usambarensis 72.11 29.08 

Cassipourion malosanae 69.95 28.20 

Bare land 49.44 19.93 

Forest plantation 25.02 10.09 

Podocarpo latifolii – Sinarundinarietum alpinae 15.27 6.16 

Grassland 10.14 4.09 

Hagenietum abyssinicae 5.30 2.14 

Tea 0.68 0.27 

Water 0.11 0.04 

Total 248.01 100.00 

 
 
 
structure (Gao et al., 2006). This can be confirmed 
through the successful analysis of spectral LC class 
separability. The results of the performed JM distance 
test show that the best separability for discrimination of 
LC classes and tree compositions is given on January 
14th, 2018 using a band composite of 10 spectral bands 
and three VIs (total of 13 layers). Spectral differences on 
this day show scores of 1.90 (JM) and above, including 
six class pairs with scores of 2.00 (JM). According to Jin 
et al. (2016) and Richards and Jia (2006), these results 
can be considered as well separable. However, the 
intersection of individual forest classes can  be  a  reason 

for the relatively low separability between class pairs of 
C. malosanae and H. abyssinicae (1.93 JM), C. 
malosanae and O. usambarensis (1.94 JM), as well as O. 
usambarensis and Forest Plantation (1.90 JM) within the 
present research. 

ESAs’ existing S2 prototype LC 20 m map of Africa 
from 2016 shows a total of five LC classes and one tree 
cover class within the investigation area. The present 
study shows that mapping of nine LC classes including 
five forest subclasses of tree compositions is possible. In 
combination with regional climate data, the classification 
results    can   help   to   further   explore   climate-related 
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phenomena such as climate-induced tree mortality on a 
regional scale. Since forests of all climate zones are 
threatened by climate change, including East African 
montane forests in Kenya (Bastin et al., 2019; Kogo et 
al., 2019), detailed regional studies as presented by the 
authors are highly relevant for the community of 
environmental monitoring (Allen et al., 2010). However, 
due to the high variety of species within the investigation 
area and the spatial resolution of 10 m of partially 
resampled S2 images, classification at species level can 
be too demanding for similar applications on a regional 
scale. This specific problem was realized in a previous 
study of Immitzer et al. (2016) for temperate regions and 
should be even more relevant for tropical environments 
with a high level of biodiversity (Ganivet and Bloomberg, 
2019; Laurin et al., 2016). Consequently, Fassnacht et al. 
(2016) suggest a focus on broader forest types instead of 
single trees when using S2 data. Part of the present 
study is forest compositions that consist of different 
species that appear in alliances (Bussmann and Beck, 
1995). A similar approach was applied by Laurin et al. 
(2016) using S2 for a discrimination of functional guilds in 
a tropical environment. Both methods should provide an 
efficient alternative for monitoring functional changes 
(Laurin et al., 2016) without the claim to discriminate 
single trees at species level. 

 
 
Conclusion 

 
The opportunities of S2 imagery for the classification of 
tropical forest subclasses through additional integration of 
historical field acquisitions (in situ data) and terrain 
information were successfully tested. However, as 
suggested by previous authors and confirmed within the 
present study, multi-temporal classifications should be 
favored to reduce the bias potential due to irregular 
flowering times in tropical regions (Immitzer et al., 2016; 
Mickelson et al., 1998; Wolter et al., 1995). 

Visual comparison of the classification product, ESA's 
S2 prototype LC 20 m map of Africa 2016, and high-
resolution Google Earth imagery from September 16th, 
2018 show considerable differences between the 
classified products. The overestimation of Tree cover 
areas by ESA's LC classification as mentioned by Lesiv 
et al. (2017) can be confirmed in the present research. 
Whereas Tree cover areas of ESA's LC product cover 
approximately 85% of the investigation area; a 
combination of all forest subclasses within the present 
research shows forest coverage of slightly below 75% 
(Intended areas for Natural Forests as well as Forest 
Plantation in the KFS LU map cover an area larger than 
90%). Another aspect is the non-identification of notable 
water bodies within ESA's S2 prototype. Two large water 
bodies can be identified in the high-resolution Google 
Earth images which are also contained in the 
classification of the present study. Since ESA's product is 

 
 
 
 
based on imagery acquired between 2015 and 2016 and 
the Google Earth image was taken on September 16th, 
2018, differences in LC are possible. However, radical 
changes of large water bodies are unlikely. Moreover, 
these water bodies do not appear within the LU map of 
2018 by the KFS either. One reason could be a better 
spatial resolution of the present classification product. 
Due to a resampling of initial S2 data at 20 m to a spatial 
resolution of 10 m, classification of the present study is 
considerably more precise than ESA's S2 prototype with 
a remaining resolution of 20 m. This is most obvious in 
areas with small-scale appearances such as 
streets/tracks and human created Plantations with clear 
structures. 

The spatial distribution of specific tree compositions is 
largely dependent on altitude. This was considered 
during the classification using reference data from 
Bussmann and Beck (1995) and DEM integration. 
However, some deviations and outliers can be 
recognized. A considerable number of pixels classified as 
Ocotetea usambarensis (total of 212,705) range below 
altitudes of 1,970 m and above 2,520 m. For C. 
malosanae, most of 185,867 divergent pixels are above a 
defined range of 2,150 m to 2,650 m altitude. P. latifolii – 
S. alpinae, and H. abyssinicae show the lowest 
deviations where a very low number of classified pixels 
(5,155 and 50) range between 2,350 and 3,050 m as well 
as 2,650 m and 3,350 m altitude, respectively. High 
deviations for O. usambarensis and C. malosanae need 
to be tested through use of current ground truth data. 
Furthermore, forest subclasses need to be extended for 
secondary forest or shrubs if necessary. 
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